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What to expect from this talk

● I am not as expert on ML as many of you are

● So, what this talk is not: a comprehensive review of the 
state of the field

● Not even of the stuff developed by the experiments (by some 
of you in the audience!)

● However, I am an avid and enthusiastic consumer

● This talk is essentially a shopping list
● Shine spotlight on some less-discussed and not-yet-resolved 

issues
● Necessarily somewhat personal and biased
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Outline

● First things first: the physics we’re after
● Jet taggers for t, W, Z, H
● Supervised training for `exotic’ substructure 
● `Anomalous’ jet substructure (more in Tobias’s talk)

● Remember the systematics!

● Resolving jet combinatorics

● Reco: Pixels, Tracking, B-tagging

● Fun with computing 
● (aka “Do we have enough MC?”, fast simulation, etc.)

● Closing thoughts
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The physics we’re after: vanilla

● Boosted hadronic decays of top, W/Z, Higgs → end up in a 
large-R jet

● Jet taggers: now ML significantly outperforms the 
`classical’ ones 

● Everybody here has either heard of these taggers, used 
them, or even built even more powerful ones

● Searches for BSM:
● Original raison d’etre of jet taggers
● Backbone of large chunk of ATLAS and CMS BSM program
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● “double-b”: ~2016

● “Deep Double-b”: single 
boosted X→bb, cc, etc.

● Outperforms double-b by ~ x2

● “DeepAK8”: many taggers, 
analyses still coming out

● Slightly better than DeepDblB

● “ParticleNet”: ~2021, cutting 
edge at CMS

● Outperforms DeepAK8 by ~x2
● Now       dominates QCD

  Example: CMS Boosted H→bb algorithms
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The physics we’re after: vanilla (2)

● Standard Model physics:
● Use jet taggers to access high-       regime
● Various differential                                                             

cross-sections
● Jet masses, etc.

arXiv:2205.02817
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The physics we’re after: strawberry

● Hadronically decaying BSM objects → large-R jets

● Supervised search since we know what we are looking for

● So far, only scratched the surface:
● Searches for resonance decays to scalars, where
●                          where radion forms a jet  

● Many interesting models →                                              
can publish many cool papers

● “If you build it, they will come”:                                           
new unusual taggers                                                            
can attract new users

(from Bogdan Dobrescu)
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The physics we’re after: strawberry

● Hadronically decaying BSM objects → large-R jets

● Supervised search since we know what we are looking for

● So far, only scratched the surface:
● Searches for resonance decays to scalars, where
●                          where radion forms a jet  

● Many interesting models → publish many cool papers
● “If you build it, they will come”: new unusual taggers can 

attract new users

● But… how to calibrate the signal efficiency of an jet with 
`exotic’ substructure?

● How to estimate uncertainty on data/MC Scale Factor?
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The physics we’re after: strawberry

● Hadronically decaying BSM objects → large-R jets

● Supervised search since we know what we are looking for

● So far, only scratched the surface:
● Searches for resonance decays to scalars, where
●                          where radion forms a jet  

● Many interesting models → publish many cool papers
● “If you build it, they will come”: new unusual taggers can 

attract new users

● But… how to calibrate the signal efficiency of an jet with 
`exotic’ substructure?

● How to estimate uncertainty on data/MC Scale Factor?

This is a high-priority problem, 
worthy of your attention!

Need input / help from theory!



             ML4Jets 2022

10

 Petar Maksimovic, Johns Hopkins                                            Experimental Intro          

The physics we’re after: mystery flavor

● What if the BSM physics is being copiously produced, but 
we’re not simply looking for the correct signature?

● “Anomalous” jet substructure = “none of the above”

● Train on data, learn what “SM backgrounds” are, then look 
for what is different from it

● Used (so far by ATLAS) in conjunction with other handles, 
like heavy resonance mass, or presence of a H jet.

● More in Tobias’s talk, followed by 1st results from ATLAS!
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The physics we’re after: mystery flavor

● What if the BSM physics is being copiously produced, but 
we’re not simply looking for the correct signature?

● “Anomalous” jet substructure = “none of the above”

● Train on data, learn what “SM backgrounds” are, then look 
for what is different from it

● Used (so far by ATLAS) in conjunction with other handles, 
like heavy resonance mass, or presence of a H jet.

● Strategically important: run dedicated searches first, then 
an anomaly search to clean up everything that’s left

● Ensures we at the LHC are doing our `due diligence’
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What we need to search for BSM

● Data

● Tools (taggers, new variables) to suppress background 
and isolate the signal

● Most ML taggers still trained on MC...

● Background estimate (minimize uncertainty)
● If dominated by ttbar, W+jets – get away with MC…
● QCD: tricky and messy          (after lots of work…       )

● Signal efficiency (minimize uncertainty)
● For top, W/Z, Higgs tagging – use standard candles
● For exotic signatures – ???



             ML4Jets 2022

13

 Petar Maksimovic, Johns Hopkins                                            Experimental Intro          

We still rely on QCD MC

● We try hard to limit use of QCD simulation – elaborate 
schemes to estimate backgrounds from data

● However!
● Sometimes data-driven background estimates are “helped” 

by MC
● We train ML jet taggers on MC

● How do we know what we are not picking up on data/MC 
disagreement?

● If decorrelation is not perfect, we use MC to make a DDT 
map (= cut value vs (mass,pt)) 

● We use MC for signal efficiency
● Calibrate in data, when possible
● How to evaluate signal systematic for exotic substructure?
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QCD simulations are not perfect

● Fully decorrelated tagger (via “DDT map”)
● Doesn’t mess up the jet mass shape
● Pass (tag) and fail (anti-tag)                                                

region have same shape                   background efficiency       
                                                                          …is flat in MC

EXO-18-012
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QCD simulations are not perfect

● Account for Data/MC discrepancy by a smooth surface fit

● … can be very complicated if Data/MC differences are not 
trivial!

● For light               : 

● Surface is a product of
● 3rd degree poly in 
● 5th degree poly in     !!! 

EXO-18-012
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QCD simulations are not perfect

● Account for Data/MC discrepancy by a smooth surface fit

● … can be very complicated if Data/MC differences are not 
trivial!

● For light               : 

● Surface is a product of
● 3rd degree poly in 
● 5th degree poly in     !!! 

EXO-18-012

•  Neither scalable with luminosity
•  Nor easily transferable to other   
    searches!
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QCD modeling for the future

● With a better QCD modeling, we could:
● Train ML algorithms 

→ better data/MC                                                                          
     agreement

→ minimize signal                                                                          
     efficiency systematics

● Decorrelate taggers 
→ well-behaved background shapes → better bkg estimates

→ if there’s a BSM excesses, it would be “easier” to see

● Estimate efficiencies of tagging jets with exotic substructure
(see above) 

● In general, experimentalist’s life would become a lot easier
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Why can’t I have that?!   

● Somehow, theoretical and experimental progress in soft 
QCD does not seem to propagate to MC samples we use.

● Not enough measurements fed into “Professor”?
● Can’t tune both UE and substructure???
● PYTHIA is insufficient for shower/hadronization?

Search for 
BSM physics

Exp: measurements
of unfolded jet 

distributions

Theory:  progress
    in soft QCD

PYTHIA tuning
(via Professor)



             ML4Jets 2022

19

 Petar Maksimovic, Johns Hopkins                                            Experimental Intro          

Why can’t I have that?!   

● Somehow, theoretical and experimental progress in soft 
QCD does not seem to propagate to MC samples we use.

● Not enough measurements fed into “Professor”?
● Can’t tune both UE and substructure???
● PYTHIA is insufficient for shower/hadronization?

Search for 
BSM physics

Exp: measurements
of unfolded jet 

distributions

Theory:  progress
    in soft QCD

PYTHIA tuning
(via Professor)

How do we know that ML 
improvements demonstrated on MC 

will in fact also be there in data?
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Reweighting QCD MC vs training on data

● One way around imperfect QCD modeling: reweight MC to 
match data in low-level quantities

● Reweight jet image or primary Lund jet plane (no ML)
● JUNIPR, DCTR (uses ML)
● SALAD (reweights MC in sidebands – nice!), etc.

    This clearly requires input / blessing from theory

● Another option: use CWoLa to train on data
● Likely most promising in the long run
● But needs to be worked out 

include uncertainties, combine with a likelihood fit(?), deploy 
machinery to be widely used within experiments...
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Jet mass regression with ParticleNet

● Use same architecture, inputs, training as for PN tagger
● Training target: pole mass (signal), gen-level mass (QCD)

No signal at 0, narrower peak        Improvement ~ 20% !
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Do we care about IRC safety?

● Initially, we did not (jet pruning in CMS, trimming in ATLAS)

● Then we did (soft drop, at least on CMS)

● But now, we have second thoughts: particle-based taggers 
and this mass regression are really nice!

● If the ML tool (tagger, mass regression) is calibrated in data, 
does it matter?

● Tried taggers built from IRC safe observables, but (for 
example) ParticleNet outperforms it!
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● Initially, we did not (jet pruning in CMS, trimming in ATLAS)

● Then we did (soft drop, at least on CMS)

● But now, we have second thoughts: particle-based taggers 
and this mass regression are really nice!

● If the ML tool (tagger, mass regression) is calibrated in data, 
does it matter?

● Tried taggers built from IRC safe observables, but (for 
example) ParticleNet outperforms it!

Do we care about IRC safety?

Another topic ready for theoretical input:
If IRC safety helps us bypass limitations 
from QCD MC, then it may be worth it!  
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Resolving jet combinatorics

● BSM with many jets in the final 
state. Example: 

● Ubiquitous in searches

● A very old problem, with many 
solutions

● Various kinematic fits (old)
● Recursive Jigsaw Reco (new)

● This is ripe for deployment of clever ML
● See Larry Lee’s talk
● ML could be grafted on top of RJR
● But… Need to account for jet energy scale uncertainties

● (As that may flip the interpretation...)
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Resolving jet combinatorics

● BSM with many jets in the final 
state. Example: 

● Ubiquitous in searches

● A very old problem, with many 
solutions

● Various kinematic fits (old)
● Recursive Jigsaw Reco (new)

● This is ripe for deployment of clever ML
● See Larry Lee’s talk
● ML could be grafted on top of RJR
● But… Need to account for jet energy scale uncertainties

● (As that may flip the interpretation...)

ATLAS and CMS spend ~dozens of FTE months / year 
solving this again and again.

This is another super-important problem that should be 
solved once and for all! 
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ML in pixels and tracking

● Pixel clusters are 2D images, ideal for ML
● ATLAS has been using ML in pixel local reconstruction for a 

long time (position, error, cluster splitting)
● CMS: still in R&D (but looks good)

● Unlike QCD – we have very realistic simulation of the 
charge deposition and drift, calibrated on data 

● Tracking pattern recognition is also excellent candidate for 
ML

● first ideas in 1988
● many projects making progress
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B tagging

● The first application of ML to jets (although small-R ones)

● Both ATLAS and CMS use well-performing algorithms

● Future: further use of ML in pixel cluster splitting/merging, 
removing wrong hits pile-up, using “trackless” algorithms

● Computing limitation: hard to study on data, since all easily 
accessible samples are compressed, without low-level 
pixel info

● ATLAS is using EvtGen (!) and CMS still Pythia (?!)

● Not sure if / how the measurements of hadronization 
propagate back to ML training
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Detector simulation

● Official party line: there won’t be enough computing in HL-
LHC to generate full simulation MC

● (I still have hard time buying this, but let’s assume it’s true)

● If that’s the case, can we trust Fast Simulation for that?

● One way out: make Fast Simulation more realistic (= less 
ideal) and useful for training ML

● Not deserving enough attention by experiments
● So far, good progress with Calorimeter (CaloGAN, etc.)
● Can we use a similar approach for tracking?
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More on computing vs. ML

● (If there won’t be enough computing) do we need to be 
mindful of size and complexity of models, and size of 
training datasets?

● Typically, a delay of ~1.5-2 years (or more) between a new 
ML tagger and its adoption in analyses:

● Needs to be in an official release
● Discriminants need to be in a slimmed dataset (otherwise 

people won’t use it)
● Needs to be calibrated
● Chicken-and-egg: officially supported if there is demand, but 

no demand if not officially supported...

● Can we make turnover shorter?



             ML4Jets 2022

30

 Petar Maksimovic, Johns Hopkins                                            Experimental Intro          

Lots of progress… Or, is it?

● Alison Lister’s Musings from ML4Jets 2020:
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My take

● Rapid development of all sorts of ML tools for HEP
● Measurements with jets are a prime target, receiving most 

attention
● Top / W/Z / Higgs jet taggers still keep improving!

● Nevertheless, some important issues (related to MC) are 
not being resolved, despite excellent ideas and initial 
progress

● Although I would love to be proven wrong!
● Likely more coordination (here!) is needed

● Adoption of new tools still slow.  Computational and 
sociological challenges still remain

● Most of what Alison wrote 2.5 years ago is still true!  :(
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BACKUP MATERIAL



             ML4Jets 2022

33

 Petar Maksimovic, Johns Hopkins                                            Experimental Intro          

Imperfect MC is used to train ML

● Powerful taggers, but…

● Nominally “within errors” 
from data

● Need to be careful:
● Scale factors must be 

measured...
● And they may be 

different from 1…
● … with large error bars

JME-18-002 
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Imperfect MC is used to train ML

● Powerful taggers, but…

● Nominally “within errors” 
from data

● Need to be careful:
● Scale factors must be 

measured...
● And they may be 

different from 1…
● … with large error bars

JME-18-002 

Can erase some of the gains 
from an improved tagger!
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Imperfect MC is used to train ML

● Powerful taggers, but…

● Nominally “within errors” 
from data

● Need to be careful:
● Scale factors must be 

measured...
● And they may be 

different from 1…
● … with large error bars

JME-18-002 

Hard to tell whether DNN is focusing on
features poorly modeled in top/W/Z/H  MC...
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Measurements of jet mass

● Both experiments have measurements of jet mass 
(ungroomed and groomed).

● These are then unfolded.

JHEP 11 (2018) 113 

Detector level
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Measurements of substructure            

● ATLAS compared a bunch of substructure-related 
variables to data. Examples:

● These (and others) are then unfolded.

  arXiv:1903.02942
(accepted by JHEP) 

Unfolded
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Substructure: jet pull (color flow)

● Encodes color connections between partons
● Jet pull vector: angle and  magnitude

EPJC78 (2018) 10, 847 

Unfolded
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Hadronization

● Using charged particles in jets to calc. several variables
● reasonable description overall
● also noticeable differences, especially for gluon-like jets

arXiv:1906.09254 

Particles with
<  0.1% of jet p

T

    Both 
unfolded
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What if PYTHIA doesn’t have enough knobs?

● Make a better PYTHIA, or another shower program. Then 
tune to data.  (Repurpose the Professor?)

● Or, correct simulation a posteriori.
● Reweight using the Lund Plane?
● JUNIPR?
● …. or something else?                                                    

● Maybe the best:                                                            
measure → tune PYTHIA → reweight residual differences.

● Experimentally, the key question: what are the uncertainties 
on the result of this procedure?
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Primary Lund Plane

● “Jet is an unordered set”, I know… but...

● Access to low-level physics directly

● Intuitive and thus appealing

● Average Lund Plane (many jets)
● one jet = set of point in this plane

● Can we reweight jets using the ratio 
of Lund Planes in data and MC?

● Unfolded 2D distribution of the Lund 
Plane????
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JUNIPR

● Recursive NN, unsupervised learning on data
● (A talk on more advance JUNIPR reweighting later this week!!!)

● Data/MC reweighting was one of its main goals!

● Works in MC: turns one PYTHIA into another.
● Will it work in data?
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Do we need QCD MC at all?

● For multijet background estimates, we don’t need MC 
● Have been data-driven anyway
● Although there could be subtle correlations… 

● Unsupervised learning from data… 
● Learns QCD: e.g., autoencoder with LoLa
● Learns QCD in the presence of other backgrounds: e.g., 

CWoLa

● Can we interpolate between two sidebands
● e.g., CWoLa hunting

● Can we extrapolate from one CR to another???
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N-pronged jets?

● The future of searches with substructure?
(from Juan-Antonio 
Aguilar Saavedra)
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More N-pronged jets?

● More cool signatures with 4- and 6-pronged jets

● Easy to do a cut-based analysis (let alone a DNN)

● But how to get the efficiency?

(from Bogdan Dobrescu)
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What to do about N-pronged jets?

● Give up, can’t be done:
● Can’t measure efficiency in data
● These analyses are always going to be out of reach

● Report limit on   
● Let the consumers of the paper worry about the signal 

efficiency
● Would not affect the discovery, only limits
● May actually spur progress in this area :-/

● Or try to make it work?
● Learn how to reweight single quark jets from MC
● Verify that the procedure works for W and top (2,3-prong)
● Assign further systematics for 4,5,6-prong...

(David Miller’s suggestion)
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