Feature Selection with Distance correlation

Ranit Das

ranit@physics.rutgers.edu

with David Shih & Gregor Kasieczka

ML4JETS 2022

Date: 04/11/2022

Outline

Motivation for feature selection

Feature selection algorithm using DisCo

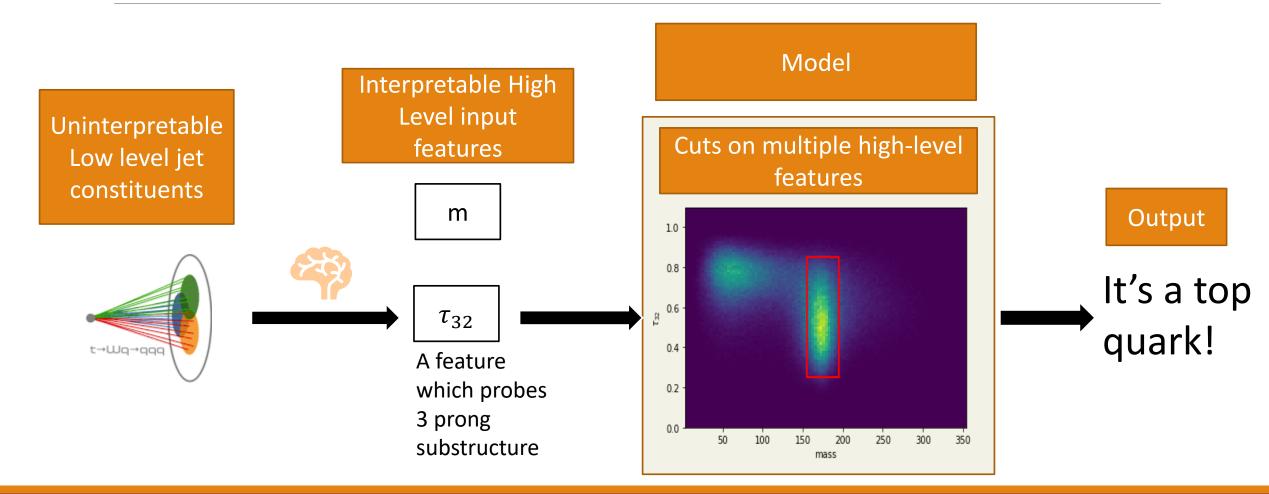
Application to Top Tagging

Results

Conclusion

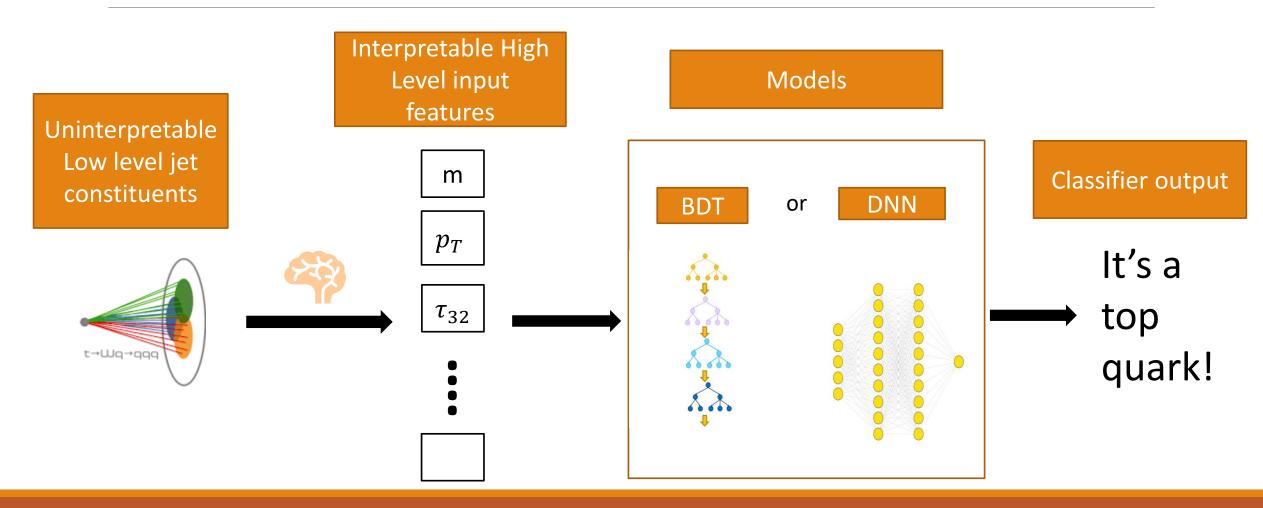
History of Boosted object tagging

1. Using cuts on multiple High-Level (HL) features



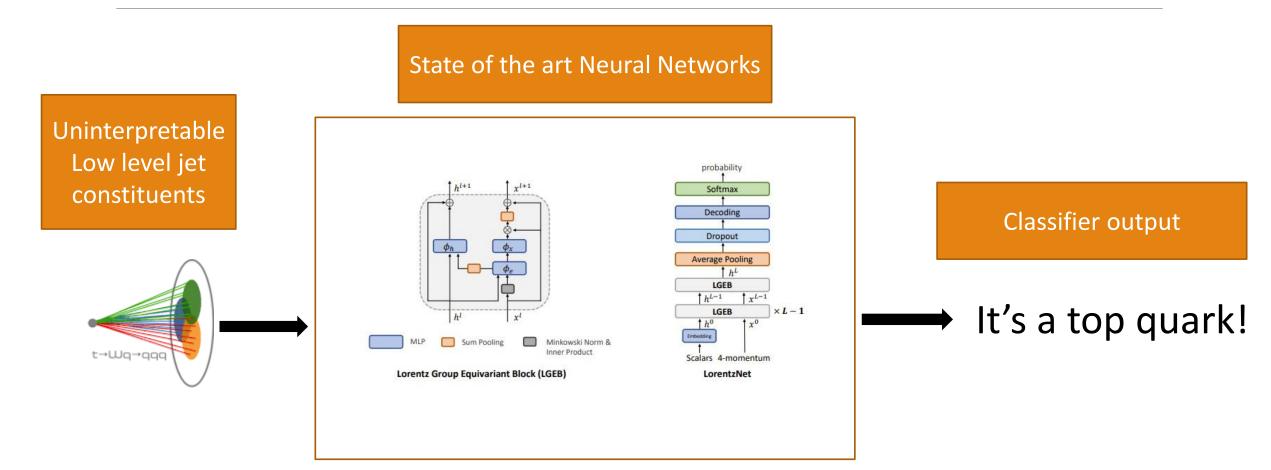
History of Boosted object tagging

2. Using a set of high-level features as inputs to BDT or DNN



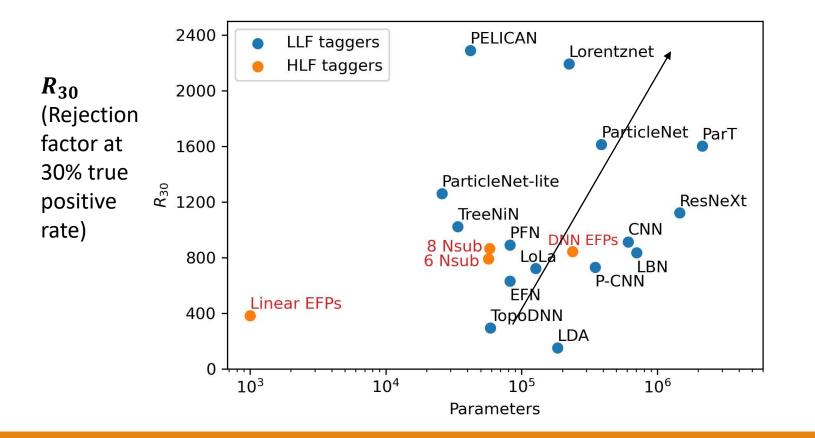
History of Boosted object tagging

3. Use low-level features directly as inputs to neural networks



Previously on top tagging

HL feature taggers haven't been able to keep up with low-level feature taggers

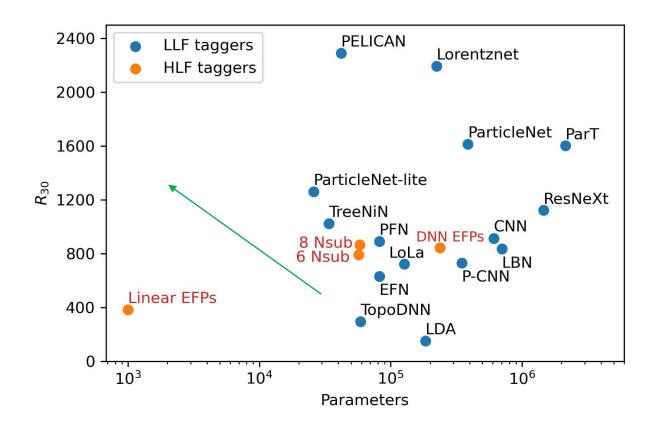


The Machine Learning Landscape of Top Taggers: arXiv:1902.09914v3 Particle Transformer for Jet Tagging: arXiv:2202.03772 An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging: arXiv:2201.08187v5 ParticleNet: Jet Tagging via Particle Clouds: arXiv:1902.08570v3 Mapping Machine-Learned Physics into a Human-Readable Space arXiv:2010.11998 Reports of My Demise Are Greatly Exaggerated: N-subjettiness Taggers Take On Jet Images: arXiv:1807.04769 How Much Information is in a Jet?: arXiv:1704.08249v2 A complete linear basis for jet substructure: arXiv:1712.07124 **PELICAN: Permutation Equivariant and Lorentz** Invariant or Covariant Aggregator Network for Particle

arXiv:2211.00454

Why should we go back to high-level (HL) features?

Can build a more efficient model with less parameters



- High-level features are more interpretable.
- Faster evaluation
- More resource efficient
- Features can be more robust and easier to calibrate and validate between simulated and experimental data.

Feature Selection

is the process of selecting a subset of useful features to use in model construction/training.

How to do Feature Selection?

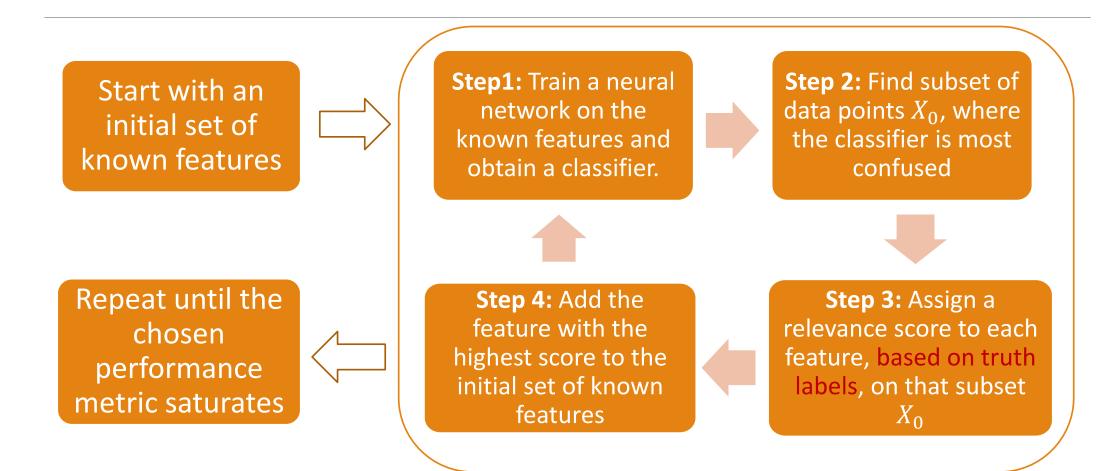
- Know which features are useful!
- Use a feature selection algorithm.

Feature selection Algorithm

• Given a large number of features, a feature selection algorithm can select a few useful features based on a relevance score assigned to each feature. We use our score as a measure of correlation between each of our features and truth labels.

• The score ranks features which are more useful than the others !

Overview of a Forward Feature Selection (FFS) algorithm which relies only on truth labels

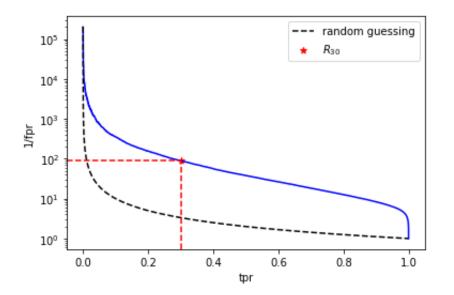


Application of the algorithm to top tagging

- Data set: The Machine Learning Landscape of Top Taggers (arXiv:1902.09914v3). (10.5281/zenodo.2603255)
- 2M jets: Signal and Background, with only Energy-momentum four vectors.
- Training set (1.2 M), validation set (400k), and test set (400k)
- The algorithm is applied to the combined training and validation set, and the metric is evaluated on the test set.

Application of the algorithm to top tagging

• Metric used: R_{30} (Rejection factor at 30% true positive rate) is evaluated on a test set (400k events)



• Initial set of features: m_J , p_{T_J} , $m_{W-candidate}$

Features: Energy Flow Polynomials (EFPs)

with $d \leq 7$, with $\kappa = \left[-1, 0, \frac{1}{2}, 1, 2\right]$ and $\beta = \left[\frac{1}{2}, 1, 2\right]$, 7350 features

Large set of features, which are functions of:

- z_a : The momentum fraction of of jet constituent a
- θ_{ab} : Angular separation between jet constituents *a* and *b*

Energy flow polynomials: A complete linear basis for jet substructure: <u>arXiv:1712.07124</u> **ADO method:** Mapping Machine-Learned Physics into a Human-Readable Space <u>arXiv:2010.11998</u>

Features: Energy Flow Polynomials (EFPs)

$= \sum_{a} z_{a} \sum_{b} z_{b} \sum_{c} z_{c} \sum_{d} z_{d} \theta_{ab} \theta_{ac} \theta_{ad} \theta_{bc} \theta_{bd} \theta_{cd}$

- Each node : $\sum_a z_a$
- Each edge : θ_{ab}

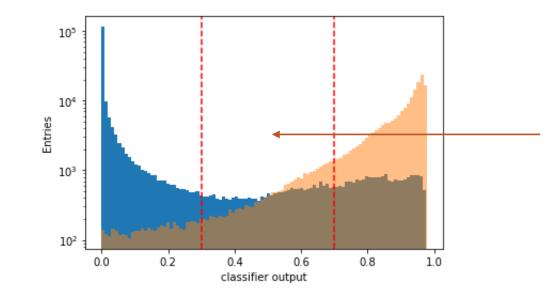
Energy flow polynomials: A complete linear basis for jet substructure: arXiv:1712.07124

Step1: Train a neural network on the known features and obtain a classifier.

Step 2: Find a subset X_0 , with data points where the classifier is most confused

• We train a Neural network with an initial set of features: $F_{initial} = \{m_J, p_{T_J}, m_{W-candidate}\}$

 We select data points with a specific window around classifier output value 0.5, as points where the classifier is most confused. (we call X₀ our confusion set)



Confusion set X_0

Data points where the classifier most confused

Step 3: Assign a relevance score to each feature, based on truth labels, on that subset X_0

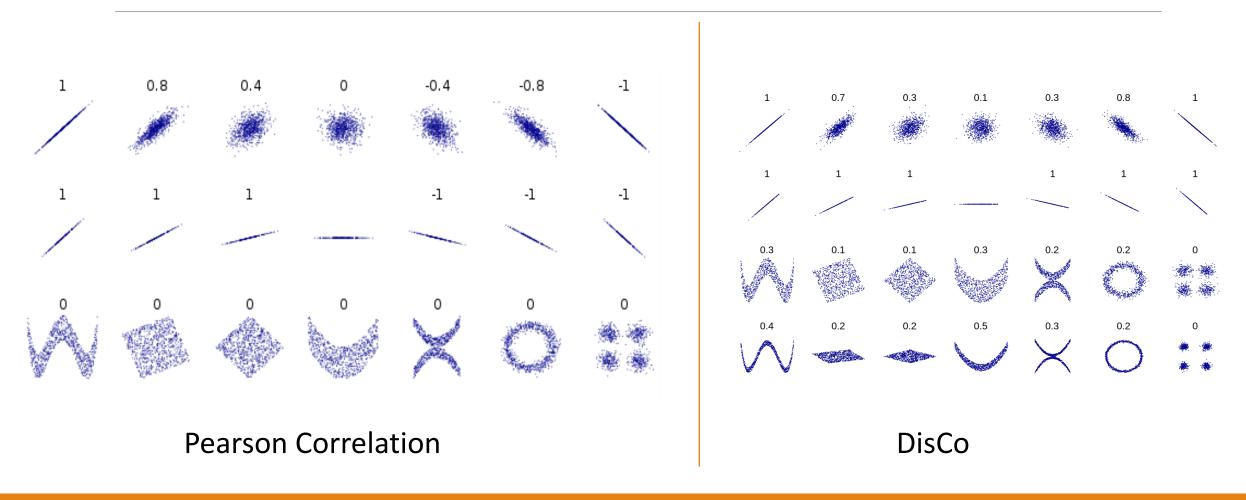
• On X_0 we evaluate:

 $DisCo(y^{truth}, [known variables, new feature])$ for each feature in the feature subspace.

Relevance Score : Distance Correlation (DisCo)

- DisCo is used to find value of non-linear correlations of the EFPs with the truth labels
- Very powerful since we can quantify correlations between truth labels and multiple features.

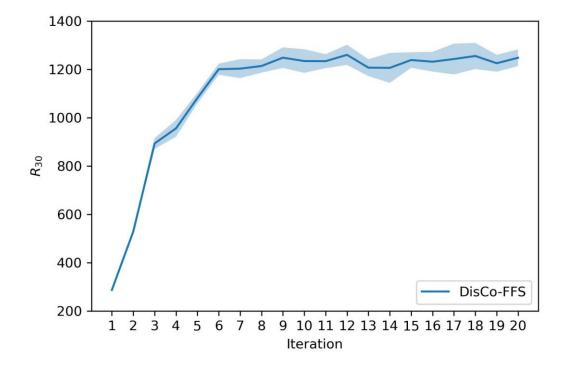
Relevance Score : Distance Correlation (DisCo)



Step 4: Add the feature with the highest score to the initial set of known features

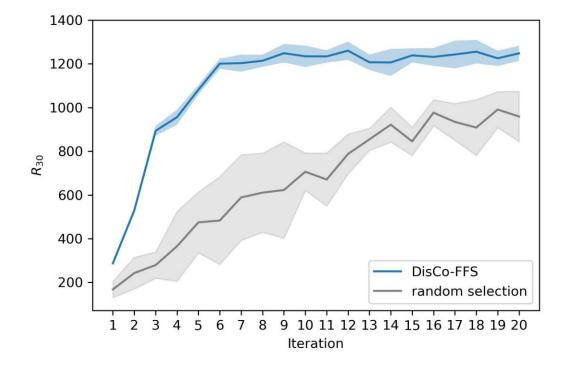
 The feature with the highest DisCo value is added to the list of known features, and a new Neural Network is trained using the new set of features. Performance after addition of new EFPs using feature selection algorithm

- Variance for each method is obtained by training each network 10 times.
- Our method can obtain an R_{30} of 1249 ± 43, after 9 features.



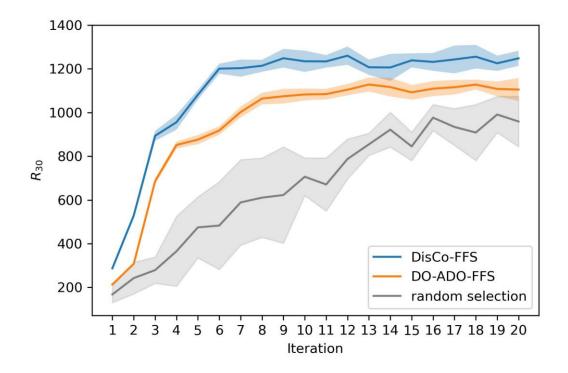
Baseline: Random selection of features

A feature selection algorithm should perform better than randomly selecting features.



Comparison to a previous feature selection algorithm

- A previous feature selection method, which relies on Decision ordering (DO) for finding subset of data where a classifier orders signal/background differently from the truth labels.
- Use Average Decision Ordering (ADO) between EFPs and the truth, as the score



ADO method: Mapping Machine-Learned Physics into a Human-Readable Space <u>arXiv:2010.11998</u>

Comparison to other top taggers

The Machine Learning Landscape of Top Taggers: <u>arXiv:1902.09914v3</u>

Particle Transformer for Jet Tagging: arXiv:2202.03772

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging: <u>arXiv:2201.08187v5</u>

ParticleNet: Jet Tagging via Particle Clouds: <u>arXiv:1902.08570v3</u>

Mapping Machine-Learned Physics into a Human-Readable Space <u>arXiv:2010.11998</u>

Reports of My Demise Are Greatly Exaggerated: N-subjettiness Taggers Take On Jet Images: <u>arXiv:1807.04769</u>

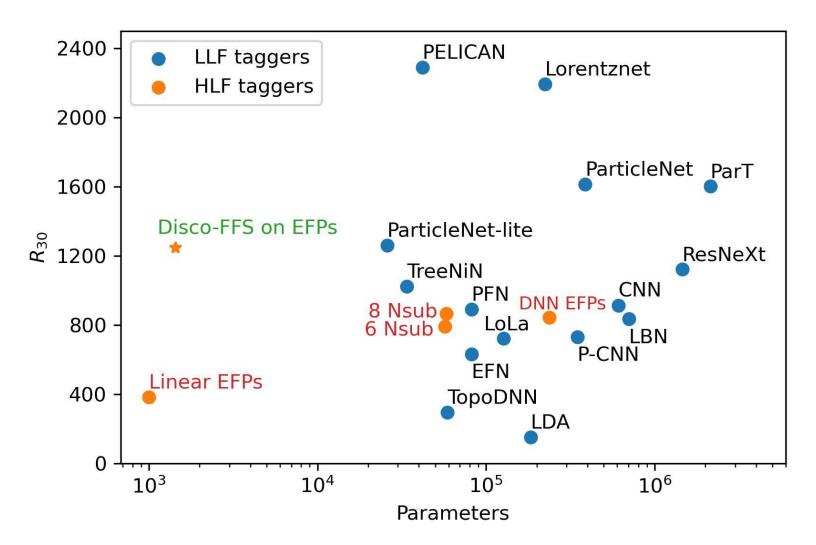
How Much Information is in a Jet?: <u>arXiv:1704.08249v2</u>

A complete linear basis for jet substructure: arXiv:1712.07124

PELICAN: Permutation Equivariant and Lorentz Invariant or Covariant Aggregator Network for Particle Physics

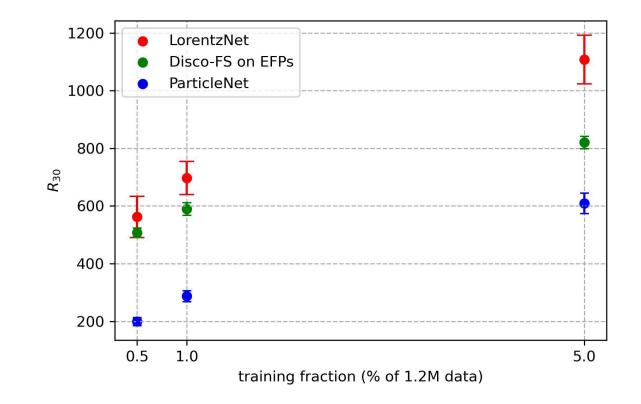
arXiv:2211.00454

Our method achieves state of the art performance with only a very small fraction of the parameters!



Sample Efficiency

Our feature selected model, outperforms the ParticleNet, and matches the LorentzNet, when trained on less training data.

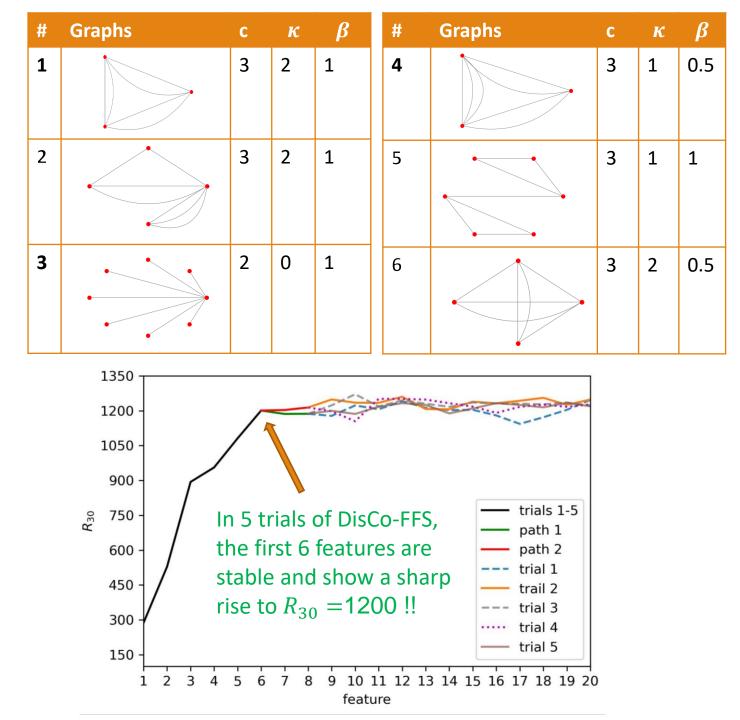


*We use the features, which were selected using the larger dataset.

An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging: <u>arXiv:2201.08187v5</u> ParticleNet: Jet Tagging via Particle Clouds: <u>arXiv:1902.08570v3</u>

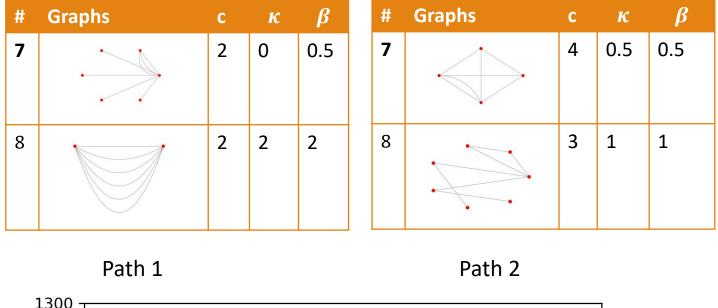
Robustness of DisCo-FFS

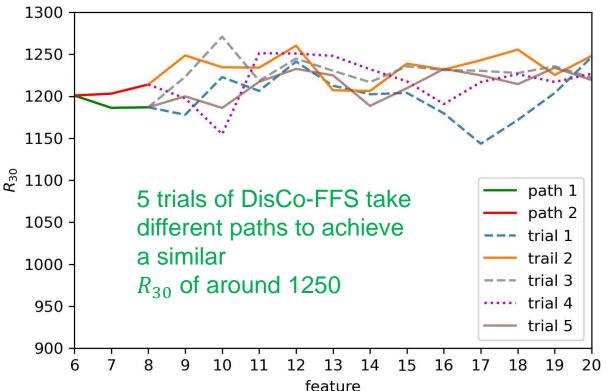
- On 5 independent trails of doing DisCo-FFS selects the same first 6 features in every trial.
- Chromatic number (c) is a proxy for number of prongs in a jet
- 5 of the first 6 EFPs have c=3, which means our algorithm selects features which probe the 3-prong substructure which is relevant for top-tagging.
- One of them is probe of 2-prong substructure.



Robustness of DisCo-FFS

- After the 6th iteration, we see some degree of randomness, as we see two unique possible paths taken by DisCo-FFS in the 7th and 8th iteration, and after the 9th iteration it selects 5 different features.
- In Path 1, the first feature it selects probes 4-prong substructure, followed by a feature which probes 3-prong substructure
- In Path 2, it selects 2 features which probe 2-prong substructure.





Conclusion

• Using a Disco based feature selection for the case of top tagging, we were able to obtain a handful of input features, which gave a very competitive performance, given the number of parameters.

Possible reasons for not getting a better performance:

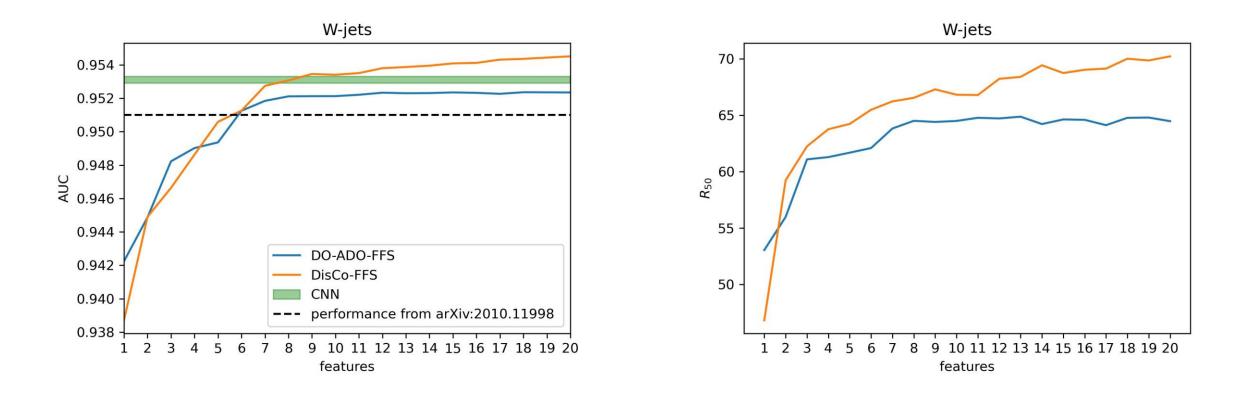
- The feature space considered could be insufficient for top tagging, which could explain our inability to close the gap with higher performing black box models.
- Need a better feature selection algorithm

Paper coming soon.

Thank You!

BACK UP SLIDES

W-jets validation



DO-ADO

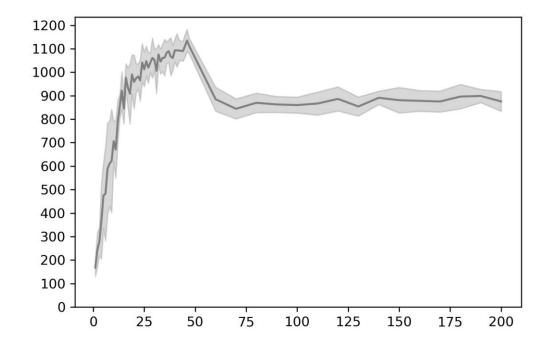
 $DO(f(x), g(x)) = \Theta((f(x_s) - f(x_b) (g(x_s) - g(x_b))))$, where s refers to signal, and b refers to background.

DO is a measure of relative ordering f(x) with respect to g(x), for a single signal-background pair .

Same ordering gives DO=1, whereas different ordering leads to DO=1. Eg: DO = 1, if $f(x_s) > f(x_b)$ and $g(x_s) > g(x_b)$, whereas DO = 0, if $f(x_s) > f(x_b)$ and $g(x_s) > g(x_b)$

Average Decision Ordering (ADO) is the average value of DO over a sample of signalbackground pairs.

Random Selection



Affine Invariant Distance Correlation (DisCo)

It has some nice properties:

Zero iff X, Y are independent, positive otherwise.

Can quantify non-linear correlations between 2 unequal sets of features X and Y.

Is invariant under linear rescaling of features in each set X and Y

Measuring and testing dependence by correlation of distances: arXiv:0803.4101

Step 2: Find a subset X_0 , with data points where the classifier is most confused

Our method using Distance Correlation (DisCo)

• We select data points with a specific window around classifier output value 0.5, as points where the classifier is most confused.

DO-ADO method

• Selects a subsample of signal-background pairs with $DO(y, y^{truth/blackbox}) = 0$, i.e, signal-background pairs for which the classifier output, which is different relative to the truth labels (y^{truth}) or a blackbox classifier output $(y^{blackbox})$ with a high-performance score.

Step 3: Use a score to rank the features over the subset X_0

Our method using Distance Correlation (DisCo)

 On X₀ we evaluate, DisCo (y^{truth}, [initial/ known variables, new feature]) for each feature in the feature subspace.

DO-ADO method

 On X₀ evaluate, ADO(y^{truth/background}, new feature)

CNN 914±14 610k ResNeXt 1122±47 1.46M TopoDNN 295±5 59k Multi-body N-subjettiness 6 792±18 57k Multi-body N-subjettiness 8 867±15 58k TreeNiN 1025±11 34k P-CNN 732±24 348k LBN 836±17 705k L0La 722±17 127k LDA 151±0.4 184k EFPs 384 1k EFN 633±31 82k PFN 891±18 82k	Taggers	<i>R</i> ₃₀	Parameters
TopoDNN 295±5 59k Multi-body N-subjettiness 6 792±18 57k Multi-body N-subjettiness 8 867±15 58k TreeNiN 1025±11 34k P-CNN 732±24 348k LBN 836±17 705k LoLa 722±17 127k LDA 151±0.4 184k EFPs 384 1k EFN 633±31 82k PFN 891±18 82k	CNN		610k
Multi-body N-subjettiness 6792±1857kMulti-body N-subjettiness 8867±1558kTreeNiN1025±1134kP-CNN732±24348kLBN836±17705kLoLa722±17127kLDA151±0.4184kEFPs3841kEFN633±3182kPFN891±1882k	ResNeXt	1122±47	1.46M
Multi-body N-subjettiness 8867±1558kTreeNiN1025±1134kP-CNN732±24348kLBN836±17705kLoLa722±17127kLDA151±0.4184kEFPs3841kEFN633±3182kPFN891±1882k	TopoDNN	295±5	59k
TreeNiN1025±1134kP-CNN732±24348kLBN836±17705kLoLa722±17127kLDA151±0.4184kEFPs3841kEFN633±3182kPFN891±1882k	Multi-body N-subjettiness 6	792±18	57k
P-CNN732±24348kLBN836±17705kLoLa722±17127kLDA151±0.4184kEFPs3841kEFN633±3182kPFN891±1882k	Multi-body N-subjettiness 8	867±15	58k
LBN836±17705kLoLa722±17127kLDA151±0.4184kEFPs3841kEFN633±3182kPFN891±1882k	TreeNiN	1025±11	34k
LoLa722±17127kLDA151±0.4184kEFPs3841kEFN633±3182kPFN891±1882k	P-CNN	732±24	348k
LDA151±0.4184kEFPs3841kEFN633±3182kPFN891±1882k	LBN	836±17	705k
EFPs3841kEFN633±3182kPFN891±1882k	LoLa	722±17	127k
EFN633±3182kPFN891±1882k	LDA	151±0.4	184k
PFN 891±18 82k	EFPs	384	1k
	EFN	633±31	82k
DarticleNet 1615 + 02 266k	PFN	891±18	82k
Faiticlenet 1013 ± 95 500K	ParticleNet	1615 ± 93	366k
ParticleNet-Lite 1262 ± 49 26k	ParticleNet-Lite	1262 ± 49	26k

The Machine Learning Landscape of Top Taggers: <u>arXiv:1902.09914v3</u> An Efficient Lorentz Equivariant Graph Neural Network for Jet Tagging: <u>arXiv:2201.08187v5</u> ParticleNet: Jet Tagging via Particle Clouds: <u>arXiv:1902.08570v3</u>