

Experimental Introduction, part 1

Petar Maksimovic, Johns Hopkins

ML4Jets, 2022

What to expect from this talk

- I am not as expert on ML as many of you are
- So, *what this talk is not*: a comprehensive review of the state of the field
 - Not even of the stuff developed by the experiments (by some of you in the audience!)

- However, I am an avid and enthusiastic consumer
- This talk is essentially a shopping list
 - Shine spotlight on some less-discussed and not-yet-resolved issues
 - Necessarily somewhat personal and biased

Outline

- First things first: the physics we're after
 - Jet taggers for t, W, Z, H
 - Supervised training for `exotic' substructure
 - `Anomalous' jet substructure (more in Tobias's talk)
- Remember the systematics!
- Resolving jet combinatorics
- Reco: Pixels, Tracking, B-tagging
- Fun with computing
 - (aka "Do we have enough MC?", fast simulation, etc.)
- Closing thoughts

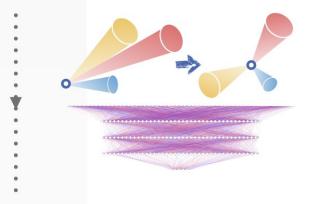
The physics we're after: vanilla

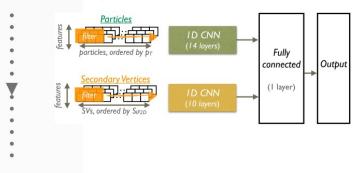
- Boosted hadronic decays of top, W/Z, Higgs \rightarrow end up in a large-R jet
- Jet taggers: now ML significantly outperforms the `classical' ones
- Everybody here has either heard of these taggers, used them, or even built even more powerful ones

- Searches for BSM:
 - Original raison d'etre of jet taggers
 - Backbone of large chunk of ATLAS and CMS BSM program

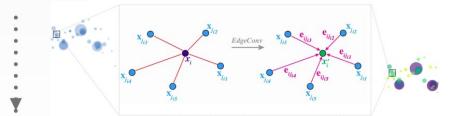
Example: CMS Boosted $H \rightarrow bb$ algorithms

feed-forward NN (high-level inputs)



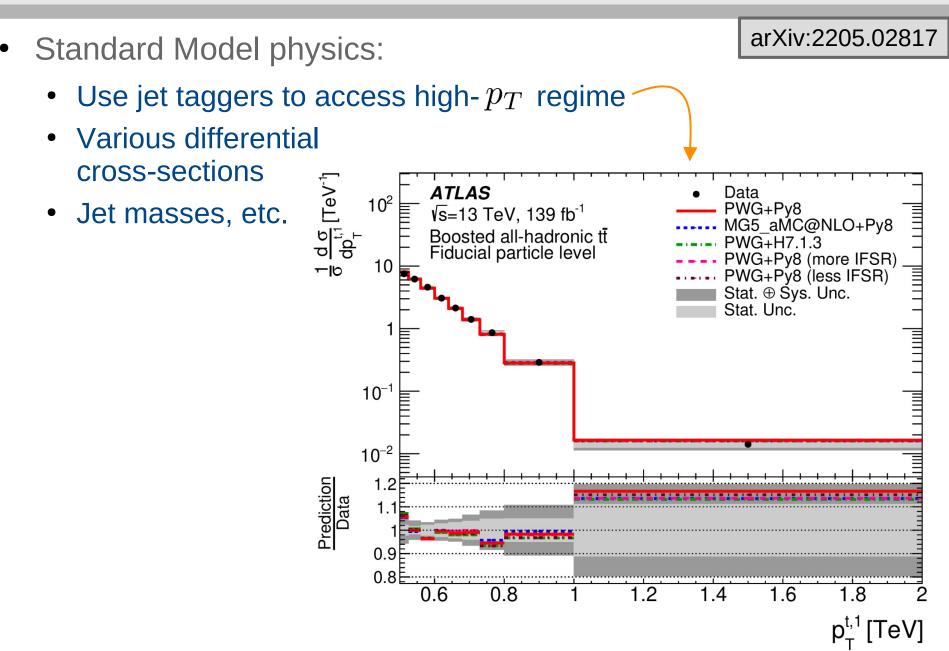


graph NN (low-level inputs)



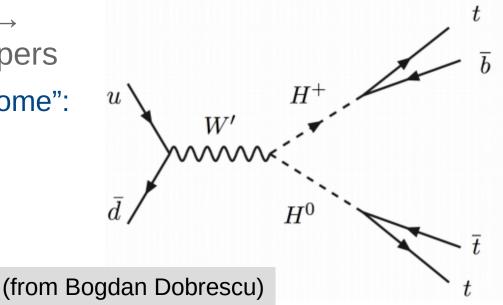
- "double-b": ~2016
- "Deep Double-b": single boosted X → bb, cc, etc.
 - Outperforms double-b by $\sim x2$
- "DeepAK8": many taggers, analyses still coming out
 - Slightly better than DeepDblB
- "ParticleNet": ~2021, cutting edge at CMS
 - Outperforms DeepAK8 by \sim x2
 - Now $t\bar{t}$ dominates QCD

The physics we're after: vanilla (2)



The physics we're after: strawberry

- Hadronically decaying BSM objects \rightarrow large-R jets
- Supervised search since we know what we are looking for
- So far, only scratched the surface:
 - Searches for resonance decays to scalars, where $S
 ightarrow b ar{b}$
 - $W_{KK} \to W \phi$ where radion forms a jet $\phi \to WW \to 4q$
- Many interesting models → can publish many cool papers
 - "If you build it, they will come": new unusual taggers can attract new users

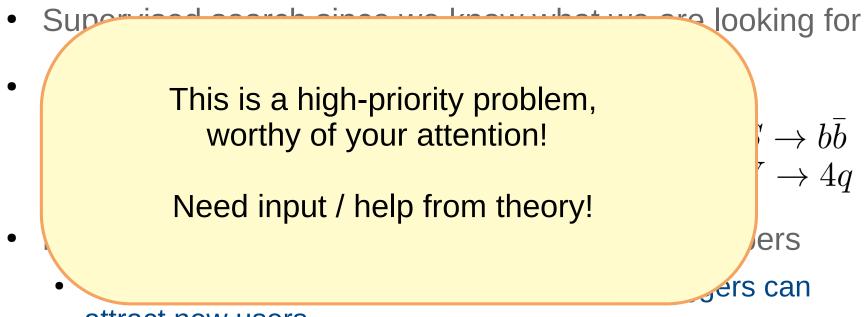


The physics we're after: strawberry

- Hadronically decaying BSM objects \rightarrow large-R jets
- Supervised search since we know what we are looking for
- So far, only scratched the surface:
 - Searches for resonance decays to scalars, where $S
 ightarrow b \overline{b}$
 - $W_{KK} \to W\phi$ where radion forms a jet $\phi \to WW \to 4q$
- Many interesting models \rightarrow publish many cool papers
 - "If you build it, they will come": new unusual taggers can attract new users
- But... how to calibrate the signal efficiency of an jet with `exotic' substructure?
- How to estimate uncertainty on data/MC Scale Factor?

The physics we're after: strawberry

• Hadronically decaying BSM objects \rightarrow large-R jets



attract new users

- But... how to calibrate the signal efficiency of an jet with `exotic' substructure?
- How to estimate uncertainty on data/MC Scale Factor?

The physics we're after: mystery flavor

- What if the BSM physics is being copiously produced, but we're not simply looking for the correct signature?
 - "Anomalous" jet substructure = "none of the above"
- Train on data, learn what "SM backgrounds" are, then look for what is different from it

- Used (so far by ATLAS) in conjunction with other handles, like heavy resonance mass, or presence of a H jet.
- More in Tobias's talk, followed by 1st results from ATLAS!

The physics we're after: mystery flavor

- What if the BSM physics is being copiously produced, but we're not simply looking for the correct signature?
 - "Anomalous" jet substructure = "none of the above"
- Train on data, learn what "SM backgrounds" are, then look for what is different from it

- Used (so far by ATLAS) in conjunction with other handles, like heavy resonance mass, or presence of a H jet.
- <u>Strategically important</u>: run dedicated searches first, then an anomaly search to clean up everything that's left
 - Ensures we at the LHC are doing our `due diligence'

What we need to search for BSM

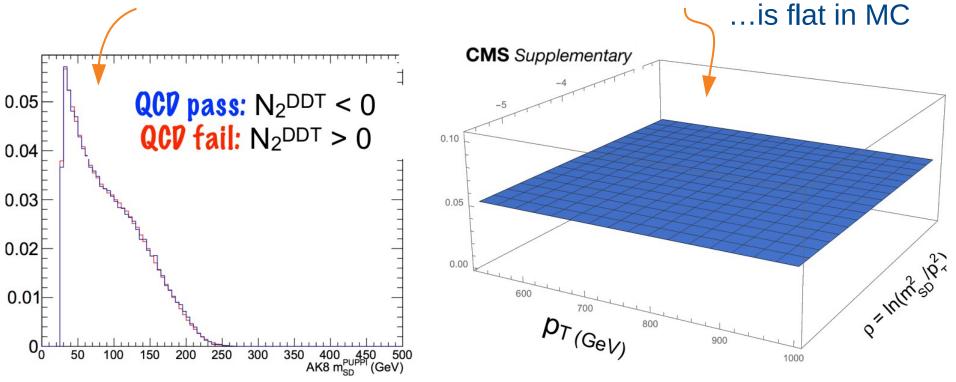
- Data 🗸
- Tools (taggers, new variables) to suppress background and isolate the signal
 - Most ML taggers still trained on MC...
- Background estimate (minimize uncertainty)
 - If dominated by ttbar, W+jets get away with MC... \checkmark
 - QCD: tricky and messy \bigotimes (after lots of work... \checkmark)
- Signal efficiency (minimize uncertainty)
 - For top, W/Z, Higgs tagging use standard candles
 - For exotic signatures ??? X

We still rely on QCD MC

- We try hard to limit use of QCD simulation elaborate schemes to estimate backgrounds from data
- However!
 - Sometimes data-driven background estimates are "helped" by MC
 - We train ML jet taggers on MC
 - How do we know what we are not picking up on data/MC disagreement?
 - If decorrelation is not perfect, we use MC to make a DDT map (= cut value vs (mass,pt))
 - We use MC for signal efficiency
 - Calibrate in data, when possible
 - How to evaluate signal systematic for exotic substructure?

QCD simulations are not perfect

- Fully decorrelated tagger (via "DDT map")
 - Doesn't mess up the jet mass shape
- ⇒ Pass (tag) and fail (anti-tag) region have same shape
 ⇔ background efficiency

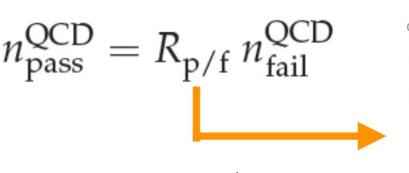


EXO-18-012

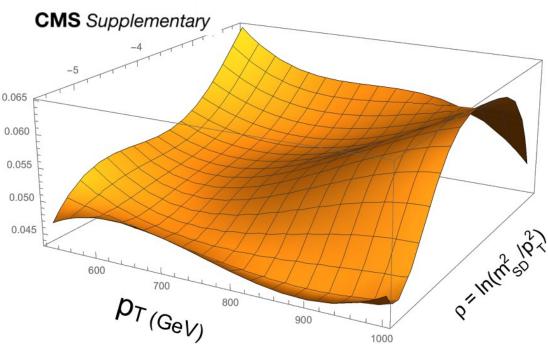
QCD simulations are not perfect

EXO-18-012

- Account for Data/MC discrepancy by a smooth surface fit
- ... can be very complicated if Data/MC differences are not trivial!



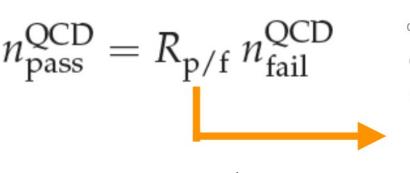
- For light $Z' \to q\bar{q}$:
- Surface is a product of
 - 3rd degree poly in p_{T}
 - 5th degree poly in ρ !!!



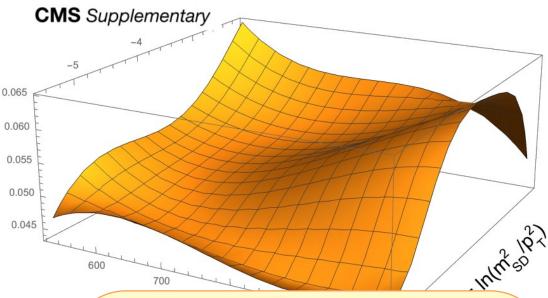
QCD simulations are not perfect

EXO-18-012

- Account for Data/MC discrepancy by a smooth surface fit
- ... can be very complicated if Data/MC differences are not trivial!



- Surface is a product of
 - 3rd degree poly in p_{T}
 - 5th degree poly in ρ !!!



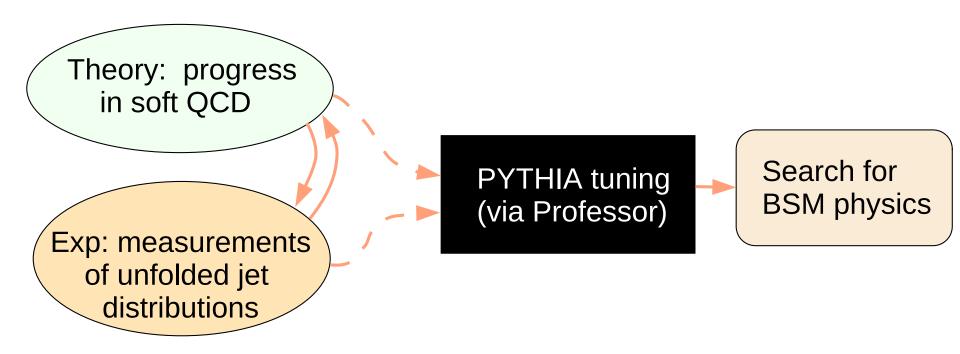
- Neither scalable with luminosity
- Nor easily transferable to other searches!

QCD modeling for the future

- With a better QCD modeling, we could:
 - Train ML algorithms
 - → better data/MC agreement
 - → minimize signal efficiency systematics

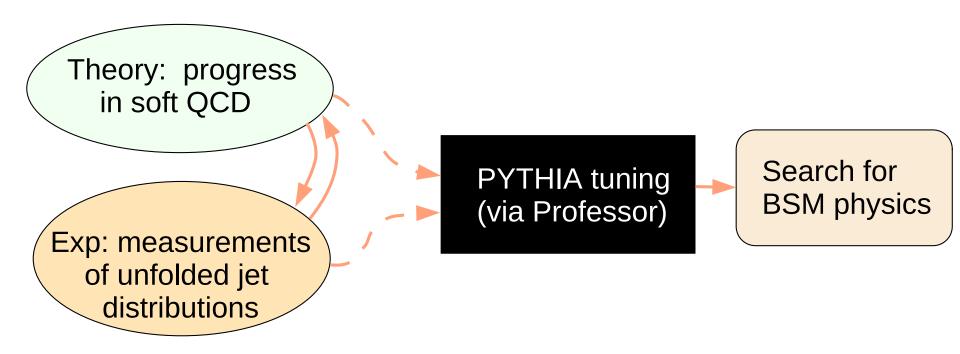
- Decorrelate taggers
 - \rightarrow well-behaved background shapes \rightarrow better bkg estimates
 - $\rightarrow\,$ if there's a BSM excesses, it would be "easier" to see
- Estimate efficiencies of tagging jets with exotic substructure (see above)
- In general, experimentalist's life would become a lot easier

Why can't I have that?!



- Somehow, theoretical and experimental progress in soft QCD does not seem to propagate to MC samples we use.
 - Not enough measurements fed into "Professor"?
 - Can't tune both UE and substructure???
 - PYTHIA is insufficient for shower/hadronization?

Why can't I have that?!



- Somehow, theoretical and experimental progress in soft QCD does not seem to propagate to MC samples we use.
 - Not enor
 - Can't tu
 - PYTHIA

How do we know that ML improvements demonstrated on MC will in fact also be there in data?

Reweighting QCD MC vs training on data

- One way around imperfect QCD modeling: reweight MC to match data in low-level quantities
 - Reweight jet image or primary Lund jet plane (no ML)
 - JUNIPR, DCTR (uses ML)
 - SALAD (reweights MC in sidebands nice!), etc.
- \Rightarrow This clearly requires input / blessing from theory

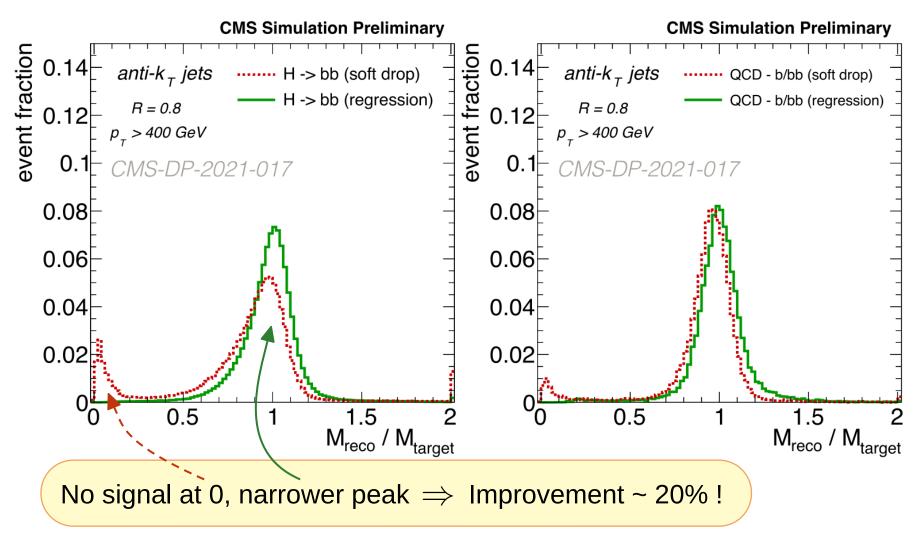
- Another option: use CWoLa to train on data
 - Likely most promising in the long run
 - But needs to be worked out

include uncertainties, combine with a likelihood fit(?), deploy machinery to be widely used within experiments...

20

Jet mass regression with ParticleNet

- Use same architecture, inputs, training as for PN tagger
- Training target: pole mass (signal), gen-level mass (QCD)



Do we care about IRC safety?

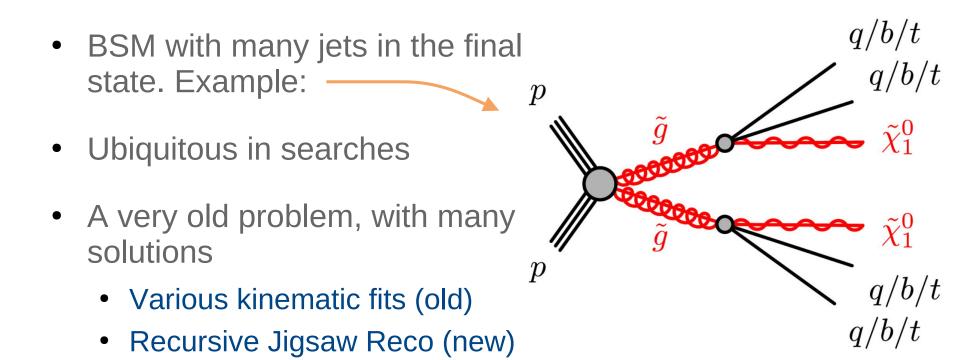
- Initially, we did not (jet pruning in CMS, trimming in ATLAS)
- Then we did (soft drop, at least on CMS)
- But now, we have second thoughts: particle-based taggers and this mass regression are really nice!
- If the ML tool (tagger, mass regression) is calibrated in data, does it matter?
 - Tried taggers built from IRC safe observables, but (for example) ParticleNet outperforms it!

Do we care about IRC safety?

- Initially, we did not (jet pruning in CMS, trimming in ATLAS)
- Then we did (soft drop, at least on CMS)
- But now, we have second thoughts: particle-based taggers and this mass regression are really nice!
- If the ML tool (tagger, mass regression) is calibrated in data, does it matter?
 - Tried taggers built from IRC safe observables, but (for example) ParticleNet outperforms it!

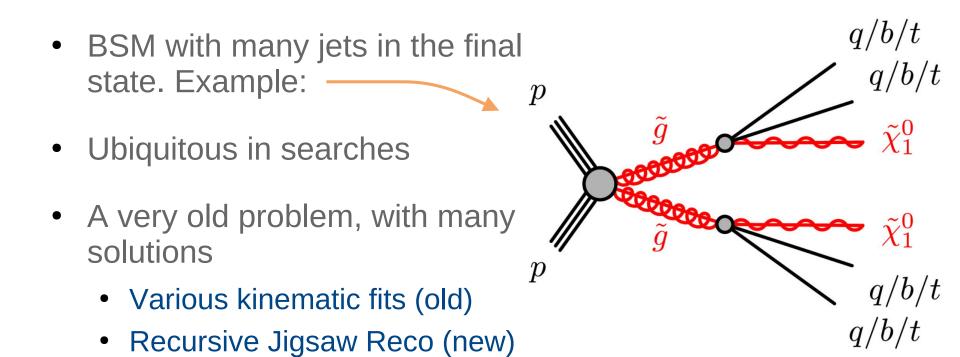
Another topic ready for theoretical input: If IRC safety helps us bypass limitations from QCD MC, then it may be worth it!

Resolving jet combinatorics



- This is ripe for deployment of clever ML
 - See Larry Lee's talk
 - ML could be grafted on top of RJR
 - But... Need to account for jet energy scale uncertainties
 - (As that may flip the interpretation...)

Resolving jet combinatorics



• This is ripe for deployment of clever ML

ATLAS and CMS spend ~dozens of FTE months / year solving this again and again.

This is another super-important problem that should be solved once and for all!

ML in pixels and tracking

- Pixel clusters are 2D images, ideal for ML
 - ATLAS has been using ML in pixel local reconstruction for a long time (position, error, cluster splitting)
 - CMS: still in R&D (but looks good)
- Unlike QCD we have very realistic simulation of the charge deposition and drift, calibrated on data
- Tracking pattern recognition is also excellent candidate for ML
 - first ideas in 1988
 - many projects making progress

B tagging

- The first application of ML to jets (although small-R ones)
- Both ATLAS and CMS use well-performing algorithms
- Future: further use of ML in pixel cluster splitting/merging, removing wrong hits pile-up, using "trackless" algorithms
- Computing limitation: hard to study on data, since all easily accessible samples are compressed, without low-level pixel info
- ATLAS is using EvtGen (!) and CMS still Pythia (?!)
- Not sure if / how the measurements of hadronization propagate back to ML training

Detector simulation

- Official party line: there won't be enough computing in HL-LHC to generate full simulation MC
 - (I still have hard time buying this, but let's assume it's true)
- If that's the case, can we trust Fast Simulation for that?
- One way out: make Fast Simulation more realistic (= less ideal) and useful for training ML
 - Not deserving enough attention by experiments
 - So far, good progress with Calorimeter (CaloGAN, etc.)
 - Can we use a similar approach for tracking?

More on computing vs. ML

- (If there won't be enough computing) do we need to be mindful of size and complexity of models, and size of training datasets?
- Typically, a delay of ~1.5-2 years (or more) between a new ML tagger and its adoption in analyses:
 - Needs to be in an official release
 - Discriminants need to be in a slimmed dataset (otherwise people won't use it)
 - Needs to be calibrated
 - Chicken-and-egg: officially supported if there is demand, but no demand if not officially supported...
- Can we make turnover shorter?

Lots of progress... Or, is it?

- Alison Lister's Musings from ML4Jets 2020:
- It seems to take 3-4 years from an idea to appear (e.g. arXiv study on Delphes) until our large collaborations publish results with it
- Why?
 - New methods are hard to calibrate?
 - New methods aren't developed by people who do the calibrations? [c.f. leaky pipeline]
 - Man-power issues?
 - Reticence to change?
 - Technical difficulties (computing infrastructure,...)? [c.f. lwdnn]
 - It's more fun to play with Delphes and new ideas than go through collaboration approval?
- Thoughts for the next few days
 - How can we bring closer together the three communities of ML developers, Object Performance (CP/POG) experts, search/measurement analysers?
 - $\cdot\,$ In particular reduce the inertia and reduce the latency from idea to physics paper

• Simulation improvement efforts do seem to be collaboration driven (at least on ATLAS)

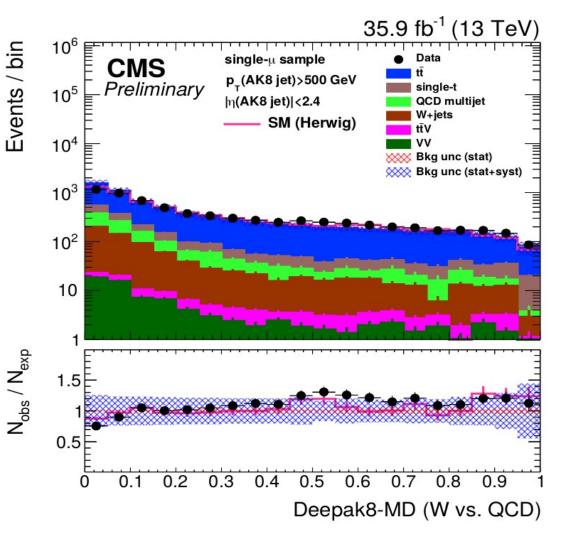
My take

- Rapid development of all sorts of ML tools for HEP
 - Measurements with jets are a prime target, receiving most attention
 - Top / W/Z / Higgs jet taggers still keep improving!
- Nevertheless, some important issues (related to MC) are not being resolved, despite excellent ideas and initial progress
 - Although I would love to be proven wrong!
 - Likely more coordination (here!) is needed
- Adoption of new tools still slow. Computational and sociological challenges still remain
 - Most of what Alison wrote 2.5 years ago is still true! :(

BACKUP MATERIAL

32

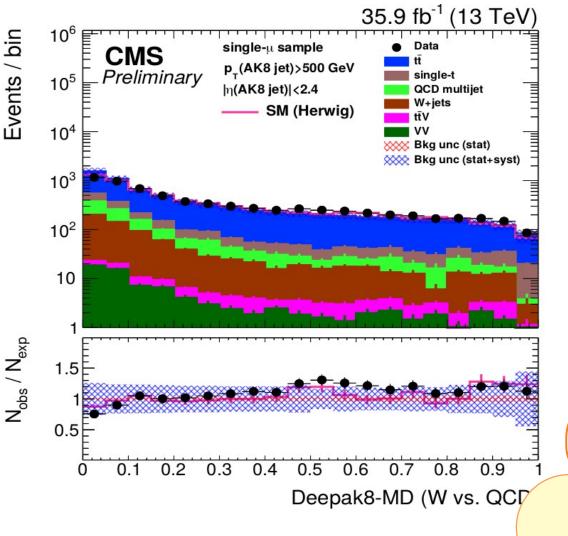
Imperfect MC is used to train ML



- Powerful taggers, but...
- Nominally "within errors" from data
- Need to be careful:
 - Scale factors must be measured...
 - And they may be different from 1...
 - ... with large error bars

JME-18-002

Imperfect MC is used to train ML

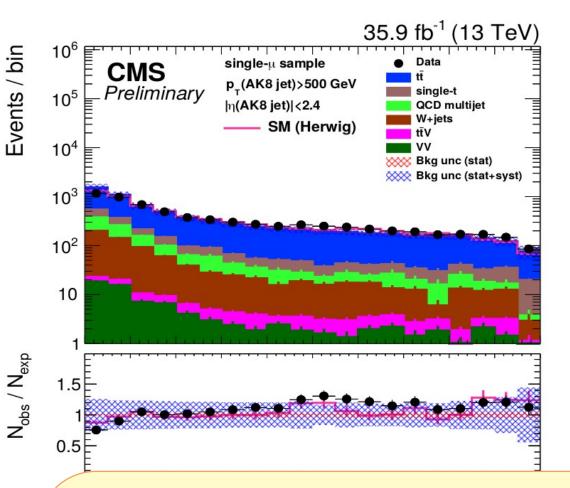


- Powerful taggers, but...
- Nominally "within errors" from data
- Need to be careful:
 - Scale factors must be measured...
 - And they may be different from 1...
 - ... with large error bars

Can erase some of the gains from an improved tagger!

JME-18-002

Imperfect MC is used to train ML



JME-18-002

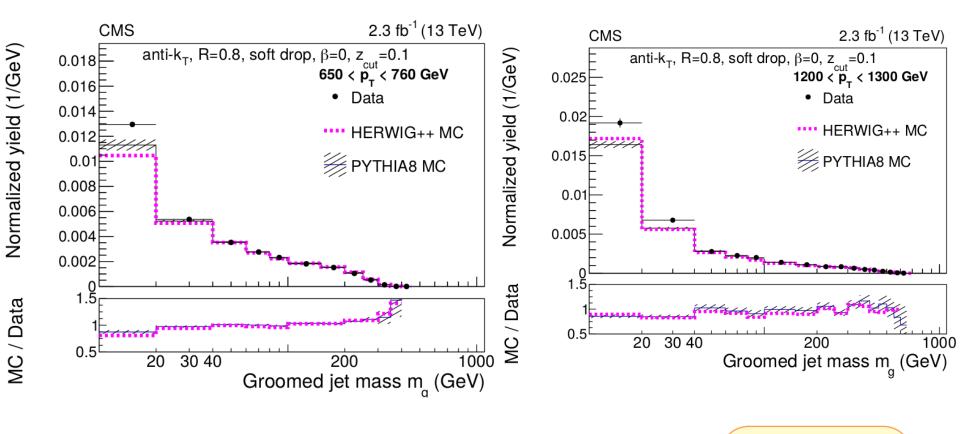
- Powerful taggers, but...
- Nominally "within errors" from data
- Need to be careful:
 - Scale factors must be measured...
 - And they may be different from 1...
 - ... with large error bars

Hard to tell whether DNN is focusing on features poorly modeled in top/W/Z/H MC...

Measurements of jet mass

JHEP 11 (2018) 113

 Both experiments have measurements of jet mass (ungroomed and groomed).

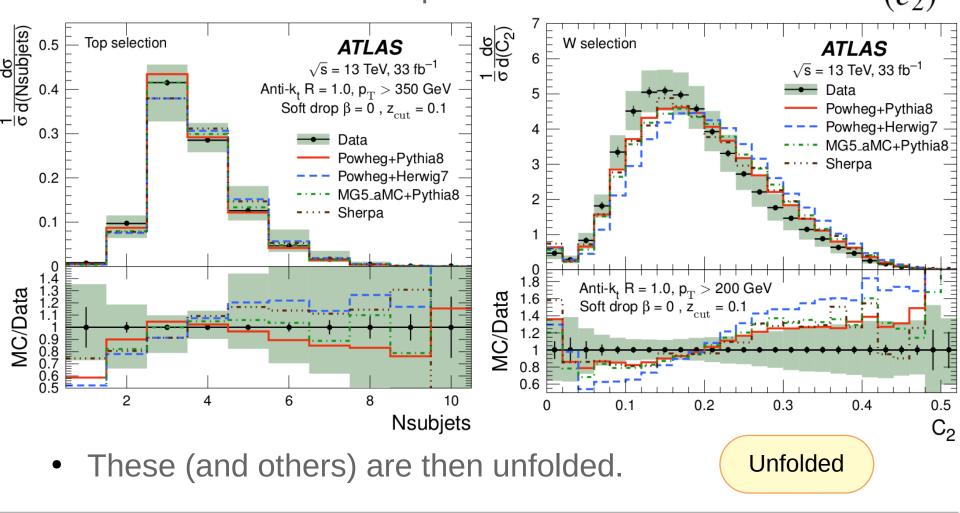


• These are then unfolded.

Detector level

Measurements of substructure

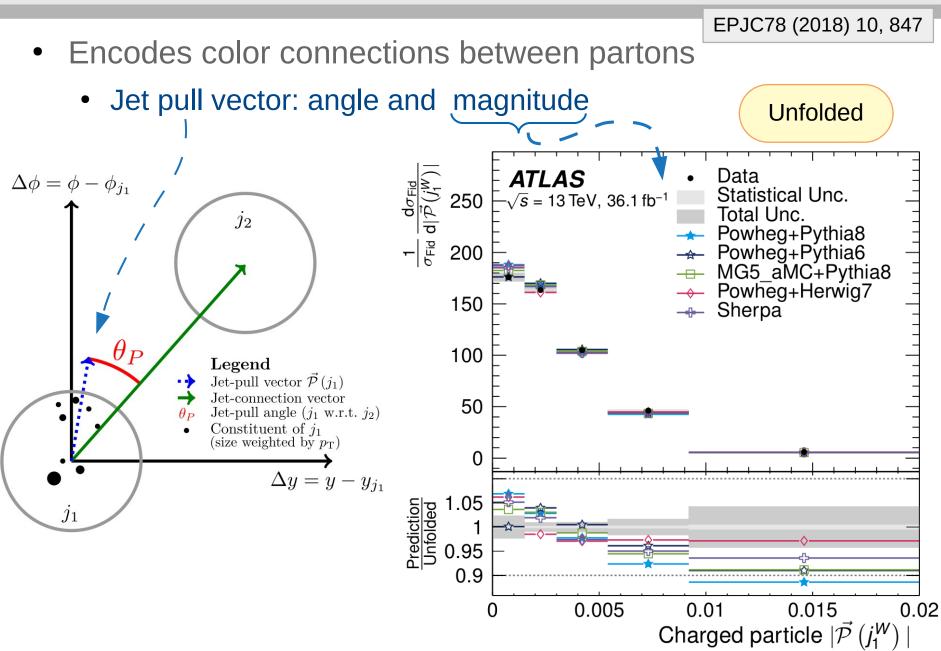
ATLAS compared a bunch of substructure-related variables to data. Examples:



arXiv:1903.02942

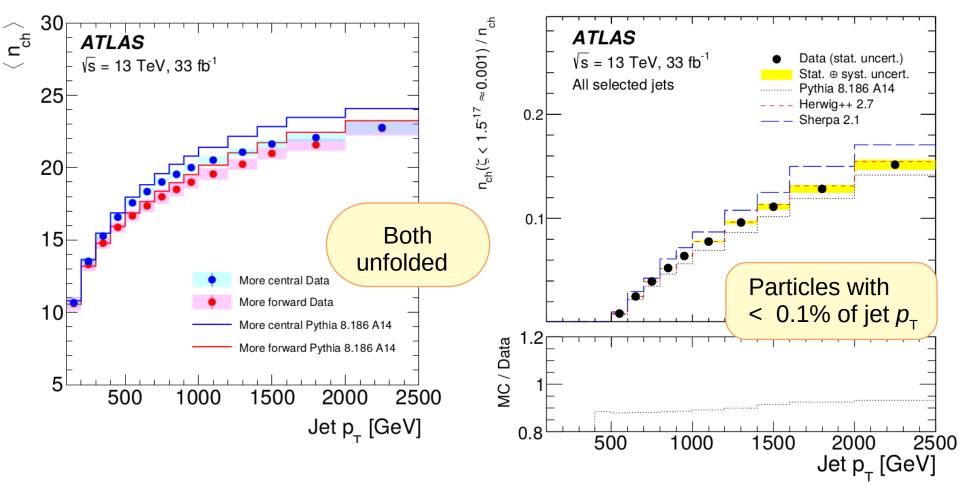
(accepted by JHEP)

Substructure: jet pull (color flow)



Hadronization

- arXiv:1906.09254
- Using charged particles in jets to calc. several variables
 - reasonable description overall
 - also noticeable differences, especially for gluon-like jets

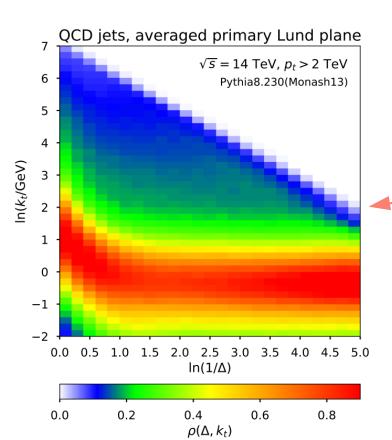


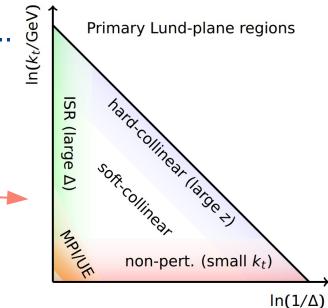
What if PYTHIA doesn't have enough knobs?

- Make a better PYTHIA, or another shower program. Then tune to data. (Repurpose the Professor?)
- Or, correct simulation *a posteriori*.
 - Reweight using the Lund Plane?
 - JUNIPR?
 - or something else?
 - Maybe the best: measure \rightarrow tune PYTHIA \rightarrow reweight residual differences.
 - Experimentally, **the key question**: what are the <u>uncertainties</u> on the result of this procedure?

Primary Lund Plane

- "Jet is an unordered set", I know... but...
- Access to low-level physics directly
- Intuitive and thus appealing

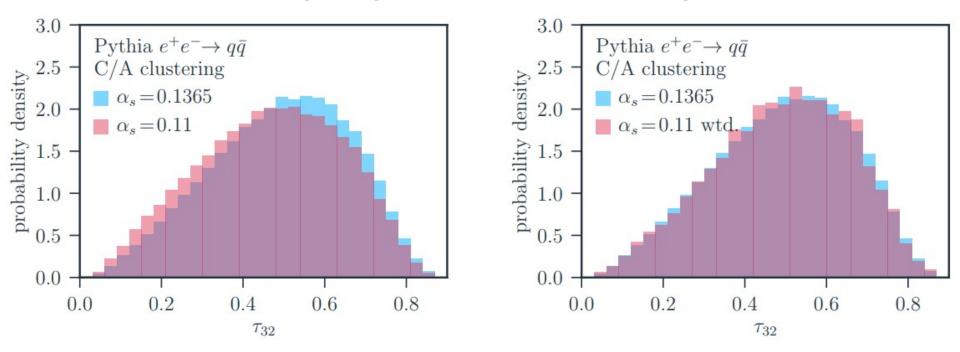




- Average Lund Plane (many jets)
 - one jet = set of point in this plane
- Can we reweight jets using the ratio of Lund Planes in data and MC?
- Unfolded 2D distribution of the Lund Plane????

JUNIPR

- Recursive NN, unsupervised learning on data
 - (A talk on more advance JUNIPR reweighting later this week!!!)
- Data/MC reweighting was one of its main goals!



- Works in MC: turns one PYTHIA into another.
- Will it work in data?

Do we need QCD MC at all?

- For multijet background estimates, we don't need MC
 - Have been data-driven anyway
 - Although there could be subtle correlations...
- Unsupervised learning from data...
 - Learns QCD: e.g., autoencoder with LoLa
 - Learns QCD in the presence of other backgrounds: e.g., CWoLa
- Can we interpolate between two sidebands
 - e.g., CWoLa hunting
- Can we *extrapolate* from one CR to another???

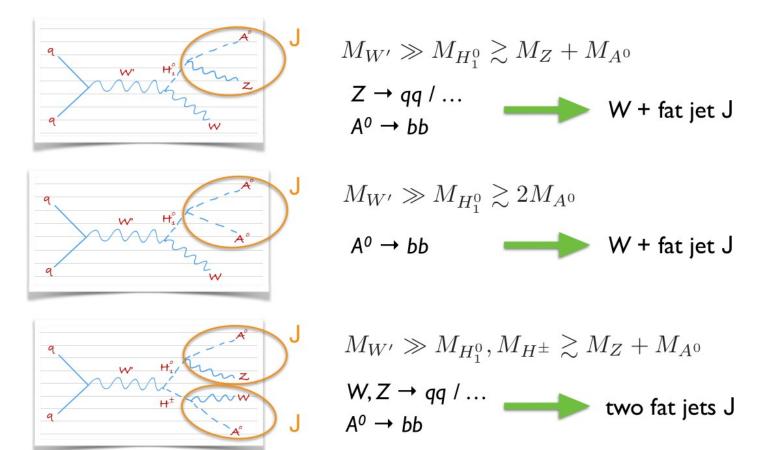
N-pronged jets?

• The future of searches with substructure?

Case II: Merged multibosons

(from Juan-Antonio Aguilar Saavedra)

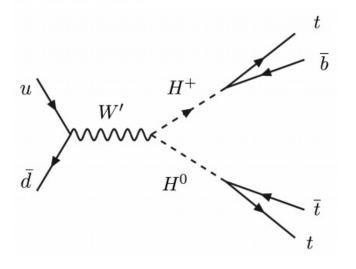
If intermediate particles are `light', their decay products are merged



More N-pronged jets?

• More cool signatures with 4- and 6-pronged jets

Heavy Higgs bosons decay directly into a pair of the heaviest fermions:



For $M_{W'} \gg M_{H^+}$: $(t\bar{b})$ -tagged jet + $(t\bar{t})$ -tagged jet For $M_{W'} > M_{H^+} \gg m_t$: three t-tagged jets + b

(from Bogdan Dobrescu)

- Easy to do a cut-based analysis (let alone a DNN)
- But how to get the efficiency?

What to do about N-pronged jets?

- Give up, can't be done:
 - Can't measure efficiency in data
 - These analyses are always going to be out of reach
- Report limit on $\sigma_X \cdot \mathcal{B}(X) \cdot \underline{\epsilon_X}$ (David Miller's suggestion)
 - Let the consumers of the paper worry about the signal efficiency
 - Would not affect the discovery, only limits
 - May actually spur progress in this area :-/
- Or try to make it work?
 - Learn how to reweight single quark jets from MC
 - Verify that the procedure works for W and top (2,3-prong)
 - Assign further systematics for 4,5,6-prong...