

Bundesministerium für Bildung und Forschung

Resonant anomaly detection without background sculpting

Manuel Sommerhalder¹, Anna Hallin², Gregor Kasieczka¹, Tobias Quadfasel¹, and David Shih²

¹University of Hamburg ²Rutgers University

manuel.sommerhalder@uni-hamburg.de

ML4Jets

November 3, 2022

Searches for new physics

Compelling motivation for existence of physics beyond the standard model (BSM)

Usually searching for BSM physics at the LHC via dedicated searches:

- pick specific BSM signal model
- optimize selections to enhance this signal
- check compatibility with SM background-only vs signal+background hypothesis

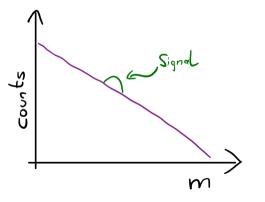
No BSM processes so far measured at the LHC. Why?

- no new physics at LHC energy scale?
- not yet searched for the right model?
- cannot cover all models with a dedicated search

 \rightarrow Need data-driven **model-independent** searches \rightarrow anomaly detection

Base assumptions:

- feature m with smooth background
- look for small signal localized in \boldsymbol{m}

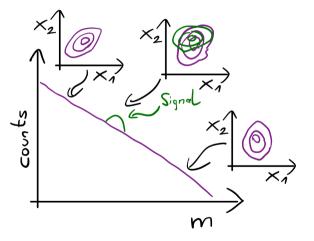


Base assumptions:

- $\bullet\,$ feature m with smooth background
- $\bullet\,$ look for small signal localized in m

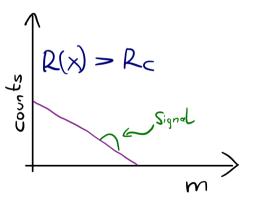
Auxiliary features:

- additional dimesions x
- ${\mbox{\circ}}$ in general correlated with m
- signal shape different in \boldsymbol{x}



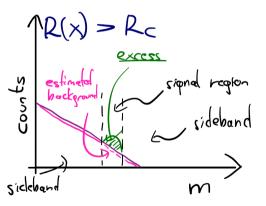
Enhanced bump hunt:

• find ML model R(x) s.t. $R(x) > R_c$ enhances signal fraction



Enhanced bump hunt:

- find ML model R(x) s.t. $R(x) > R_c$ enhances signal fraction
- fit background from sidebands (SB)
- compare to data in signal region (SR)



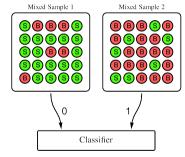
Weak supervision

Classification without labels (CWoLa)^a

• a classifier trained on samples with mixed S/B ratio will still learn to distinguish signal and background

Combining with bump hunt (CWoLa Hunting)^b

- train classifier on \boldsymbol{x} from SR data vs SB data
- assuming $p_{\rm bkg}(x|{\rm SR})\approx p_{\rm data}(x|{\rm SB})$
- then we learn $R(x) = \frac{p_{\rm data}(x|{\rm SB})}{p_{\rm bkg}(x|{\rm SR})} = \frac{p_{\rm data}(x|{\rm SR})}{p_{\rm bkg}(x|{\rm SR})}$
- breaks down in case of significant correlations between \boldsymbol{x} and \boldsymbol{m}



from a

^aE. Metodiev, B. Nachman, J. Thaler, JHEP 10 (2017) 174

^bJ. Collins, K. Howe, B. Nachman, Phys. Rev. D 99, 014038 (2019)

Dealing with correlated features

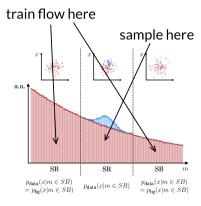
Classifying Anomalies THrough Outer Density Estimation (CATHODE)^{*a*}:

- train normalizing flow on SB to learn $p_{bkg}(x|m \in SB)$
- interpolate into SR and sample events bkg-like events from this $p_{\rm bkg}(x|{\rm m}\in{\rm SR})$
- train classifier between SR data and bkg-like samples
- learns $R(x) = \frac{p_{\rm data}(x|{\rm SR})}{p_{\rm bkg}(x|{\rm SR})}$ also under correlations

Conditional normalizing flow:

• learn invertible map f(x;m) from x to gaussian latent space z for every m

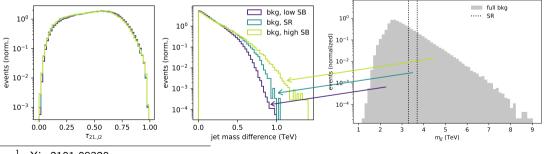
^aM.S., Hallin, et al., Phys. Rev. D 106, 055006 (2022)



adjusted from a

Testing on LHCO R&D dataset

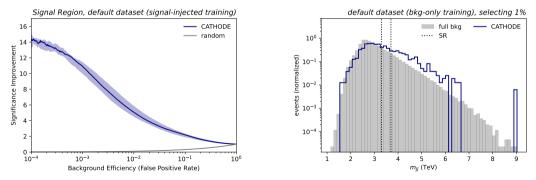
- LHCO R&D dataset¹: simulated dijet resonance search
- signal: $Z'_{3.5\text{TeV}} \rightarrow X_{500\text{GeV}}Y_{100\text{GeV}}$
- resonant feature m: m_{jj}
- auxiliary features x: m_{j1} , Δm_j , $\tau_{21,j1}$, $\tau_{21,j2}$
- minor differences between SR and SB \boldsymbol{x}



¹arXiv:2101.08320

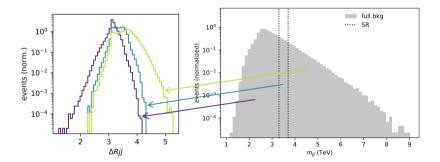
Testing on LHCO R&D dataset

- high signal sensitivity
- significance improvement = significance after cut over sign. before cut
- slight change in m_{jj} bkg distribution after $R(x) > R_c(x)$
- looks still well fittable for enhanced bump hunt



Testing on LHCO R&D dataset – adding another feature

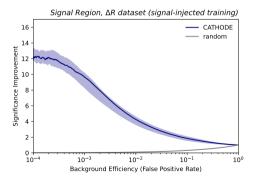
- adding angular dijet separation ΔR_{jj} as input feature²
- more pronounced differences between SR and SB



²first suggested by Raine et al., arXiv:2203.09470

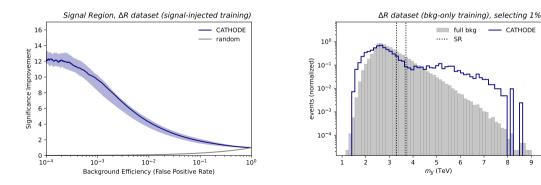
Testing on LHCO R&D dataset – adding another feature

• still high signal sensitivity



Testing on LHCO R&D dataset - adding another feature

- still high signal sensitivity
- heavy change in m_{ii} bkg distribution after $R(x) > R_c(x) \rightarrow$ sculpting
- difficult to fit bkg from SB here :(



____ CATHODE

SB

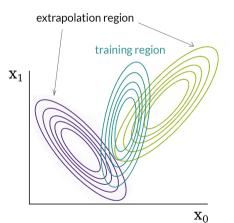
6 7 8 9

m_{ll} (TeV)

Background sculpting

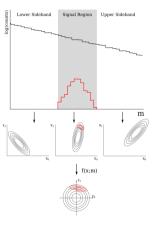
When x depends on m:

- background m shape changes if we cut on learned R(x) = R(x(m))
- evaluating SR-trained R(x) on SB can cause uncontrolled extrapolation
- smooth bkg fit in bump hunt increasingly difficult when m is sculpting



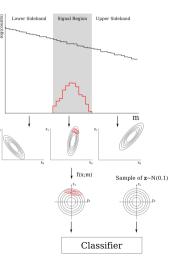
Latent CATHODE (LaCATHODE)

• use flow to map SR data to latent space z = f(x; m)



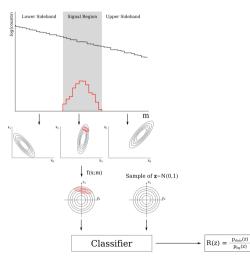
Latent CATHODE (LaCATHODE)

- use flow to map SR data to latent space z = f(x; m)
- perform classification task in latent space
- sample bkg from unit gaussian



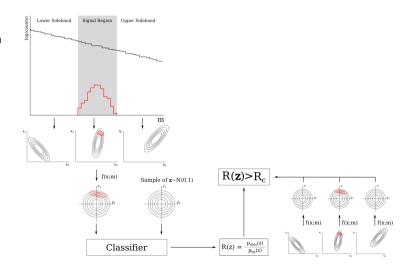
Latent CATHODE (LaCATHODE)

- use flow to map SR data to latent space z = f(x; m)
- perform classification task in latent space
- sample bkg from unit gaussian
- learning $R(z) = \frac{p_{\text{data}}(z|\text{SR})}{p_{\text{bkg}}(z|\text{SR})} = \frac{p_{\text{data}}(x|\text{SR})}{p_{\text{bkg}}(x|\text{SR})}$



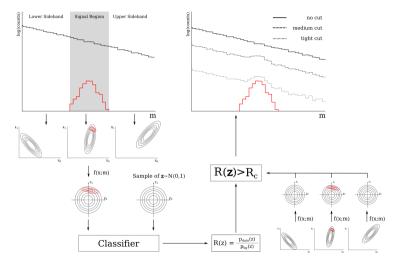
Latent CATHODE (LaCATHODE)

- use flow to map SR data to latent space z = f(x;m)
- perform classification task in latent space
- sample bkg from unit gaussian
- learning $R(z) = \frac{p_{\text{data}}(z|\text{SR})}{p_{\text{bkg}}(z|\text{SR})} = \frac{p_{\text{data}}(x|\text{SR})}{p_{\text{bkg}}(x|\text{SR})}$
- mapping SB to same latent space for $R(z) > R_c$



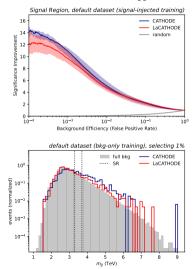
Latent CATHODE (LaCATHODE)

- use flow to map SR data to latent space z = f(x; m)
- perform classification task in latent space
- sample bkg from unit gaussian
- learning $R(z) = \frac{p_{\text{data}}(z|\text{SR})}{p_{\text{bkg}}(z|\text{SR})} = \frac{p_{\text{data}}(x|\text{SR})}{p_{\text{bkg}}(x|\text{SR})}$
- mapping SB to same latent space for $R(z) > R_c$



Testing on LHCO R&D dataset - LaCATHODE

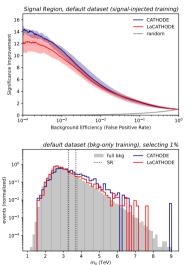
without ΔR_{jj}

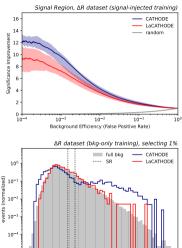


Testing on LHCO R&D dataset – LaCATHODE

without ΔR_{jj}

- LaCATHODE eliminates sculpting
- retains much of CATHODE signal sensitivity
- some reduction with $\Delta R j j$, but perfect bkg stability will pay off in actual bump hunt





5 6

m, (TeV)

÷ ÷

Summary & conclusion

- bump hunt-enhancing anomaly detection methods can sculpt the background when features are correlated
- the background estimation becomes increasingly difficult with more correlation
- La(tent)CATHODE solves this issue by performing weakly supervised classification in a decorrelated latent space
- LaCATHODE is no more complex than classic CATHODE
- we observe significantly less sculpting with LaCATHODE than with other protocols but similar signal sensitivity
 - \rightarrow read more at arXiv:2210.14924

BACKUP

LHCO 2020 R&D dataset

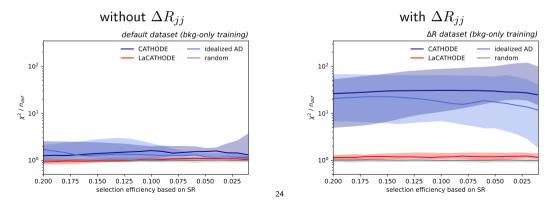
- Benchmarking on the LHC Olympics 2020 challenge R&D dataset
 - $\circ~$ Black box challenge whose now uncovered signals are still used for benchmarking
 - Generic LHC-like DELPHES simulation
 - arXiv:2101.08320
- Background: 1M simulated QCD multijet events
- Signal: 100k Z' \rightarrow XY events where X \rightarrow qq and Y \rightarrow qq
- $m_{Z'} = 3.5$ TeV, $m_X = 500$ GeV, $m_Y = 100$ GeV
- Select 2 most massive jets in each event and use their dijet mass m_{jj} to search for resonances
- Use 4 additional "high-level" variables:
 - $\circ~$ Lower jet mass m_{j1} & mass difference $\Delta m_{1,2}$
 - $\circ~$ Jet subjettiness ratios $\tau_{21,1}$ and $\tau_{21,2}$

Quantifying background sculpting

• quantifying difference between m_{ij} spectra before and after cut using

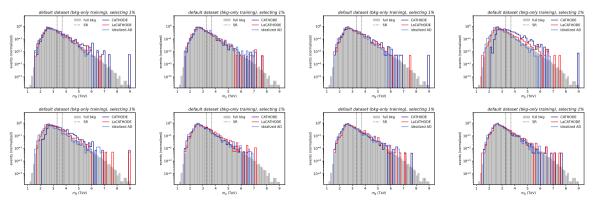
$$\chi^2/n_{\rm dof}$$
, with $\chi^2 = \sum_{i=1}^{n_{\rm bins}} \frac{\left(n_i^{cut} - n_i^{uncut}\right)^2}{\sigma_i^2}$, $n_{\rm dof} = n_{\rm bins} - 1$

- choosing binning such that every bin has > 10 expected events



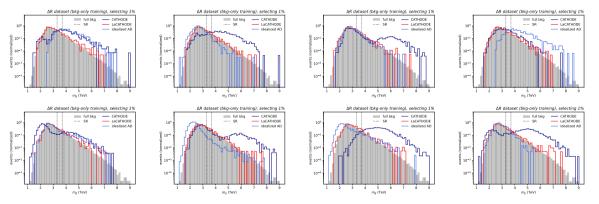
Varying runs on LHCO R&D dataset - default features only

Retraining the (La)CATHODE pipeline multiple times:



Varying runs on LHCO R&D dataset - adding dR

Retraining the (La)CATHODE pipeline multiple times using ΔR_{jj} input:



ightarrow extrapolation behavior is unstable between retrainings, except for LaCATHODE