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Data goes through a processing pipeline:


1. Raw Data


2. Reconstruction


3. Object Selection


4. “Physics Engineering”


5. Analysis

Data Science and Big Data

1. Introduction & Background

How to Analyze Data (Dimensionality Reduction)
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• Raw Data is still too high-dimensional to analyze directly. 

• Events, Kinematics, Particle ID, etc are reconstructed from detector measurements. 

• Objects relevant to an individual study of interest are selected (e.g. clusters/jets). 

• Physics variables are calculated from object data. 

• Physics variables are evaluated for final analysis. 

Full/Raw Data Reconstruction Object Selection

the energy correlation variables. Our results show that even
a straightforward BDT combination of all six of the high-
level variables provides a large boost in comparison. In
probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.
The deep network has clearly managed to match or

slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on the
underlying theoretical questions may naturally be curious
as to whether the deep network has learned a novel strategy
for classification which could inform their studies, or
rediscovered and further optimized the existing features.
While one cannot probe the motivation of the machine

learning (ML) algorithm, it is possible to compare distri-
butions of events categorized as signal-like by the different
algorithms in order to understand how the classification is
being accomplished. To compare distributions between
different algorithms, we study simulated events with

equivalent background rejection, see Figs. 5 and 6 for a
comparison of the selected regions in the expert features for
the two classifiers. The BDT preferentially selects events
with values of the features close to the characteristic signal
values and away from background-dominated values. The
deep neural network (DNN), which has a modestly higher
efficiency for the equivalent rejection, selects events near
the same signal values, but in some cases can be seen to
retains a slightly higher fraction of jets away from the
signal-dominated region. The likely explanation is that the
DNN has discovered the same signal-rich region identified
by the expert features, but has in addition found avenues to
optimize the performance and carve into the background-
dominated region. Note that DNNs can also be trained to be
independent of mass, by providing a range of mass in
training, or training a network explicitly parametrized
[44,45] in mass.
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FIG. 4. Signal efficiency versus background rejection (inverse
of efficiency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both with
(bottom) and without pileup (top). Typical choices of signal
efficiency in real applications are in the 0.5–0.7 range. Also
shown are the performance of jet mass individually as well as two
expert variables in conjunction with a mass window.
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FIG. 5. Distributions in simulated samples without pileup of
high-level jet substructure variables for pure signal (W → qq) and
pure background (QCD) events. To explore the decision surface of
the ML algorithms, also shown are background events with various
levels of rejection for deep networks trained on the images and
boosteddecision trees trainedontheexpert features.Bothalgorithms
preferentially select jets with values near the peak signal values.
Note, however, that while the BDT has been supplied with these
features as an input, the DNN has learned this on its own.

JET SUBSTRUCTURE CLASSIFICATION IN HIGH- … PHYSICAL REVIEW D 93, 094034 (2016)

094034-5

Physics Engineering Analysis

Dimensionality Reduction

Low-Level (LL) Analysis

High-Level (HL) Analysis

This has a few benefits


1. Features are physical/intelligible


2. Features are inspectable and can be 
validated


3. Performance Improves!
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1. Introduction & Background

Common Jet Clustering Algorithms

An Even Lower Level Example (Jets)

15

• Proton collisions create free particles with 
non-zero color 

• Color confinement forces pair-production 
with other particles to form color-neural 
hadrons. 

• Cascade of hadron production is produced 
along the momentum-axis, creating a 
collimated shower of particles 

• Hadrons are measured by calorimeters 

• Jets are defined and isolated in terms 
of clustering algorithms 

• What is the HL and LL version 
of this data?

p

p

Fragmentation: [ g,u,d,… ]

Hadronization [ π+, π-, K+, K-, … ]

Calorimeter 
[Energy]

Diagram for quark/gluon hadronization

5

• Jet: Collimated group of stable 
hadrons


• Form from “free” quarks/gluons 
which hadronize due to 
confinement


• Jets are detected as groups of 
particles in the calorimeter

A Solvable Problem With Jets
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Jets as High-Level Features - Jet Substructure

1. Introduction & Background

High Level Jets - Jet Substructure

16

• Most Jet Substructure (JSS) observables are composed of jet 
constituents momentum fraction  and angular separation from the 
jet axis  for a clustered jet with clustering radius  

 

• Quark/Gluon discrimination (Generalized Angularity) 

 

• W/Z/Higgs jets (Energy Correlation Functions = Higher Order GA) 

 

 

• N-Prong sensitivity (N-subjettiness) 
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HL Vs LL
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the

1 Event Average of all events
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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FIG. 1: Distributions in simulated samples of high-level jet
substructure variables widely used to discriminate between
jets due to collimated decays of massive objects (W ! qq)
and jets due to individual quarks or gluons (QCD). Two cases
are shown: with and without the presence of additional in-
time pp interactions, included at the level of an average of 50
such interactions per collision.
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Images are then reflected so that the maximum energy
value is always in the top half of the image.

The jet energy deposits were centered and cropped to
within a 3.0 ⇥ 3.0 radian window, then binned into pix-
els to form a 32 ⇥ 32 image, approximating the resolu-
tion of the calorimeter cells. When two calorimeter cells
were detected within the same pixel, their energies were
summed. Example individual jet images from each class
are shown in Figure 2, and averages over many jets are
shown in Figure 3.

TRAINING

Deep neural networks were trained on the jet images
and compared to the standard approach of BDTs trained
on expert-designed variables that capture domain knowl-
edge [2]. All classifiers were trained on a balanced train-
ing data set of 10 million examples, with 500 thousand
of these used as a validation set. The best hyperparam-
eters for each method were selected using the Spearmint

FIG. 2: Typical jet images from class 1 (single QCD jet from
q or g) on the left, and class 2 (two overlapping jets from
W ! qq0) on the right, after preprocessing as described in
the text.

FIG. 3: Average of 100,000 jet images from class 1 (single
QCD jet from q or g) on the left, and class 2 (two overlapping
jets from W ! qq0) on the right, after preprocessing.

Bayesian optimization algorithm [37] to optimize over the
supports specified in Tables I and II. The best models
were then tested on a separate test set of 5 million ex-
amples.
Neural networks consisted of hidden layers of tanh

units and a logistic output unit with cross-entropy
loss. Weight updates were made using the ADAM op-
timizer [38] (�1 = 0.9,�2 = 0.999, ✏ = 1e�08) with mini-
batches of size 100. Weights were initialized from a nor-
mal distribution with the standard deviation suggested
by Ref. [39]. The learning rate was initialized to 0.0001
and decreased by a factor of 0.9 every epoch. Train-
ing was stopped when the validation error failed to im-
prove or after a maximum of 50 epochs. All computations
were performed using Keras [40] and Theano [41, 42] on
NVidia Titan X processors. Convolutional networks were
also explored, but as expected, the translational invari-
ance provided by these architectures did not provide any
performance boost.
We explore the use of locally-connected layers, where

each neuron is only connected to a distinct 4-by-4 pixel
region of the previous layer. This local connectivity con-
strains the network to learn spatially-localized features
in the lower layers without assuming translational invari-
ance, as in convolutional layers where the weights of the
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Low Level Outperforms High Level

5
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FIG. 4: Signal e�ciency versus background rejection (inverse
of e�ciency) for deep networks trained on the images and
boosted decision trees trained on the expert features, both
with (bottom) and without pile-up (top). Typical choices of
signal e�ciency in real applications are in the 0.5-0.7 range.
Also shown are the performance of jet mass individually as
well as two expert variables in conjunction with a mass win-
dow.

INTERPRETATION

Current typical use in experimental analysis is the
combination of the jet mass feature with ⌧21 or one of
the energy correlation variables. Our results show that
even a straightforward BDT-combination of all six of the
high-level variables provides a large boost in comparison.
In probing the power of deep learning, we then use as our
benchmark this combination of the variables provided by
the BDT.

The deep network has clearly managed to match or
slightly exceed the performance of a combination of the
state-of-the-art expert variables. Physicists working on

the underlying theoretical questions may naturally be cu-
rious as to whether the deep network has learned a novel
strategy for classification which could inform their stud-
ies, or rediscovered and further optimized the existing
features.
While one cannot probe the motivation of the ML al-

gorithm, it is possible to compare distributions of events
categorized as signal-like by the di↵erent algorithms in
order to understand how the classification is being accom-
plished. To compare distributions between di↵erent algo-
rithms, we study simulated events with equivalent back-
ground rejection, see Figs. 5 and 6 for a comparison of the
selected regions in the expert features for the two classi-
fiers. The BDT preferentially selects events with values
of the features close to the characteristic signal values
and away from background-dominated values. The DNN,
which has a modestly higher e�ciency for the equivalent
rejection, selects events near the same signal values, but
in some cases can be seen to retains a slightly higher frac-
tion of jets away from the signal-dominated region. The
likely explanation is that the DNN has discovered the
same signal-rich region identified by the expert features,
but has in addition found avenues to optimize the perfor-
mance and carve into the background-dominated region.
Note that DNNs can also be trained to be independent of
mass, by providing a range of mass in training, or train-
ing a network explicitly parameterized [44, 45] in mass.

DISCUSSION

The signal from massive W ! qq jets is typically ob-
scured by a background from the copiously produced low-
mass jets due to quarks or gluons. Highly e�cient classifi-
cation is critical, and even a small relative improvement
in the classification accuracy can lead to a significant
boost in the power of the collected data to make statis-
tically significant discoveries. Operating the collider is
very expensive, so particle physicists need tools that al-
low them to make the most of a fixed-size dataset. How-
ever, improving classifier performance becomes increas-
ingly di�cult as the accuracy of the classifier increases.
Physicists have spent significant time and e↵ort de-

signing features for jet-tagging classification tasks. These
designed features are theoretically well motivated, but as
their derivation is based on a somewhat idealized descrip-
tion of the task (without detector or pileup e↵ects), they
cannot capture the totality of the information contained
in the jet image. We report the first studies of the ap-
plication of deep learning tools to the jet substructure
problem to include simulation of detector and pileup ef-
fects.
Our experiments support two conclusions. First, that

machine learning methods, particularly deep learning,
can automatically extract the knowledge necessary for
classification, in principle eliminating the exclusive re-

Baldi, P., Bauer, K., Eng, C., Sadowski, P., & 
Whiteson, D. (2016, March 30). Jet Substructure 
Classification in High-Energy Physics with Deep 

Neural Networks. arXiv.org. http://doi.org/
10.1103/PhysRevD.93.094034

• Baldi et al. find  a CNN on jet images performs 
better than Jet Substructure


• Jet Images (red line): AUC = 95.30% ± 0.02%


• JSS (blue line): AUC = 95.00% ± 0.02%


• Where is that extra information coming from? 


• Why don’t our standard Jet Substructure 
observables contain this information? 


• Is it real physics that we don’t know about yet? 


 We’ve used a black box, so now what? ¯\_(ツ)_/¯ 
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This is a common situation which we have proposed a solution to


• SM Jets: “Mapping Machine-Learned Physics into a Human-Readable Space”


•  https://arxiv.org/pdf/2010.11998


• Muon Decay Jets: “Learning to Isolate Muons”


• https://arxiv.org/pdf/2102.02278


• Electron vs Jet Delineation: “Learning to Identify Electrons”


• https://arxiv.org/pdf/2011.01984


Will it work for Semi-Visible jets?


• Semi-Visible Jets: “Learning to Identify Semi-Visible Jets”


• https://arxiv.org/pdf/2208.10062


Spoiler Alert! Yes it works but with some interesting caveats unique to semi-visible jets.

A Recurring Problem

https://arxiv.org/pdf/2010.11998
https://arxiv.org/pdf/2102.02278
https://arxiv.org/pdf/2011.01984
https://arxiv.org/pdf/2208.10062


Solving The Problem
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Energy Flow Polynomials (EFP): 
Complete linear basis set for jet 
substructure 


The set of EFPs is defined as all 
isomorphic graphs, with pT and 
position (θ) as defined below

EFP - an Engineered Space of Human-Interpretable Variables

Examples

=
N

∑
a

N

∑
b

zazbθab
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∑
a

N

∑
b
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d
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∑
e

zazbzczdzeθ2
acθbdθbeθcd

Graph components

a b

a b

=
N

∑
a

za

= θab

= (θab)2

Node/Vertex:

Edges:

Multiple Edges

za = pκ
T,a

θab = (Δη2
ab + Δφ2

ab)β/2

Komiske, P. T., Metodiev, E. M., & Thaler, J. (2017, December 19). Energy flow polynomials: A complete linear basis for jet substructure.

zi =
pκ

T,i

∑i pT,i

θij = (Δy2
ij + Δ2

ij)
β/2

For every set of graphs, we can also modify 
2 parameters (Κ,β)
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Mapping ML to a Human Readable Space

CNN

f(x)

f(x, x′￼, y)

h(x
)

f(x
, g

(h
(x,

y),
x′￼,

z)

f(x
, f(

h(x
, y)

, x′
￼, z)

h(x)

f(x, g(h(x, y), x′￼, z)

g(x, f(x)

f(x, f(h(x, y), x′￼, z)

High-
dimensional


features

Learned 
solutions

Comprehensive human-
interpretable function space

Metric
New 

Physics!(1)

(2)

(3)

• Can we make a model that is made up entirely of intelligible high-level features but which is “equivalent” in its decision 
making to the CNN? A LL solution that performs better than the HL 


• The parts we need are:


• We have this from our CNN on jet images.


(1) A LL but powerful solution


(2) A “human readable” space of HL variables.


(3) A metric for mapping the LL solution into the HL features.
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Average Decision Ordering (ADO)

2. Mapping Machine Learning Solutions to a Human Readable Space

Average Decision Ordering (ADO)

38

We want an equivalent to ROC for 2 discriminating functions [f(x) and g(x)]. Classification 
decision of two functions at different thresholds.

x’

x

x’

x
f(x)

f(x’)
x’

x

x

x’
g(x)

g(x’)

(+) (-)

Dissimilar Ordering

x’

x

x’

x
f(x)

f(x’)
x’

x

x’

xg(x)

g(x’)

(+) (+)

x’

x

x

x’

f(x)

f(x’) x’

x

x

x’g(x)

g(x’)

(-) (-)

Similar Orderings

Sum over all combinations of signal/
background decision orderings

ADO′ = ∑ DO(x , x′ )

Step 2

Consistent “dissimilarity” can be inverted to 
predict “similarity”. Map all ADO less than 0.5

ADO = 1 − ADO< 1
2

Step 3

DO(x, x′ ) = Θ [( f (x) − f (x′ )) ⋅ (g(x) − g(x′ ))]

For points from signal and background (x and x’), we 
compare how each function maps those points relative to 

one another.

Step 1
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How To Find New Jet Substructure - Guided Iteration by ADO

2. Mapping Machine Learning Solutions to a Human Readable Space

How Can ADO Be Used?

40

We can compare NN decision making. Where does the HL network and LL network disagree? 

If NOT → Maximize 
Decision 
Ordering

BBN

Signal/Background Pairs

Same 
Decision 

Ordering?… …

…

… …

No

Yes

BBN

HLN

HL

HL

HL
HLN’

Black-Box 
Guided 
Search

CNN

Maximize 
Decision 
Ordering

BBN

Signal/Background Pairs

Same 
Decision 

Ordering?… …

…

… …

No

Yes

BBN

HLN

HL

HL

HL
HLN’

Black-Box 
Guided 
Search

Red Space: LL and HL network disagree on 
ordering

CNN

Use ADO to choose EFP that makes similar choices to the LL network in the “differently ordered” red space
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Guided Iteration - When Applied to SM Jets

2. Mapping Machine Learning Solutions to a Human Readable Space

Finding a New EFP (Supplemental Search)

41

6

A. Boosted Boson Classification

Massive objects produced at the LHC often have
enough transverse momentum that their decay products
become collimated. For an object with a hadronic decay
mode, such as a W boson decaying to a quark-antiquark
pair (W ! qq̄0), the resulting jet in the detector consists
of two clusters of energy, one from each of the fragment-
ing quarks. The substructure of these jets is distinct from
those that arise from the fragmentations of a single hard
quark or gluon. Identification of jets with nontrivial sub-
structure has become an essential tool for probing the
nature of collisions at the LHC [21, 45–56]

There are many di↵erent ways to represent the infor-
mation in a jet. At the most fundamental level, a jet is
variable-length collection of four-vectors with associated
particle properties, motivating set-based ML tools [69–
74]. Another popular approach is to describe a jet as a
grid of calorimeter cells with energy depositions, giving
rise to a “jet image” [19, 75]. In any of these low-level
representations, the jet data is high dimensional. This
motivates the development of HL observables that intelli-
gently summarize the low-level information to reduce the
e↵ective dimensionality of the task. Physicists have engi-
neered numerous HL observables tasks that incorporate
domain knowledge about jet formation (see Refs. [49, 57–
62, 76–83] for an incomplete list). Typical usage is to
apply cuts on one or more of these HL observables, or to
combine several of them using a shallow ML classifier.

In the context of jet classification, ML tools based on
low-level inputs have outperformed traditional strategies
based on HL observables [84]. Of course, the HL ob-
servables themselves are just function of the low-level in-
puts, so it should be possible to find a large enough set
of physics-motivated HL observables that can match the
performance of these ML classifiers [85–87]. This is in-
deed the intuition behind the guided strategy in Sec. II,
where the goal is to leverage a black-box ML method to
identify the most e↵ective HL observables.

Our case study is based on the same datasets as
Ref. [20]. These datasets correspond to

p
s = 14TeV

proton-proton collision, where hard scattering and res-
onance decay were generated using MadGraph 5
v2.2.3 [88], showering and hadronization were generated
with Pythia v6.426 [89], and the response of the de-
tectors was simulated with Delphes v3.2.0 [90]. The
boosted W signal process is diboson production (pp !
W+W�), which yields two fat jets each with 2-prong
substructure. The background process is QCD dijet
production (pp ! qq, qg, gg), which typically yields 1-
prong jets. These samples do not include contamina-
tion from pileup (multiple proton-proton collision per
beam crossing). Jets are clustered using the anti-kt algo-
rithm [91] with radius parameter R = 1.2, using Fast-
Jet 3.1.2 [92]. The dataset contains 5⇥106 events, split
equally between signal and background. Following the
approach in Ref. [20], each jet is pixelated into a 32⇥ 32
grid in the rapidity-azimuth plane, and a jet image is

Observable AUC ADO[CNN,Obs.]

Mjet 0.898± 0.004 0.807
C

�=1
2 0.660± 0.006 0.584

C
�=2
2 0.604± 0.007 0.548

D
�=1
2 0.790± 0.005 0.743

D
�=2
2 0.807± 0.005 0.762

⌧
�=1
2 0.662± 0.006 0.600
6HL 0.9504± 0.0002 0.971
CNN 0.9531± 0.0002 1.000
7HLblack-box 0.9528± 0.0003 0.971

TABLE I. Classification performance of the six HL observ-
ables studied in Ref. [20], as well as a 6HL joint classifier.
The six HL observables face a small but significant perfor-
mance gap compared to the benchmark CNN. As discussed
later in Sec. IVA, this performance gap is bridged by a sev-
enth feature discovered using our black-box guided strategy.
The uncertainty on the AUC is computed from 1 standard
deviation of 10-fold cross-validation. The decision similarity
(ADO) to the benchmark CNN is also shown. Details of the
NN architectures are provided in App. A.

formed from the transverse momentum (pT) deposits in
each cell. The jet image is then trimmed [93], where
subjets of radius Rsub = 0.2 are discarded if their pT is
less than 3% of the original jet. The final jet selection
takes jets with trimmed momentum ptrim

T
2 [300, 400]

GeV within the rapidity range |⌘| < 5.0. While impor-
tant jet information is lost by pixelation and trimming,
we include these steps in our analysis in order to perform
an apples-to-apples comparison to Ref. [20].
The trimmed jet’s constituents are used to compute six

HL jet substructure observables: the trimmed jet mass
(Mjet), four ratios of energy correlation functions (C�=1

2
,

C�=2

2
, D�=1

2
, D�=2

2
) [60, 62], and theN -subjettiness ratio

(⌧�=1

21
) [58, 59]. These observables are well-established in

the context of boosted W classification, including studies
at ATLAS [94, 95] and CMS [96]. The W boson classi-
fication performance of these six HL observables is sum-
marized in Table I. The trimmed jet mass is the most
powerful single observable, since the 80.4 GeV mass peak
is a characteristic feature of boosted W bosons.
We can use the ADO from Eq. (3) to gain additional in-

sight into these six HL observables. In Fig. 2, we assess
the pairwise ADO between each of the HL observables
considered. The observable pairs that make the most
similar decisions (i.e. ADO ! 1) are C�=1

2
with C�=2

2

and D�=1

2
with D�=2

2
. This is expected since these ob-

servables have relatively similar structures except for the
choice of � coe�cient, which controls the weighting of an-
gular information within the jets. These pairs also have
similar AUC values, as seen in Table I, since pairs that
make common classification decisions should exhibit sim-
ilar classification power. Comparing the AUC and ADO
values provides a more detailed picture about the degree
of correlation in classification.
The observable pairs that make the least similar deci-

Original HL + 1 EFP

Original HL

LL network

=
N

∑
a,b,c,d=1

z2
a z2

b z2
c z2

d θabθbcθacθad

(κ=2, β=1/2)
Selected EFP from Guided Iteration

Noteworthy details about the selected EFP 

• Not Infrared-safe (k ≠ 1) 

• β=1/2 is probing small-angle behaviour 

• Chromatic #3 graph (probing deviations from 
2-prong substructure) 

• Chromatic Number = Minimum number of 
prongs to not vanish

We only need 1 new observable to achieve equal 
performance with the CNN!

EFP Distribution (differently 
ordered points)
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• What are Semi-Visible Jets? 


• SM process with partial decay mode into DM 
quarks/gluons. 


• Two popular examples described by Cohen, 
Lisanti, Lou (https://arxiv.org/pdf/
1503.00009.pdf) involve an s-channel and t-
channel process.


• Decay into visible/invisible fraction is 
characterized by rinv value


• rinv = ⟨ # of stable dark hadrons

# of hadrons ⟩

What About for SVJ?

https://arxiv.org/pdf/1503.00009.pdf
https://arxiv.org/pdf/1503.00009.pdf
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• Signal:


• s-channel and t-channel SVJ


•  


• 


• COM Energy  


• Hidden Valley settings (e.g. Mediator mass, 
Dark Quark mass, etc matches Cohen, 
Lisanti, Lou)


• rinv = [0.0, 0.3, 0.6]


• Background:


• SM at the same COM energy: 

pp → Z′￼ → χ1χ̄1

pp → φ → χ1χ̄1

s = 13,TeV

pp → jj

Our Data
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• LL trained with a Particle Flow Network 
using calorimeter constituents ( , , )


• HL trained with a Boosted Decision Tree 
(LightGBM) on most common JSS features:


• Jet pT


• Generalized Angularities: LHA, pTD, 
Jet width, , multiplicity


• N-subjettiness: , 


• Energy Correlation Functions: , 

, , , , 


• Splitting Function:  

pT η ϕ

emass

τβ=1
21 τβ=1

32

Cβ=1
2

Cβ=2
2 Dβ=1

2 Dβ=2
2 e2 e3

zg

Jet Substructure - Everything and the Kitchen Sink
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• EFP Space


• All Graphs where:   ,  and  d ≤ 5 κ ∈ [2, − 1,0,1/2,1,2,4] β ∈ [1/10,1/2,1,2,4]

Can We Find an EFP for Semi-Visible Jets
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• Two potential explanations:


• The information exists as an EFP but the guided search 
is failing to find it.


• The information doesn’t exist 
in our EFPs


• To answer this question we 
perform a “greedy search”:


• Train a model for every 
combination of HL + EFP. Do 
any of these combinations fill 
the gap?

Is the Guided Search Failing Us?
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• We are doing “Guided Iteration” because it 
should help tell us what the model is learning.


• What do the selected EFPs tell us about the 
model? 


•  values are popular choices. This is sensitive 
to low-pT information.


• Data processing (i.e. jet clustering and pT cuts) 
uses a cut of constituents < 5% of the leading pT.


• What if we relax that cut and/or raise it?


• How does that impact model performance?

κ < 0

What Is Causing This?
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Modifying pT Cuts
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• This model of Semi-Visible Jets are not well described by standard JSS observables.


• Unlike many other jet classification tasks, they are also not particularly well-described by a 
compact set of new observables in the EFP space.


• SVJ classification appears particularly sensitive to low-pt/soft-emission constituents and 
generally IRC unsafe observables. 


• However, even after aggressive trimming of low-pT information some LL-HL gaps remain. 


• Although Low-Level networks can capture this information, they do so in a way we can’t 
currently explain or validate. 


• These results strongly motivate a need to understand the low-pT dependence for SVJ events 
AND a better space than EFPs to search for observables that capture the remaining 
constituents.

Conclusions & Discussion



Questions ?


