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Model-agnostic new physics searches

Pre-ML anomaly detection
ATLAS — General search strategy [Eu. Phys. J. C 79 (2019) 120 (1807.07447)

Compares data to simulation in (a few) 1D distributions of high-level observables
Looking for statistically significant deviations of the event counts in a data selection

Data selection — over 700 event classes considered, 10° signal regions
Outcome: data-derived signal regions for a dedicated analysis on new data
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ATLAS 7
EXPERIMENT

Eur. Phys. J. C 79 (2019) 120 CERN-EP-2018-070
DOI: 10.1140/epjc/s10052-019-6540-y 19th February 2019

A strategy for a general search for new phenomena
using data-derived signal regions and
its application within the ATLAS experiment

The ATLAS Collaboration
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Model-agnostic new physics searches

Pre-ML anomaly detection

ATLAS — General search strategy [Eu. Phys. J. C 79 (2019) 120 (1807.07447)
Compares data to simulation in (a few) 1D distributions of high-level observables
Looking for statistically significant deviations of the event counts in a data selection

Data selection — over 700 event classes considered, 10° signal regions
Outcome: data-derived signal regions for a dedicated analysis on new data

The Pros The Cons
- wide coverage of possible signals * reliance on simulation
 independent data selections can - sensitive to choice of observables!

trigger in combination

- only a few regions chosen for
dedicated study

= reduced look-elsewhere effect
* truly global interpretation of the data

* only uses a few high-level observables
 only uses 1D distributions
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... & machine learning?
Neural networks = interpolating power

Deep-learning has demonstrated potential for analyses with...

* no restriction to a few, or even high-level, observables
* the abllity to process high-dimensional datasets

* less reliance on simulation

* reduced look-elsewhere effect Interesting questions!

 Physics bias in deep-learning approaches?
- How model-agnostic are the approaches?

- What would an analysis with these tools look like?
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How do we define ‘anomalous’?

« Deviations from Standard Model simulations

Regions of phase space, or individual jets/events, which are outliers wrt the SM

« Group anomalies

Groups of events that form local over-densities in some observable

 Low density regions of the feature space
Jet/events which are assigned a low-density according to some density model of
either the data, or some reference model
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ML-based anomaly detection

1 - Simulation vs experiment
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SI m u Iatlon VS data [‘Learning new physics from a machine’ - D’Agnolo & Wulzer]

« Classifier trained between

INPUT OUTPUT
data Sample and a reference Data sample D Dist. log ratio
model ~ ot
- Binned distributions are i z ‘f(w;w) |
— — . data/reference
replaced by smooth oo Ew vomomernr
' ' Reference sample R S f(z;w) ~ 1o [n(:E'T)]
functions approximated by oerence sam P : F ) W) =08 | L (IR)
neural networks. | - - o the
- 'HIHHHWM | ’ K J data sample D
* Procedure gives a p-value MWV N £(D) = -2 Min L/

and the likelihood ratio

Sensitive to both group and low-density anomalies

Reliant on simulation

But scales badly for many observables...

— perhaps ways to overcome this
[‘Learning new physics efficiently with nonparametric methods’ - Letizia et al]

Barry Dillon — Universitat Heidelberg — Introduction to anomaly detection



The CWOLa methOd [Metodiev, Nachman, Thaler (1708.02949)]

« Two samples, one signal-enriched

» Train a supervised classifier to
distinguish between them

- If signals and backgrounds come from
the same underlying distributions, then
we learn
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- Monotonically related to L5 for f; > f5
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The CWO La bump hunt [Collins, Howe, Nachman (1902.02634)]

Looking for group anomalies in m,.
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spectrum
. Di-jet search: m;p, My, Ty1> Ty
- Background enriched-region obtained from
sidebands background
- Cut on classifier to keep Y% of events signal 4/
* Fit smoothly falling backgrounds \\,
- Estimate p-value mr:s

[Stolen from a Ben Nachman talk]

Talks:

CURTAINSs for your Sliding Window - Johnny Raine

Resonant anomaly detection without background sculpting - Manuel Sommerhalder
HEP-Sim2Real: creating background templates with normalizing flows - Radha Mastandrea
Weakly supervised methods for LHC analyses - Thorben Finke
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The CWO La bump hunt [Collins, Howe, Nachman (1902.02634)]

The pros
- Background estimation
« Data-driven

- Completely agnostic wrt auxiliary
observables

Model-dependence

« Assumptions on how anomalies are
‘grouped’

- Bad scaling with many observables
= choice of observables is v. important

Talks:
CURTAINSs for your Sliding Window - Johnny Raine
Resonant anomaly detection without background sculpting - Manuel Sommerhalder

background

signal 4/
s
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[Stolen from a Ben Nachman talk]

HEP-Sim2Real: creating background templates with normalizing flows - Radha Mastandrea

Weakly supervised methods for LHC analyses - Thorben Finke
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The CWO La bump hunt [Collins, Howe, Nachman (1902.02634)]

ANODE & CATHODE [Hallin et al (2109.00546)]

[Nachman et al (2001.04990)]

- Correlations with m,.., are a big problem

- ANODE:
interpolates probability densities from
sidebands into the signal region & constructs
the likelihood ratio

- CATHODE: (& LaCATHODE)
also interpolates, but samples signal-region
background events from the model and builds
a classifier to estimate the likelihood ratio

Talks:
CURTAINSs for your Sliding Window - Johnny Raine

Resonant anomaly detection without background sculpting - Manuel Sommerhalder
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[Stolen from a Ben Nachman talk]

HEP-Sim2Real: creating background templates with normalizing flows - Radha Mastandrea

Weakly supervised methods for LHC analyses - Thorben Finke
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AUtO EnCOder netwo rks [‘QCD or What?' Heimel et all

[‘Searching for new physics with deep
auotencoders’ Farina et al]

Encoder Decoder
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* Trained to reconstruct the data they are trained on

 Encode the most general features of the data in a latent space 2
 Optimised on background-dominant data

* Unsupervised — model-agnostic, no labels

* Reconstruction loss: L = ||x — leQ

 Anomalous data = data the network has seen least = larger reconstruction loss
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AUtO EnCOder netwo rks [‘QCD or What?' Heimel et al]

[‘Searching for new physics with deep
auotencoders’ Farina et al]
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* Trained to reconstruct the data they are trained on

 Encode the most general features of the data in a latent space 2

 Optimised on background-dominant data

Has proved quite

 Unsupervised —p model-agnostic, no labels
successful, but...

* Reconstruction loss: £ = ||z — 2’| ‘2

« Anomalous data = data the network has seen least = larger reconstruction loss
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AutoEncoder networks - the problems

They don’t robustly identify anomalous jets.

They do robustly identify complex jets, e.g anomalous top/QCD jets

Mean QCD jet image
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'A normalised autoencoder for LHC triggers’
10° Dillon, Favaro, Plehn, Sorrenson
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An AE trained on only top jets learns to
reconstruct QCD jets...
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AutoEncoder networks - the problems

They don’t robustly identify anomalous jets.

They do robustly identify complex jets, e.g anomalous top/QCD jets

Very sensitive to the choice of representation / observables

e.g. under re-mapping of py’s,  pr — pr

[ ‘What’s anomalous in LHC jets?’ Buss et al |

results vary a lot [ ‘Anomaly detection under coordinate transformations’ Kasieczka et al ]
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AutoEncoder networks - the problems

They don’t robustly identify anomalous jets.

They do robustly identify complex jets, e.g anomalous top/QCD jets

Very sensitive to the choice of representation / observables

e.g. under re-mapping of py’s,  pr — pr

[ ‘What’s anomalous in LHC jets?’ Buss et al |

results vary a lot [ ‘Anomaly detection under coordinate transformations’ Kasieczka et al ]

On low level data: not invariant to physical symmetries in the problem.
AE can’t reconstruct something the latent space is invariant to...

Preprocessing is necessary, but approximate.
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Density-based anomaly detection

Reconstruction is a very vague way to define anomalies

More accurately: anomalies are events/jets in low density regions of the feature space

= not invariant to transformations in feature space

Machine-learned density estimation:

1 - some parameterisation of the density pgata(X')

2 - a scheme to minimise —10g pyata( X' ) wrt to the parameters

Can be difficult in high-dimensions!

Flows work well in low dimensional problems
[ ‘What’s anomalous in LHC jets?’ Buss et al |
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Density-based anomaly detection

Encoder sP-—1  Decoder
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— the normalised autoencoder [‘Autoencoding under normalization constraints’ - Yoon et al]

[‘A Normalized Autoencoder for LHC triggers’ - Dillon et al]
[See Luigi Favaro’s talk today: A Normalized Autoencoder for LHC triggers]

— density estimation with an AutoEncoder architecture

* Energy-based model
« Overcomes the complexity bias in AEs
- Better understanding of preprocessing dependence

* More robust
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Density-based anomaly detection

Encoder sP-—1  Decoder
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What about an analysis?
« Autoencoders are just tools, need to compute p-values

« Could compare to simulation, use data-driven methods, ...

« Could use the ABCD technique:
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- train two (DisCo) decorrelated AEs simultaneously on the dataset

- use cuts to determine A-B-C-D regions
- background estimation in signal-region

[‘Online-compatible Unsupervised Non-resonant Anomaly Detection’ Mikuni et al]
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Density-based anomaly detection
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The Pros Model dependence
« Can process high-dimensional data « Not invariant to transformations in the
- Complexity-bias issue is solved feature space

- Highly performant - Additional model dependence, or

... even for very small signal fractions dependence on simulation, arises at

. . . the analysis stage
« Can be run online, i.e. on trigger y J

[ see talk ‘Challenges for unsupervised anomaly detection in particle physics’ - Katherine Fraser |
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Represe ntation Iea rn i ng [‘'Symmetries, Safety, and Self-Supervision’ Dillon et al]

[‘Self-supervised anomaly-detection’ Dillon, Mastandrea, Nachman]
[‘Invariant representation driven neural classifier for anti-QCD jet tagging’ Cheng et al]

The CWolLa method and density estimation both have issues with choosing the best
set of observables.

Solutions?
- Manual choice of observables / representations

 Self-supervised (data-derived) representation
— contrastive learning
— Iinvariant to symmetries

— Incorporate kinematics & particle IDs

« Still a new idea, more results to comel

Talks:

Symmetries, Safety, and Self-Supervision - Peter Sorrenson
Topological Data Analysis for Collider Events - Tianji Cai
Robust anomaly detection using NuRD - Abhijith Gandrakota
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Public challenges & benchmark datasets

Jets

Top-tagging

[Kasieczka, Plehn et al (1902.09914)]

Semi-visible jets
[Buss et al (2202.00686)]

Signal Signal Background
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LHC Olympics
[Kasieczka, Nachman, Shih et al (2101.08320)]

CMS trigger challenge
[Govorkova et al (2107.02157)]

Dark Machines challenge
[Ostdiek et al (2105.14027)]

H 'u [ 5
Number
of events

40,000,000 100,000
events/sec events/sec

L1 trigger

Signal Region

anomaly score

Barry Dillon — Universitat Heidelberg — Introduction to anomaly detection



Outlook

« Anomaly detection is complicated
« Each technique and each physics scenario is very different

« But, some very interesting new ideas being developed:

- ever more performant implementations of the CWolLa bump hunt

- new applications of the CWolLa idea

- better AutoEncoding tools

- bette techniques for choosing representations for anomaly detection

« Experimental anomaly detection analyses

- CMS trigger challenge [Govorkova et al (2107.02157)]
- ATLAS weakly supervised di-jet search [ATLAS Collaboration (2005.02983)]

- more | am not aware of...? See next talk by Julia Gonski!
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