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Searches for new physics

Compelling motivation for existence of physics beyond the standard model (BSM)

Usually searching for BSM physics at the LHC via dedicated searches:

e pick specific BSM signal model

e optimize selections to enhance this signal

e check compatibility with SM background—only vs signal+background hypothesis
No BSM processes so far measured at the LHC. Why?

e no new physics at LHC energy scale?

e not yet searched for the right model?

e cannot cover all models with a dedicated search

— Need data-driven model-independent searches — anomaly detection



Resonant anomaly detection

Base assumptions:

e feature m with smooth background

e look for small signal localized in m
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Resonant anomaly detection

Base assumptions:
e feature m with smooth background
e look for small signal localized in m
Auxiliary features:
e additional dimesions x
e in general correlated with m

e signal shape different in x




Resonant anomaly detection

Enhanced bump hunt:

e find ML model R(z) s.t. R(x) > R,
enhances signal fraction
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Resonant anomaly detection

Enhanced bump hunt:

B
NS
V
s

N

e find ML model R(z) s.t. R(xz) > R,
enhances signal fraction

e fit background from sidebands (SB)
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e compare to data in signal region (SR)
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Weak supervision

Classification without labels (CWola)?

e a classifier trained on samples with mixed S/B ratio will
still learn to distinguish signal and background

Combining with bump hunt (CWola Hunting)®?
e train classifier on x from SR data vs SB data

® assuming ppkg(z|SR) ~ pyata(x|SB)

— Pdata (z|SB) — Pdata (z|SR)
Pbig (|SR) Pbikg (Z|SR)

e breaks down in case of significant correlations between
x and m

e then we learn R(z)

?E. Metodiev, B. Nachman, J. Thaler, JHEP 10 (2017) 174
bJ. Collins, K. Howe, B. Nachman, Phys. Rev. D 99, 014038 (2019)
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Mixed Sample 1

Mixed Sample 2
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https://doi.org/10.1007/JHEP10(2017)174
https://doi.org/10.1103/PhysRevD.99.014038

Dealing with correlated features

Classifying Anomalies THrough Outer Density
Estimation (CATHODE)?:

e train normalizing flow on SB to learn
Pokg(z|m € SB)

e interpolate into SR and sample events bkg-like
events from this pye(z|m € SR)

e train classifier between SR data and bkg-like
samples

e learns R(z) = paaa(@lSR) 5156 ynder correlations
Pokg (7[SR)

Conditional normalizing flow:

e learn invertible map f(xz;m) from x to gaussian
latent space z for every m

?M.S., Hallin, et al., Phys. Rev. D 106, 055006 (2022)
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tra

in flow here
sample here
:
e
SB SR SB m
Pdata(z|lm € SB) = a Pdata(z|m € SB)
mlalm e sp)  Paaallm € SR) R oB)
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 https://doi.org/10.1103/PhysRevD.106.055006

Testing on LHCO R&D dataset

events (norm.)

e LHCO R&D dataset!: simulated dijet resonance search

. X /
signal: Z3 stey — X500GevY100Gev

e resonant feature m: mj;

e auxiliary features x: mi1, Amj, T21,j1, T21,52

e minor differences between SR and SB z
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 https://doi.org/10.48550/arXiv.2101.08320

Testing on LHCO R&D dataset

Significance Improvement

high signal sensitivity

significance improvement = significance after cut over sign. before cut
slight change in m;; bkg distribution after R(x) > R.(x)

looks still well fittable for enhanced bump hunt

Signal Region, default dataset (signal-injected training)
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Testing on LHCO R&D dataset - adding another feature

e adding angular dijet separation AR;; as input feature?

e more pronounced differences between SR and SB
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2first suggested by Raine et al., arXiv:2203.09470
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 https://doi.org/10.48550/arXiv.2203.09470

Testing on LHCO R&D dataset - adding another feature

e still high signal sensitivity

Signal Region, AR dataset (signal-injected training)
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Testing on LHCO R&D dataset - adding another feature

Significance Improvement

e still high signal sensitivity

* heavy change in m;; bkg distribution after R(x) > R.(z) — sculpting

e difficult to fit bkg from SB here :(

Signal Region, AR dataset (signal-injected training)
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events (normalized)
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AR dataset (bkg-only training), selecting 1%
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Background sculpting

When x depends on m:

e background m shape changes if we
cut on learned R(z) = R(xz(m))

e evaluating SR-trained R(z) on SB can
cause uncontrolled extrapolation

e smooth bkg fit in bump hunt
increasingly difficult when m is
sculpting
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Moving to latent space

Z| LowersSidehand  Signal Region  Upper Sideband

Latent CATHODE
(LaCATHODE)

e use flow to map SR data
to latent space

z = f(x;m)
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Moving to latent space

Lower Sideband  Signal Region ~ Upper Sideband

log(counts)

Latent CATHODE
(LaCATHODE)
e use flow to map SR data
to latent space
z = f(z;m)
e perform classification
task in latent space

l fosm) Sample of z~N(0,1)

e sample bkg from unit
gaussian

| }
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Moving to latent space

Lower Sideband  Signal Region ~ Upper Sideband

Latent CATHODE
(LaCATHODE)
e use flow to map SR data
to latent space
z = f(z;m)
e perform classification
task in latent space

log(counts)

e sample bkg from unit
gaussian

l foxm) Sample of z~N(0,1)

e learning R(z) =
Pdata(2|SR) __ Pdata(2[SR) | \'1'

Pokg(2SR) ™ pokg(z[SR)
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Moving to latent space

Latent CATHODE
(LaCATHODE)

e use flow to map SR data
to latent space
z = f(z;m)

e perform classification
task in latent space

Lower Sideband ~ Signal Region  Upper Sideband

log(counts)

e sample bkg from unit
gaussian X K ]
L |earning R(Z) = lf"‘;m) Sample of z~N(0,1) R(Z)>RC‘

Pdata (2/SR) — Pdata (z|SR)
Pbkg(2|SR) Pbikg (Z|SR)

e mapping SB to same | |

latent space for Ry = 22

R(z) > R,

T f(x;m) T f(x;m)
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Moving to latent space

Latent CATHODE
(LaCATHODE)

use flow to map SR data

to latent space

z = f(z;m)

perform classification
task in latent space

sample bkg from unit
gaussian
learning R(z) =

Pdata (2/SR) — Pdata (z|SR)
Pbkg(2|SR) Pbikg (Z|SR)

mapping SB to same
latent space for
R(z) > R,

log(counts)

Lower Sideband

Signal Region ~ Upper Sideband

.......... tight cut

_— no cut

=== medium cut

l fx;m) Sample of z~N(0,1)

} }
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R(z)

R(z) =

Paua(2)

Piq(2)

f(x;m) T f(x;m)

T f(x;m)
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Testing on LHCO R&D dataset - LaCATHODE

without AR;;

Signal Region, default dataset (signal-injected training)
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Testing on LHCO R&D dataset - LaCATHODE

e LaCATHODE
eliminates sculpting

e retains much of
CATHODE signal
sensitivity

e some reduction with
ARjj, but perfect
bkg stability will pay
off in actual bump
hunt

events (normalized)

without AR;;

Signal Region, default dataset (signal-injected training)

16 —— CATHODE
—— LaCATHODE

o 14 —— random
§
£12
]
H
S10
E
v 8
5
S
5
24

2

0

107 1072 1072 1071 10°

Background Efficiency (False Positive Rate)
default dataset (bkg-only training), selecting 1%
fullbkg ~ —— CATHODE
100 - SR —— LaCATHODE
107t
102
103
1074
1 2 3 4 5 6 7 8 9
my (TeV)

21

16
14
e
§
£ 12
g
3
210
£
v 8
5
Se
5
24
2
0
10~ 1073 102
Background Efficiency (False Positive Rate)
AR dataset (bkg-only training), selecting 1%
full bkg
100 ~ SR
1
F 10t l"I
2
£
s 1072
£
€
2107
3
107*
2 3 4 5 6
my (Tev)

with AR]']'

Signal Region, AR dataset (signal-injected training)
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Summary & conclusion

e bump hunt—enhancing anomaly detection methods can
sculpt the background when features are correlated

e the background estimation becomes increasingly
difficult with more correlation

CWOLA

e La(tent)CATHODE solves this issue by performing
weakly supervised classification in a decorrelated latent
space CATHODE

e LaCATHODE is no more complex than classic
CATHODE

e we observe significantly less sculpting with
LaCATHODE than with other protocols but similar
signal sensitivity

— read more at arXiv:2210.14924

LAICATHODE
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LHCO 2020 R&D dataset

Benchmarking on the LHC Olympics 2020 challenge R&D dataset

o Black box challenge whose now uncovered signals are still used for benchmarking
o Generic LHC-like DELPHES simulation
o arXiv:2101.08320

Background: 1M simulated QCD multijet events

Signal: 100k Z'—XY events where X—qq and Y—qq

my = 3.5 TeV, mx = 500 GeV, my = 100 GeV

Select 2 most massive jets in each event and use their dijet mass m; to search
for resonances

Use 4 additional "high-level” variables:

o Lower jet mass m;; & mass difference Am; 2
o Jet subjettiness ratios 21,1 and 721 2
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  https://doi.org/10.48550/arXiv.2101.08320

Quantifying background sculpting
e quantifying difference between m;; spectra before and after cut using

Thins (ngut _ nuncut)2
: : s Midof = Nbins — 1

X2 /ndor, With x* =) —
1

i=1

AR dataset (bkg-only training)
—— CATHODE —— idealized AD
—— LaCATHODE = —— random

e choosing binning such that every bin has > 10 expected events
with ARjj

without A Rj i
default dataset (bkg-only training)
—— CATHODE —— idealized AD
—— LaCATHODE =~ —— random
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Varying runs on LHCO R&D dataset - default features only

Retraining the (La)CATHODE pipeline multiple times:

default dataset (bkg-only training), selecting 1% default dataset (bkg-only training), selecting 1% default dataset (bkg-only training), selecting 1% default dataset (bkg-only training), selecting 1%
fullbkg  — CATHODE fulbkg  — CATHODE fulbkg  — CATHODE fulbkg  — CATHODE
100 B LacATHODE 100 B — LacTHoDE 100 B — LacaTHoDE 100 B — LacatHoDE
- — idealized AD * — idealized AD . — idealized AD 5 — idealized AD
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H £ £ £
S0 510 510 §107
S0 £ 107 810 S0
10 107 107 107
1 3 3 5 6 ] Tz 3 s R T 2 3 s 6 L) T 2 3 & 5 & 1 & 9
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default dataset (bkg-only training), selecting 1% default dataset (bkg-only training). selecting 1% default dataset (bkg-only training). selecting 1% default dataset (bkg-only training). selecting 1%
full kg — CATHODE fullbkg  — CATHODE fulbkg  — CATHODE fulbkg  — CATHODE
100 R — LacATHODE 100 B — LaCATHODE 100 B — LaCATHODE 100 E — LacATHODE
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Varying runs on LHCO R&D dataset - adding dR

Retraining the (La)CATHODE pipeline multiple times using AR;

AR dataset (bkg-only training), selecting 1%

AR dataset (bkg-only training), selecting 1%
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— extrapolation
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R dataset (bkg-only training), selecting 1%
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AR dataset (bkg-only training), selecting 1%
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behavior is unstable between retrainings, except for LaCATHODE
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