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Particle Colliders

e Particle colliders provide one of the most spectacular examples of a
simple underlying theory producing remarkably complicated data sets.
g
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e Provide a unique opportunity to learn about relativistic QFTs in
general, and QCD in particular.
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A Laboratory for Quantum Field Theory

¢ In addition to searches for new physics, the answers to much more
subtle questions are imprinted in collider energy flux:
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Formal Theory Progress

e Recent progress in formal Quantum Field Theory has provided
powerful new jet observables and ways to relate them to the
parameters of the underlying theory.

e Remarkably, their introduction coincides with the introduction of
powerful new ML based analysis techniques, required for their
experimental study.
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Field Theoretic Foundations
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The Frontiers of Jet Physics
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Rethinking Jet Substructure
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Jet Substructure at the LHC




The Jet Shape Paradigm

e This approach of projecting events to lower dimensional manifolds has
dominated our thinking about jets for 50 years.
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e Dates back to the introduction of “thrust” by Farhi in 1977.
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Disrupting the Jet Shape Paradigm

e Machine Learning is supposed to be a disruptive technology.
o |t has fundamentally changed the way we think about many aspects

of our lives.

e It is therefore interesting to ask the following question:
If one had arbitrarily good experimental and data analysis capabilities,
how would one talk theoretically about jets?

o Perhaps surprisingly, it is completely differently from what is currently
done!
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Correlation Functions

o In other areas of physics, one studies statistical correlations
(correlation functions) on the full unprojected dataset.

e e.g. Non-Gaussianities allow one to distinguish models of inflation.

e These are the natural theoretical objects associated with the
underlying field theory.

o Why don't we study non-gaussianities of energy flux?
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Rethinking Jet Substructure

e Why don't we study statistical properties (correlation functions) on
the full phase space of collider events?

Full event is a set of particles having The energy flow is unpixelized and
momentum and charge/flavor ignores charge/flavor information

P K .
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e Lets imagine that we could, and see where it gets us.
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The Field Theoretic Foundations
of Jet Substructure

Light-Ray OPE
—_—
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Formal Theory to the Rescue

o Calorimeter cells can be given a field theoretic definition in terms of
light-ray operators.  [Hofman, Maldacena]

Korchemsky, Sterman]
Ore, Sterman]
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[Figure from DSD]

e From the perspective of QFT, jet substructure is the study of
correlation functions of energy flow operators.
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Scaling Behavior in QFT

e Why is jet substructure theoretically interesting?

o QFTs exhibit universal behavior as operators are brought together.
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Jet Substructure as Scaling Behavior

e Energy flow operators also admit an OPE!

e The substructure of jets is determined by the OPE structure of
lightray operators.

[Hofman, Maldacena]
Chang, Kologlu, Kravchuk, Simmons Duffin, Zhiboedov]
See Also: Konishi, Ukawa, Veneziano]

o Allows a reformulation of jet substructure as the study of the
symmetry and OPE structure of these operators.
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Non-Gaussianities of Energy Flux

o Non-gaussianities of energy flux have beautiful theoretical structure,

encoding details of the interactions of the underlying theory!
[Chen, Luo, Moult, Yang, Zhang, Zhu]

LL + LO prediction, Ry = 0.35
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Theory-Experiment Gap

e The extraordinary complexity of the LHC dataset, has produced a gap
between what theorists want, and what can be measured.

Maldacena:
People do not do
this, I haven't

Polchinski: figured out why

There is a lot Eﬁey flortl;- I thl’?k
| of QCD data... €y just haven

thought about |

can they see A
Y : this.

{ this scaling?

*Exact transcription
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|
Theory-Experiment Gap

e The extraordinary complexity of the LHC dataset, has produced a gap
between what theorists want, and what can be measured.

Maldacena:

They are too hard
to unfold.

Polchinski:
There is a lot Perhaps ML will
| of QCD data help with that in the

future.
can they see I

{ this scaling?

*Non-Exact transcription
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Machine Learning:
The Bridge Between Theory and Experiment
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From Detector Data to Theory Comparisons

e To be interpreted theoretically, measurements must “invert” the
effects of the detector: Unfolding.

e “Simple” if one projects to low dimensional features such as jets.

e To measure statistical properties of energy flux requires unfolding the
full particle phase space.

Credit: Benjamin Nachman
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Likelihood Free Inference

e Traditional approaches to unfolding that explicitly determine the
likelihood fail:

e High dimensional input space - full phase space of detector effects.
e High dimensional output space - space of energy correlations.
e This is a common feature of many modern data sets in the physical
sciences, for which we have high fidelity simulations:
— "“Likelihood Free Inference”
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Cranmer, Brehmer, Louppe]
Karagiori, Kasieczka, Kravitz, Nachman, Shih]
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Omnifold

e Seminal advance in unfolding for collider physics: Omnifold
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[Andreassen, Komiske, Metodiev, Nachman, Thaler] Soft Drop Jet Mass Inp

e Rigorously proven to reduce to Iterative Bayesian Unfolding.

e Explicit expression for likelihood intractable in high dimension
= circumvented by classification task.

o Unfolding of full phase space, combined with theory progress
= transformative progress in QCD.
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An Unbiased Test User

e Simultaneous unfolding of pr, Q., M, Ry, z4, M, at STAR!
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Mean and spread of jet M distribution both increase with decreasing |Q|

Youqi Song

e No outside influence from Ben, Eric, Patrick or Jesse
= trustworthy!
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A Slightly Biased Test User

e Can be used to perform unbinned measurements of foundational QCD
quantities: Track Functions
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o Will enable a wide variety of jet substructure calculations on tracks!
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The Frontiers of Jet Physics J

. MLaJets e



N
Conformal Colliders Meet the LHC

e This new class of observables, obtained from the statistical properties
of the entire phase space, provides a completely new perspective on
jet substructure.

Normalized EEC

e Allows a direct relation between experimental measurements and the
properties of the underlying field theory.
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[Komiske, Moult, Thaler, Zhu]

[Dixon, Moult, Zhu]

Scaling Behavior in Jets [Les, Meca), Mout]

e The £(n1)E(n2) OPE inside high-energy jets!

’ Two-Point Energy Correlator
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e Beautiful scaling behavior in energy flux, provides a common language
from superfluid helium to jet substructure!
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[Chen, Moult, Zhang, Zhu]

The Spectrum of a Jet [Ces, Meca, Mout]

e Measurements of asymptotic energy flux directly extract the spectrum
of (twist-2) lightray operators in QCD at the quantum level!
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NLL Projected Correlators
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e A never before observed feature of QFT, accessible due to the high
energies and remarkable detectors of the LHC.
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Shape Dependence of Non-Gaussianities

e Can directly study non-gaussianities inside high energy jets.

LL + LO prediction, Ry = 0.35

0.0
[Chen, Moult, Thaler, Zhu]

o |llustrates theoretical control over multi-point correlations!
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Correlation Functions and Scales

e The beauty of correlation functions (and the reason they are used
elsewhere!) is that they isolate the physical phenomena at the scale
of correlator.

13.8 bilion years

380 000 years

.

o Multi-point correlators allow us to image jets at a particular stage in
their evolution, and detect the presence of any additional scales.
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Application 1: The Confinement Transition

e Energy correlators allow the hadronization process to be directly
imaged inside high energy jets: transition from interacting quarks and
gluons and free hadrons clearly visible!
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e https://www.youtube.com/watch?v=ORwDv1KTB5U
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Application 2: Resolving the Scales of the QGP

e The QGP is cleanly imprinted in two-point correlations.

Two—Point Energy Correlator
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[Andres, Dominguez, Holguin, Kunnawalkam Elayavalli, Marquet, Moult]
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Application 3: Intrinsic Mass Effects

Normalized EEC

e Intrinsic masses in QCD are imprinted into the correlators, allowing

one to study their hadronization.
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Application 4: Top Quark Mass Measurement

e The top quark mass is a central parameter of the SM.

e Mass measurements are subtle: need observables with top mass
sensitivity that can be computed from first principles field theory.

e Massive particles break the scaling of the correlators and imprint their
existence at a characteristic angular scale ( ~ m?/Q?.
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e Optimistic for a precision (< 1 GeV) top mass extraction at LHC
from Jet Substructu re! [Holguin, Moult, Pathak, Procura]
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ML-+QFT for Colliders

o Colliders offer a unique opportunity to study general features of QFT,
and specific features of QCD.

EXTLAS

PERIMENT

e ML and QFT are both remarkably rich tools that must work hand in
hand to unravel the structure of nature.
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Summary

e Collider physics inextricably ties Data Science
and Quantum Field Theory.

e Progress in Machine Learning enables the
measurement of qualitatively new classes of Jet W S
Substructure observables. [ = IS q

Two-Point Energy Correlator
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e Combined with theory progress, this opens the
door to an exciting physics program using jet £
substructure!
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