
CaloMan: Fast generation of calorimeter showers with
density estimation on learned manifolds

Jesse Cresswell

Layer 6 AI

Nov. 2, 2022

ML4Jets 2022 at Rutgers University

Jesse Cresswell (Layer 6 AI) Density estimation on learned manifolds Nov. 2, 2022 1 / 15



Team

About me:
PhD in T-HEP at U.Toronto on AdS/CFT and entanglement.
Now Sr. Scientist at Layer 6 AI, TD’s ML research lab.

Work done in collaboration with:
Anthony Caterini, Layer 6 AI
Brendan Ross, Layer 6 AI
Gabriel Loaiza-Ganem, Layer 6 AI
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Fast Calorimeter Simulation Challenge 2022

Physics-based simulations of calorimeter showers are slow.
Challenge: train a surrogate model that can generate realistic showers
quickly and from the correct distribution.

Deep generative models trained on shower data can learn the distribution of
showers, and enable fast sampling.

Challenge presents 3 datasets of EM showers and standardized metrics for
evaluating model performance.
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In the standard scenario for DGMs we are given IID samples {xn}Nn=1 ⊂ RD

from a distribution P∗.

For a specific calorimeter experiment P∗ could be determined in principle
from the laws of physics, but is intractable in practice.

We aim to estimate P∗ with a DGM.

Popular DGMs include

● Variational Autoencoders

● Normalizing Flows

● Generative Adversarial Networks

● Score-based Generative Models

● Diffusion Models
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Variational Autoencoders (VAEs) (Kingma & Welling; ICLR 2014) learn a
probabilistic encoder g ∶ RD → Rd mapping data to a latent space, and a
probabilistic decoder G ∶ Rd → RD mapping latents to data.

Often gθ and Gθ are parameterized by neural networks that output µ and σ
for multivariate Gaussians.
Training is based on maximum likelihood estimation

θ∗ = argmax
θ
(

N

∏
n=1

log pθ(xn)) (1)

where pθ(xn) is the likelihood of the data under the modelled density.
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Manifold Hypothesis

The Manifold Hypothesis states that high-dimensional real-world data is
supported on a low-dimensional embedded submanifoldM ⊂ RD.
(Bengio, Courville, Vincent; IEEE TPAMI 2013)

EM calorimeter showers are highly structured.
Constraints of QED processes Ô⇒ shower data has manifold structure.

Hence, the target distribution P∗ is supported onM, not RD.

What happens when we try to model P∗ with a DGM that learns a density
pθ(x) on RD?

Jesse Cresswell (Layer 6 AI) Density estimation on learned manifolds Nov. 2, 2022 6 / 15



Maximum likelihood estimation can fail when the dimensionalities of pθ(x)
and P∗ differ. Manifold overfitting can occur whereM is learned but not
the distribution P∗ on it. (Loaiza-Ganem, Ross, Cresswell, Caterini; TMLR 2022)

To maximize the likelihood of the data, the density is sent to infinity around
M, whereM is a set of measure zero wrt Lebesgue measure.

This does not happen when pθ(x) and P∗ have the same dimensionality
because pθ(x) must remain normalized.
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How can we prevent manifold overfitting?

Though commonly used, adding full-dimensional noise to the data changes
P∗, and destroys manifold structure.

The simple solution is a two-step approach: first learn the data manifold,
then estimate the distribution on it.
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Two-Step Generative Models

1) LearnM with a generalized autoencoder - any model that constructs a
low-dimensional encoding z = g(x), and can reconstruct data with a
decoder x = G(z).

Examples: autoencoder, VAE, Wassertein autoencoder, bi-directional GAN.

2) Perform density estimation on the manifold, obtaining the
low-dimensional density p(z).

DGMs that explicitly construct p(z): VAEs, normalizing flows,
energy-based, auto-regressive, score-based, and diffusion models.
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Calorimeter Shower Manifolds

The first-step model learns a latent space of fixed dimensionality d.

Use a statistical estimator of intrinsic dimension (Levina & Bickel; NeurIPS 2004)

d̂k =
⎛
⎝

1

n(k − 1)

n

∑
i=1

k−1

∑
j=1

log
Tk(xi)
Tj(xi)

⎞
⎠

−1

, (2)

Tk(xi) - Euclidean distance between xi and its kth nearest neighbour.
k - scale at which the manifold is probed.

Estimator is derived from the expected number of neighbours per unit
volume as dimension increases.
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Although calorimeter shower data is high-dimensional, its intrinsic dimension
is estimated to be much lower.

Photons dataset showers have 368 voxels, but d̂k = 20.

Electron datasets 2 & 3 have the same layout, but 3 has higher resolution,
6,480 and 40,500 voxels respectively. Estimates of d̂k are 75 and 110.
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Photons Dataset - Preliminary Results

Two-step models reduce dimension, so that training and sampling are
extremely fast compared to full-dimensional models.

1) VAE parameterizes the encoder and decoder as MLP networks with 3
hidden layers of 512 units - output the parameters of diagonal Gaussians.

2) NF trained on 20-dimensional latent space is a 4-layer rational-quadratic
neural spline flow. We used nflows: github.com/bayesiains/nflows.

VAE and NF trained for 200 epochs each, requiring 1 GB memory and 110
minutes on a Titan V GPU.

Code for training two-step models is available at
github.com/layer6ai-labs/two step zoo.
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VAE was trained without conditioning. Adding conditioning improves
shower averages, but encourages a segmented latent representation that
may not generalize.

Comparison of histograms between test set, and generated samples:
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CaloChallenge metrics

Separation power of χ2 test between histograms, and sampling times
(includes time to undo pre-processing).

Feature χ2 Power

Edep/Einc 0.0535
Edep, L0 0.0540
Edep, L1 0.0304
Edep, L2 0.0243
Edep, L3 0.0045
Edep, L4 0.0009

CE in η, L1 0.0376
CE in η, L2 0.0512
CE in ϕ, L1 0.0145
CE in ϕ, L2 0.0391

Width in η, L1 0.1548
Width in η, L2 0.0538
Width in ϕ, L1 0.1080
Width in ϕ, L2 0.0489

Batch
Size

Number of
showers

Time per
shower (ms)

1,000 1,000 0.0598
1,000 100,000 0.0844
5,000 5,000 0.0532
5,000 100,000 0.0315

10,000 10,000 0.0265
10,000 100,000 0.0246
50,000 50,000 0.0216
50,000 100,000 0.0201

Binary classifier trained to distinguish real and sampled showers attains only
0.78 AUC. Despite imperfectly learning the distribution, showers are
realistic.
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Conclusion

Calorimeter showers have low-dimensional structure dictated by physics.

Although this structure has not been understood from first principles, we
can incorporate it into our modelling assumptions.

Learning the manifold, then estimating the density on it is a more principled
approach that avoids manifold overfitting.

Dimensionality reduction also speeds up the training of high powered
density estimators, like NFs or diffusion models as in stable diffusion
(Rombach et al.; CVPR 2022).

Learning topologically non-trivial manifolds without prior knowledge is also
possible (Ross, Loaiza-Ganem, Caterini, Cresswell; 2206.11267).
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