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Boosted Top Quark Tagging
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Isolate boosted top jets -> Interesting Physics!
- Precision SM measurements
- Heavy resonance searches

But difficult to separate tops from light quark / gluon background

“Easy” solution: Use ML to solve 
classification task

- Exploit differences in substructure
- Powerful classification algorithms 

have already been developed

“A robot looking at particle collisions, oil painting”

3 orders of magnitude more 
background before requiring 
boosted tops (pT > 350 GeV)



A New Class of Top Taggers
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Constituent Based Taggers showed 
impressive performance on Delphes 

simulated data sets. How do they perform in 
a realistic setting?

ATLAS approach in Run 2:
1. Calculate a set of jet level quantities

a. Splitting scales, subjettiness, etc.
2. Combine using ML classifier

New approach*:
1. Combine constituent level 

information with (larger and 
more complex) ML classifier

Jet level quantity information ⊂ Constituent information

Pheno studies (1902.09914) show great 
performance…but do these results 
translate to a realistic contexts?

- DELPHES vs. realistic detector sim.
- Complex jet reconstruction

*CMS has already put the new 
approach to effective use (2004.08262)

https://arxiv.org/abs/1902.09914
https://arxiv.org/abs/2004.08262


Simulation Samples and Jet Reconstruction
● Signal boosted tops obtained from 

simulated Z’➝ttbar events
○ Use both leading and sub-leading jets
○ Cross section reweighted to populate kinematic 

region of interest pT ~ 0.35-4 TeV

● Background light quark / gluon initiated jets 
obtained from dijet events

● All events simulated at LO with Pythia8
● Jets reconstructed from UFO inputs, using 

anti-kt algorithm w/ R=1.0
○ Soft-drop grooming
○ CS+SK pileup mitigation

● “Contained” top jets obtained by placing 
requirements on matched truth jet
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“A group of UFOs riding a sunbeam as a Renaissance oil painting”

https://arxiv.org/abs/2009.04986
https://cds.cern.ch/record/2776782


Jet pT and Training Weights
● Without event weights, background jet sample contains unphysical pT spectrum
● Derive weights that match background pT spectrum to signal

○ First order measure to prevent background-sculpting
○ Produces reasonable distribution of weights ➝ stable training

● Weights are applied to loss function in tagger training
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Constituent Level Pre-Processing

● Pre-process constituent level information to exploit known symmetries
● Consider at most the 80 leading constituents in each jet
● Then build 7 constituent level inputs

6“An overflowing bowl containing UFOs, oil painting”



Constituent Level Pre-Processing
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Angular Pre-Processing:
1. Center highest pT constituent
2. Rotate so that 2nd highest pT constituent sits on the negative 𝜙-axis
3. If needed, reflect jet about 𝜙-axis such that 3rd highest pT constituent sits in the 

positive 𝜂 half-plane



Constituent Level Pre-Processing
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Top-Quark Taggers
1. High Level Quantity Baseline

a. Tagger used by ATLAS for Run 2
b. High level quantities used are shown in 

backup

2. Densely Connected Neural Network 
a. Flatten jet constituents into vector
b. Fully connected layers, ReLu activations, etc.

3. Energy Flow / Particle Flow Networks
a. https://arxiv.org/abs/1810.05165

b. Deep sets networks

4. ResNet 50 
a. https://arxiv.org/abs/1512.03385

b. CNN architecture interprets data as an image

5. ParticleNet 
a. https://arxiv.org/abs/1902.08570

b. Graph network used extensively by CMS

9

All models trained to minimize cross entropy loss w/ Adam optimizer

Background Signal

https://cds.cern.ch/record/2776782
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1902.08570


Some constituent based taggers work very well…

● Particle Net / PFN achieve ~2-3x improvement in background rejection 
across kinematic range

● Constituent based tagger’s performance peaks in the 1-2 TeV range
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…but others underperform on an ATLAS data set!

11https://arxiv.org/abs/1902.09914

Wouldn’t it be nice if we could just train taggers 
in a realistic context from the beginning??

ResNet 50 and EFN underperform relative to 
expectation from pheno studies

https://arxiv.org/abs/1902.09914
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All MC samples used for training / testing of taggers in this 
study are now publicly available!

Data: http://opendata.cern.ch/record/15013
Documentation: https://gitlab.cern.ch/atlas/ATLAS-top-tagging-open-data

http://opendata.cern.ch/record/15013
https://gitlab.cern.ch/atlas/ATLAS-top-tagging-open-data


QCD Modeling Dependence
● Evaluate trained taggers on events simulated with alternative MC generators 

to assess model dependence of constituent based taggers
○ SM ttbar production, semi-leptonic decay mode
○ Note taggers are trained using Z’ -> ttbar samples

● Matrix elements evaluated at NLO
● Attempt to isolate top jets by requiring dR(top, anti-top) > 2.0 at parton level
● Comparing signal efficiency between alternative and nominal samples 

shows dependence of tagger performance on QCD modeling
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3 alternative samples:
1. Powheg + Pythia 8 
2. Powheg + Herwig 7
3. MadGraph_aMC@NLO + Pythia 8



hlDNN Model Dependence
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Decreasing performance w/ pT is common feature of all SM ttbar samples regardless of 
parton shower model. Suggests this results from ISR/FSR differences



Constituent Based Tagger Model Dependence
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● PFN and Particle Net show 
increased model dependence

● Exact cause is an open 
question!

● QCD modeling dependence 
will contribute to systematic 
uncertainties in SF 
measurements and physics 
analyses!

● Also implies a suboptimal 
tagger

AUC is not the only 
performance metric!



EFN Model Dependence
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EFN is less sensitive to soft radiation by definition. Results in less 
model dependence than even the high level quantity baseline!



Conclusions
● Some constituent-based top taggers (PFN, 

ParticleNet) show significantly stronger performance 
than the baseline

● Others (ResNet 50 and EFN) underperform relative to 
pheno studies
○ Realistic detector simulation and jet reconstruction matters!

● Taggers differ in their sensitivity to QCD modeling. 
○ AUC is not the only performance metric that should be 

considered!

● Datasets publicly available!
○ Data: http://opendata.cern.ch/record/15013

○ Documentation: https://gitlab.cern.ch/atlas/ATLAS-top-tagging-open-data

● Results in ATLAS public note
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Public Data:

“A robot performing experiments in a 
mountainous landscape, oil painting”

http://opendata.cern.ch/record/15013
https://gitlab.cern.ch/atlas/ATLAS-top-tagging-open-data
https://cds.cern.ch/record/2825328


Backup
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Raw Constituent Level Distributions
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High Level Quantities
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Hyper-parameter Tuning Procedure
● Hyperopt tree of parzen estimators algorithm used to suggest new 

hyper-parameter configurations
○ For hlDNN, DNN, EFN, PFN: O(100) trainings run, model which achieved lowest validation 

loss selected as optimal
○ ResNet 50 and ParticleNet training times limited tuning to ~30 trainings

● For ResNet50 and ParticleNet, Asynchronous Hyperband Scheduler (ASHA) 
used to terminate poorly performing configurations
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