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Constructing Unobserved Regions by Transforming Adjacent Intervals



Bump hunts

We expect signal events to be localised 
in the invariant mass.

⇒ Show up as a bump in the spectrum

Method:

1. Split spectrum into sliding ‘side bands’
2. Fit the distribution in sidebands
3. Interpolate into the signal region
4. Look for an excess
5. Slide window and repeat 2



Extending Bump hunts

But what if the bump is dominated by background…
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Is there more information we can use than just mass?

What do we train on?
High mass - boosted decays
Look at substructure!

Control region data
vs

Signal region

Noisy labels - weakly supervised!



Extending Bump hunts with CWoLa
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Tighter cut

Collins et al Metodiev et al

https://arxiv.org/abs/1902.02634
https://arxiv.org/abs/1708.02949


Extending Bump hunts

Works really well unless observables in classifier are correlated with Mass!

How to take into account?

● Optimise choice of observables
● Bring in additional ML approaches for producing the background
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Extending Bump hunts

6

Approaches showing great improvements over standard CWoLa bump hunt

ANODE (Nachman & Shih)
● Direct density estimation with normalizing flows, using base density for anomaly detection

CATHODE (Hallin et al)
● Normalizing flows trained outside of signal window, generate background data in signal window

SALAD (Andreassen et al) - Not using normalizing flows but also very good performance
● Use simulation to transfer classifier to data with density ratio estimation

https://arxiv.org/abs/2001.04990
https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2001.05001


Extending Bump hunts
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Other approaches build on the idea and show great improvements over standard CWoLa bump hunt

ANODE (Nachman & Shih)
● Direct density estimation with normalizing flows, using base density for anomaly detection

CATHODE (Hallin et al)
● Normalizing flows trained outside of signal window, generate background data in signal window

●

(Hallin et al)

https://arxiv.org/abs/2001.04990
https://arxiv.org/abs/2109.00546
https://arxiv.org/abs/2109.00546


Introducing CURTAINs
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Train an INN to map data between sidebands

● Condition on the input and target mass
● Learn to account for changing mass

Once trained by choosing target mass values 
Transport sideband data into signal region!

● No need to sample from base distribution
● Only estimate mass distribution in signal region

“What would this datapoint look like if it had a 
different value of mass?”

[2203.09470]

https://arxiv.org/abs/2203.09470


Training CURTAINs

Draw data x from SB1 and SB2

Assign target masses based on batch

Transport data from SB1<->SB2

● Can train bidirectionally!

Use an Optimal Transport loss to measure 
difference between z2 and x2

Compares distributions not datapoints
9



Using f(m,m’)=m’-m

● During training min value is width of SR
● To transport data from SB->SR min value is 0
● Outside of training domain…

Solution: Split sidebands into two

● Train between lower and upper half of SB1/2
● Now min value is also 0

Training CURTAINs - technicality
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Training CURTAINs - technicality

Using Sinkhorn loss to compare x to z

● Difference in distribution over events
● Minimised if distributions and correlations 

correct after transport
● Does not strictly enforce correct mass 

conditioning for each data point
● Slow convergence due to stochastic sampling 

of target batch 

Not ideal but empirically works
11Stochasticity of data - cannot get true example of a data point at another M value, look for minimum distance in x/z space and ignores M



CURTAINs Validation

Fix sidebands

Define Outer-Band (OB) validation 
regions

Train CURTAINs transformer

Validate on OBs
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Validate
Train

Validate



Training on the LHCO R&D anomaly 
detection dataset

Sideband 1: [3200, 3400]

Sideband 2: [3600, 3800]

Five observables

MJ1, MJ1- MJ2, 𝜏21
J1, 𝜏21

J2

Plus ΔRJJ due to correlation to Mjj
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CURTAINs - Training regions

Just as good in inverse 
direction!



Nearly perfect matching implies near 
perfect background template!

CURTAINs - Signal region

14*Can’t look at this in the real analysis or application!



CURTAINs - CWoLa Performance

Compare to CATHODE method

● Equivalent training window (local)
● All available data outside of SR (full)

Same number of generated bkg for both 
methods

● “Oversample” CURTAINs by 
transporting same data to multiple 
values of m

15



CURTAINs - CWoLa Performance
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Comparing to full window training CATHODE performs better, but hard to disentangle impact from extra training statistics vs gain to method from extra Bkg to Sig ratio



CURTAINs - Bump hunt
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CURTAINs 
Flows4Flows
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Flows4Flows

Flows4flows

Train a flow between arbitrary 
distributions 

Simply another change of variables 
for p(z) in normalizing flows!

Pretrain base distribution(s)

Use base distribution for loss in 
exact maximum likelihood
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Flow4Flow between x and x’
x0
x1
x2

x’0
x’1
x’2

c c’f(c,c’)

Base distributions
Can be exactly same network if x and x’ 
sampled from same p(x|c) but different 

values of c’

Use normalizing flows to parametrise base distribution! No more approximate OT loss!  

Can now train CURTAINs with exact maximum likelihood!

[arXiv:2211.02487, GitHub]

https://arxiv.org/abs/2211.02487
https://github.com/jraine/flows4flows/


Why Flows4Flows
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Input and transform with F4F

Sample from 
conditional 

normalizing flow for 
desired angle Much reduced out of distribution points!

[arXiv:2211.02487, GitHub]

https://arxiv.org/abs/2211.02487
https://github.com/jraine/flows4flows/


CURTAINs - Flows4Flows
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CURTAINs transformer
x0
x1
x2

x’0
x’1
x’2

m m’context=m’-m

Base distribution
Same network for both sides

Normalizing flow on features|mJJ
Trained on SB1 U SB2

Only used for loss term!

log(p(x)) = logdet|J(f(x|m,m’))| + logdet|J(g(f(x|m,m’)|m’) + p(g(f(x|m,m’)|m’))

Base dist now similar to 
CATHODE flow

Loss:

During training:
Randomly assign target mass by shuffling input 
values in batch

For application use SR mass values

Flow direction depends on if target > input mass



CURTAINs - Flows4Flows

Significant improvement with new loss!

Much faster to train, including base density

Still trained on a very local window

● Only 200GeV either side of SR
● Matches CATHODE (full) now over most 

of the range

Compared to CURTAINs v1

● Simpler to set up and train
● Features can be even more strongly 

correlated to resonant feature 22



CURTAINs - Flows4Flows
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Compared to CURTAINs v1

● Simpler to set up and train
● Features can be even more strongly 

correlated to resonant feature
● Still robust to case where there is no 

signal



CURTAINs - Flows4Flows
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Compared to CURTAINs v1

● Simpler to set up and train
● Features can be even more strongly 

correlated to resonant feature
● Still robust to case where there is no 

signal
● Much more sensitive to even small 

amounts of signal



Summary

CURTAINs is a new method for enhancing the Bump Hunt with CWoLa style classifiers

● Transforms data from sidebands into signal region
● Bypass need of going via an intermediate distribution
● Produces background data in SR and is complementary to other anomaly techniques

CURTAINs matches the performance of leading approaches without needing to train on the 
full mJJ spectrum

● Leading performance in a local setup

CURTAINs+Flows4Flows can reach even higher levels of performance - preprint soon!
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Backup
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CURTAINs - CWoLa Performance

Fix the signal region such that it 
contains almost all of the signal

Train a CURTAINs transformer

Train a classifier SR data vs CURTAINs 
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CURTAINs - Validation regions
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CURTAINs - CWoLa Performance
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Idealised = take true Background data, and train S+B vs B with equal statistics
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CURTAINs - Bump hunt
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Repeat CWoLa setup with 
non-overlapping 200 GeV steps

Apply cuts on classifier trained with e.g. 
CURTAINs and look for a bump



CURTAINs - Flows4Flows

Train normalizing flow on p(x, m) = SB1 ⋃ SB2 for base distribution - like CATHODE

● But unlike CATHODE, use this for training another flow, not generating samples

Construct a flow4flow from x to x’ conditioned on current and target masses (m, m’) 

● Transform x~p(x|m) to p(x|m’~p(m)) in flow f(x|m,m’) - like CURTAINs

But now loss given by maximum likelihood:

log(p(x)) = logdet|J(f(x|m,m’))| + logdet|J(g(f(x|m,m’)|m’) + p(g(f(x|m,m’)|m’))
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Flow4flow transform Base density transform Base density probability



CURTAINs - Flows4Flows

If a datapoint has m’ >= m, transform from “left to right”

If a datapoint has m’ < m, transform from “right to left”

No longer need to split sideband, train on combination of all data

● Guaranteed widest support of conditioning variable!
● Leads to much faster training, no longer iterating

○ Forward and inverse pass based on input/target, both passes done per batch

32



CURTAINs - Flows4Flows
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