Fermilab

Recent ML-usage in searches with boosted jets in CMS

Oz Amram

On Behalf of the CMS Collaboration

Nov 3rd, 2022

Overview

ML4Jets always has many great ideas on jet tagging

What has actually 'trickled down' to usage in experiments?

Overview

ML4Jets always has many great ideas on jet tagging

What has actually 'trickled down' to usage in experiments?

• Architectures?

Overview

ML4Jets always has many great ideas on jet tagging

What has actually 'trickled down' to usage in experiments?

- Architectures?
- Usage in analyses?
 - $X \rightarrow VV/VH$
 - $X \rightarrow WWW$
 - VLQ pair production

- $X \rightarrow YH \rightarrow 4b$
- Non-resonant $HH \rightarrow 4b$

CMS Jet Taggers

Jets : Anti-kt R=0.8, PUPPI Up to 100 jet constituents (42 feats. per) Up to 7 secondary vertices (15 feats per.) arXiv:2004.08262

Taggers : Deep AK8

Jets : Anti-kt R=0.8, PUPPI Up to 100 jet constituents (42 feats. per) Up to 7 secondary vertices (15 feats per.)

DeepAK8

- Architecture : **1D CNN**'s
 - Order inputs by $p_{\scriptscriptstyle T}~\&~2D~IP$
- Output: Multi-class scores
 - W/Z/t/H/other, split by decay modes (17 scores)
 - Build discriminants by taking ratios
- Mass-decorrelated version trained with an adversary

Taggers : ParticleNet

Jets : Anti-kt R=0.8, PUPPI Up to 100 jet constituents (42 feats. per) Up to 7 secondary vertices (15 feats per.)

FIG. 1: The structure of the EdgeConv block.

(a) ParticleNet

ParticleNet

- Architecture : Graph based
 - Processes inputs in permutation invariant way
 - Based on EdgeConv blocks
- Output: binary classification scores
 X vs QCD
- Mass decorrelated version trained using samples with flat mass & pt spectra
- Same architecture used to predict jet mass

Performance

Mass Decorrelation Performance

- **Crucial** for analyses doing bump-hunts in jet mass
 - QCD sculpting is a big headache for experimenters
- Both methods significantly reduce mass sculpting
- ParticleNet achieves slightly better decorrelation on Higgs peak

X→VV/VH

• Search for resonance decaying to two bosons

B2G-20-009 arXiv:2210.00043

- Boosted \rightarrow 2 fat jets
- DeepAK8 tagger selection targeting V→ qq or H→bb decays
- 3D bump-hunt in dijet and 2 jet masses

B2G-20-009 arXiv:2210.00043

$X \rightarrow VV/VH$: Results

Events / 100 GeV

- Modest excesses at 2.1 and 2.9 TeV
 - 2.3σ global (3.6σ local)
- Most stringent limits to date
 - Larger data set size & improved tagging roughly equal contribution

Pair Produced VLQ's

• Multitude of different decays possible

B2G-20-011 arXiv:2209.07327

- Single lepton channel uses DeepAK8 to tag & categorize fat jets
 - Multi-class discrimination crucial!
- Using DeepAK8 jet tagging led to limits surpassing lumi-based projections of 2016 analysis

B2G-21-002 arXiv:2112.13090 Phys. Rev. D 106 (2022)

X→WWW

- Search for a KK excitation of W boson (W_{KK}) decaying into W and Radion (\rightarrow WW)
 - Consider both merged and resolved Radion decays
- First analysis tagging merged WW (4 prongs!)
 - Uses **DeepAK8** $H \rightarrow 4q + W$ classes
 - Top jets with additional hard gluon used as a proxy for 4-prong jets → derive SF

B2G-21-002 arXiv:2112.13090 Phys. Rev. D 106 (2022) X→WWW : Results

- Bump-hunt in dijet or trijet mass
- All hadronic channel combined with semileptonic one for best limits
- No significant excesses observed
- First limits on this type of model!

B2G-21-003 arXiv:2204.12413

X→YH

- Search for resonance decaying to Higgs + scalar (Y)
 - ParticleNet used to tag each fat jet
- 2D bump-hunt in dijet mass + Y mass

$X \rightarrow YH$: Results

• 2D Bump hunt in dijet and Y mass

B2G-21-003 arXiv:2204.12413

- No significant excesses

 For M_Y = 125 GeV, improves ~2x over previous CMS di-Higgs search b/c of ParticleNet

Non-resonant $HH \rightarrow 4b$

- Boosted regime → 2 fat jets (20% of HH prod.)
 - Separate resolved analysis (2202.09617)
- Split into ggF and VBF production modes

HIG-20-005

arXiv:2205.06667 PRL 129 (2022)

- H→bb tagging and mass regression done with ParticleNet
 - Scale factors calibrated using g→bb
 - ~2x improvement wrt DeepAK8 + soft drop

$HH \rightarrow 4b$: Results

• No significant excess

HIG-20-005

arXiv:2205.06667 PRL 129 (2022)

- Obs. (exp.) limit on HH xsec at 9.9 (5.1) times SM
- K_{2V} = 0 excluded for first time! (6.3σ)
- Comparable limits on λ to resolved HH \rightarrow 4b
 - Enabled by excellent tagging performance!

Conclusions

- ML-based jet tagging extending CMS's physics reach
 Factors of ~2 in sensitivity b/c improved tagging
- Graph-based network, ParticleNet now being used in flagship CMS analyses
 - A version is now running at CMS high level trigger! (link)
- More exciting results to come!

Backup

Tagger Backup

Loss

LMP

Mass

prediction

back propagation

Figure 1

ully connected

FIG. 2: The architectures of the ParticleNet and the ParticleNet-Lite networks.

VLQ Backup

X→WWW Backup

m. (TeV)

HH Backup

[[001]