NEUTRINO PHYSICS WITH DEEP LEARNING

A Summary of Applications, Successes, and Lessons.
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Takeaways

use ML In a an increasingly
environments where
systematic uncertainties will soon dominate.

CNNs and Graph Nets for ID and reconstruction are

A common, and new fast ML implementations wil
address the data challenges of next generation
experiments.

0 Neutrino experiments must solve the bias and
uncertainty problem in ML to enable precision
measurements for next-generation experiments.
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Outline

Expermental guestions In neutrino physics
Neutrino signals & Neutrino detectors
Common applications & current trends

Addressing v experiment challenges & ML challenges
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1 he Standard Model of

-NYSICS

The evidence 1or non-zero masses of Neutrinos IS
evidence of physics beyond the Standard Model.
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Jblguitous & elusive

neutrinos

‘ o B Vany orders of magnitude
| | Bl smaller than all other
sl ol sl o L vl B clementary particles.

Neutrinos are
oroduced In the
sun, supernovae
and cosmic rays.

mall cross sections
(they rarely interact).
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Depends... are vs
Majorana particles?

ANTIMAT TER
WHERE 1S 1T?

| ... and do they violate
- | Charge-Parity symmetry?
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Do they violate Charge-Parity symmetry?

What is the complete picture of oscillations?

Are there more neutrinos beyond 3 flavors?

What is the ordering of the neutrino masses?

Are neutrinos Dirac or Majorana?
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Some collider context

P Yep, not even a
magnetic field.

https://twiki.cern.ch/twiki/bin/view/CMSPublic/SketchUpCMS
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Neutrino detectors
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Often homogenous active
material.
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Neutrino events

Overall very small cross-
section INteractions

Wide range of energies,
sometmes studied In the
same detector,
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NOvVA Raw detector data
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Physics applications & impact

L& Fernanda Psihas Machine Learning for Neutrino Experiments



Event-by-event tagging of the nature e
210Po decay a is essential R e S
to the CNO detection.

L
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This is enabled by a Multi-layer perceptron. The %ﬂ{%‘ﬂysﬁ s

MLP exploits the scintillation time-decay G
differences from alpha and beta-like events. =

Experimental evidence of neutrinos produced in the
CNO fusion cycle in the Sun

The Borexino Collaboration

Nature 587, 577-582 (2020) | Cite this article

GENPER -\ ontion of BDT improves their

"4 K multi-site tagging of e CCve-
ike events, from 34.4% to
46.7% in efficiency.

(ICRC2021) Atmospheric oscillations with Super-Kamiokande
and prospects for SuperK-Gd - https://pos.sissa.it/395/008

https://arxiv.org/abs/1109.3262
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\»/ﬁl ‘ % [\ R E Background rejection in NEXT using deep neural networks
NEXT Collaboration: J. Renner, A. Farbin, J. Mufioz Vidal, J.M. Benlloch-Rodriguez, A. Botas, P. Ferrario, J.J.
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Convolutional Neural Networks Applied to Neutrino Events in a Liquid 0
Argon Time Projection Chamber

MicroBooNE collaboration: R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass, -20

MicroBooNE Simulation
36.7 cm -40

Gamma: 0.696 26.6 cm

Electron: 0.527

— | 2 o NEUTRING
OSCILLATIONS

MicroBooNE Simulation Muon: 0.903 s
Pion: 0.983

19.2 cm

Proton: 0.922 1

(vview ) ‘, ™ # convLayers | Kernel Sizes ({h}xw) | Accuracy

A e | Three {6,6,3} x 3 93.58%
B L et Rl | S Four 18.8.7.6) x3 | 94.09%
Five {8,7,7,3,3} x 3 93.55%

<« 2.14m ——
A2

MINERVA uses a CNN to localize the
vertex/interaction point.

Target 5
Targets | | , : 3 , ; .
N EUTR ‘ N Q watarrrget L TG , _ Varying network parameters
Target3 | ] { 7 they accomplish 94% accuracy
‘ NTE R AG—HQN S Targetz L\, ' for vertex location in the target
Target 1 He Target VIX Mod

material.
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https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1609.06202
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nBooX®_ CNN’s For NEUTRINO EVENTS

MicroBooNE is exploring CNN

MicroBooNE Simulation

implementations on LAr-TPC for: — so7em

b o
o | Electron: 0.527 a
= I

* Neutrino interaction detection 85%
efficiency

* Multi-particle classification 83% efficiency
for electrons and 95% efficiency for muon

MicroBooNE Simulation MicroBooNE Simulation

Explored challenges GPU
performance vs downsampling
effects for large LAr-TPCs

Convolutional Neural Networks Applied to Neutrino Events in a Liquid

MicroBooNE | | NPT TP , Argon Time Projection Chamber
‘ S1.1 cm 1
Simulation + Data Overlay ‘ \ MicroBooNE collaboration: R. Acciarri, C. Adams, R. An, J. Asaadi, M. Auger, L. Bagby, B. Baller, G. Barr, M. Bass,



https://arxiv.org/abs/1611.05531

—egression for Vertex Hnding

MINERVA uses a CNN with 3 prongs in order to combine
information from the X V & U views of the event.
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dropoutX dropoutU dropoutV
Target 2

Target 1 VX Module U/X Module <

He Target

dropoutFC1

Varying network parameters they

fc2 (11) # convLayers | Kernel Sizes ({h}xw) | Accuracy
accomplish 94% accuracy for vertex Three {6.6.3} x 3 93.58%

classification . . . . Four {8, 8,7, 6} X 3 94.09 %
location in the Z direction. Five (8.7.7.3.3 <3 | 93.55%
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Incorporating Detector Geometry

Graph Neural Networks infer the directional correlations from
features and relative positioning of elements in the training data,
which is usetul for clustering populations.

Original Pooled network Pooled network Pooled network Graph
network at level 1 at level 2 at level 3 classification

¥ o,
00—
710/

56055

Spherical CNNs use projections of 2D arrays
onto a spherical plane. Good example of
potential for adapting CNINs to detector R
geometry. e

https://arxiv.org/abs/1801.10130
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NOVA uses Convolutional
® Neural Networks to extract

NO~A- fegtures and classify events.

CNNs increased effective exposure
0y 50% compared to traditional |D
methods.

Training on neutrino beam and anti-

A convolutional neural network neutrino event classifier

A. Aurisano’, A. Radovic?, D. Rocco?, A. Himmel?®, M.D. Messier®, E. Niner?, G. Pawloski?,

F. Psihas®, A. Sousa' and P. Vahle?

Published 1 September 2016 « © 2016 IOP Publishing Ltd and Sissa Medialab srl

Journal of Instrumentation, Volume 11, September 2016

neutrino beam simulations separately

further increased thelr efficiency for
anti-ve signal by 14%

v Efficiency Improvement
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Measurement of Neutrino Oscillations and Improvements from Deep
Learning. Fernanda Psihas https://inspirehep.net/literature/1672901


https://arxiv.org/abs/1604.01444

IceCube Graph Nets

3X Improvement in signal-to-
noise ratio.

1.0

0.8

0.6

6.3X more signal events than
traditional physics-based
methods.
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Graph Neural Networks for IceCube Signal Classification

Nicholas Choma, Federico Monti, Lisa Gerhardt, Tomasz Palczewski, Zahra Ronaghi,
Prabhat, Wahid Bhimji, Michael M. Bronstein, Spencer R. Klein, Joan Bruna

ICECUBE

SOUTH POLE NEUTRIND OBSERVATORY
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1e—3 Sensitivity (Simplified Analysis)

252
Graph NNs are natural for clustering =
PMT signals. GNN based reco. Yields 2
20% + resolution in energy & zenith. E
Expected sensitivity equivalent to :
25% more statistics. B
GNNs Neutrino Event Reconstruction. Neutrino 2022 poster. - Zi,?q(i”)z B 3:2236_3 oV IceCube Simulation
Rasmus Orsge. https://indico.kps.or.kr/event/30/contributions/785/ 2.38
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sin?(623)

-»  T2Kis also using GNNs for removing cross-
talk & ghost hits from tracks in preparation for

y  The SuperFGD near detector for

[ = Improvements with respect to charge cuts.

S s \,;‘;“ GNN Charge Cut
e - s Track Other Track Other
o o @ rack Efficiency 94% 96% |Efficiency 93% 80%
X - 5 /. @ crosstalk Purity 96% 95% |Purity 80% 91%
: d e O ghost

ls)l O
(a) Prediction: voxels are colored based on the GNN predictions.

Graph neural network for 3D classification of ambiguities and optical crosstalk in scintillator-

based neutrino detectors Sa'ul Alonso-Monsalve, et.al. https://arxiv.org/pdf/2009.00688.pdf THIS SLIDE: NOT YET IMPLEMENTED
FOR OSCILLATIONS


https://indico.kps.or.kr/event/30/contributions/785/

ML for neutrino experiments

—econstruction

Sackground rejection/
classification

Data quality selections
Data-size reduction

Machine learning in the search for new fundamental
physics

Nature Reviews Physics 4, 399-412 (2022) | Cite this article
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Challenges of
applying ML

Model Dependence Network Interpretability

Bias and Uncertainties Computational Constrains

World Scientific
Connecting Great Minds
International Journal of Modern Physics A | Vol. 35, No. 33, 2043005 (2020) | Special Issue: “Learning t...

A review on machine learning for neutrino experiments

Fernanda Psihas =, Micah Groh, Christopher Tunnell and Karl Warburton

https://doi.org/10.1142/S0217751X20430058



https://inspirehep.net/literature/1810029

Model Dependence & Uncertainty

The composition of the
training samples largely
Impacts network performance.

Are our algorithms reproducing
the model-based distributions

(A) Cow: 0.99, Pasture: (B) No Person: 0.99, Water: we train with”?
0.99, Grass: 0.99, No Person: 0.98, Beach: 0.97, Outdoors:
0.98, Mammal: 0.98 0.97, Seashore: 0.97

https://arxiv.org/pdf/1807.04975.pdf Recognition in Terra Incognita, October 2018.
Conference: 15th European Conference on Computer Vision (ECCV 2018)
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Domain Adversarial Networks

A tool for bias reduction
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Reducing model bias in a deep learning classifier using domain adversarial neural networks
in the MINERVA experiment. G. Perdue, et.al. https://doi.org/10.48550/arXiv.1808.0833



https://doi.org/10.48550/arXiv.1808.08332

Maintaining sensitivity to new physics
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Maintaining sensitivity to new physics

This is a real fish!
Training can enhance or
suppress sensitivity to the
unexpected!
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Human-labeled Machine-labeled

I I
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HIP ' HIP
— MP —— MIP
Shower 1 Shower

Sparcity

' N et e
10 cm = 10 cm ! - 10 cm ., ' -
MicroBooNE Simulation ].lBOONP MicroBooNE Simulation ].lBOOND MicroBooNE Simulation ].lBOO_N?
0

(a)
(b)

Test Intrinsic v. Full-BNB _ e _
Semantic segmentation with a sparse convolutional neural network

Track 0.992 0.992 0.998 for event reconstruction in MicroBooNE
Shower O 996 0 859 O 823 P. Abratenko et al. (The MicroBooNE Collaboration)

Phys. Rev. D 103, 052012 — Published 26 March 2021

Constraining only pixels which were non-zero in
the input layer to be activated in hidden layers

Sparse convolutions cut inference time from

~ 5 s 1o = 0.5 s as well as the memory usage
from=5GBto=1GB
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Fast ML

The raw data rate expected for
each DUNE module is 1.175 TB/s

Live data-processing can enable
physics analyses for multiple
signals across a large energy
range.

input: | [(None, 64, 64, 1)]
output: | [(None, 64, 64, 1)]

conv2d_input: InputLayer | float32

input: (None, 64, 64, 1)

conv2d: Conv2D | float32
output: | (None, 64, 64, 32)

input: | (None, 64, 64, 32)

max_pooling2d: MaxPooling2D | float32
- output: | (None, 32, 32, 32)

input: | (None, 32, 32, 32)

dropout: Dropout | float32
output: | (None, 32, 32, 32)

input: | (None, 32, 32, 32)

flatten: Flatten | float32
output: (None, 32768)

input: | (None, 32768)

dense: Dense | float32
output: (None, 8)

input: | (None, 8)

dense_1: Dense | float32
- output: | (None, 3)

arxiv:2201.05638
NB 1000
0
480 800
0 1122 2244 3366 4488
600
3 200 _ e _
480
1122 2244 3366 4488 400
HE (nnbar)
0 200
480 -
0 1122 2244 3366 4488 0
time-tick

Simple CNNs for pre-processing yield
target signal selection efficiencies that
meet the DUNE FD physics requirements,

while also providing the needed 104
factor of overall data rate reduction
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Addressing ML challenges to neutrino experiments

... from the research

Bias
Find bias AND reduce bias AND quantify bias

There is NO “unbiased” training sample! (Bias to flat is stil bias)

SRS

Model Dependence
| There is no "'model independent” sample! (Non-physical models are still models)
Propagate uncertainties through both model training AND model usage

Design algorithms that minimize across known systematic uncertainties.

G @

Sensitivity to new physics
Unsupervised learning to identify missing physics & unexpected learned features
Design tools for interpretability: test extracted features, principal component, etc.

Robust training
Compare algorithm performance in real data.
Design labeled-data training sets (test beams, known sources, etc.)

Design further tests of Data-MC robustness.
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Addressing ML challenges to neutrino experiments

... from the community

ML Is part of the particle physics toolkit. With increasing complexity,
iIncreasing scrutiny is required. Teach the use and interpretation of
ML as an essential skill of particle physics research.

Develop techniques for robustness metrics and systematic bias
assessment that can become the standard for machine learning
applications in particle physics.

Contribute to Al research by developing solutions to the bias and
uncertainty guestions of the industry broadly.
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Particle Physics is Uniquely Applicable to A.l.

DETECTOR DATA &8

S information-dense & un-labeled
Many times includes space correlations/topology.

SIMULATIONS

Produced at large-scale and reproducible
from physics principles.
Tunable to better/worse match real data.

MEASUREMENTS

Analyses that produce high precision measurements
~ocus on uncertainty quantification and bias
assessments.
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Conclusions

Machine learning techniques have and will continue 1o
'g' Improve our experimental sensitivities in neutrino physics.

Developing expertise as a community will enable us to
introduced by Increasing algorithm

complexity

Particle physics experiments are uniguely equipped to
for

next-gen oscillation experiments and the broader
community.
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