Symmetries, Safety, and Self-Supervision

Peter Sorrenson

November 1, 2022

Heidelberg Colaboratory for Image Processing University of Heidelberg

ML4Jets 2022

Symmetries, Safety, and Self-Supervision, hep-ph/2108.04253

Barry M. Dillon, Gregor Kasieczka, Hans Olischlager, Tilman Plehn, Peter Sorrenson, and Lorenz Vogel

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

1. Jet physics & ML

2. Self-supervision

3. Results

4. Conclusion

Top-tagging with machine-learning

Neural network maps kinematical data to a predicted label (supervised)

- simulations provide training data $\{\vec{x}_i\}$ and truth-labels $\{y_i'\}$
- neural network is optimised to minimise a loss function

$$\mathcal{L}_{i} = y'_{i} \log(y_{i}) + (1 - y'_{i}) \log(1 - y_{i})$$

- loss function is minimised when QCD and top jets are well-separated in y
- · predicted label is a new observable used to tag top-jets

Learning physical quantities

Neural networks ⇒ inductive bias

i.e. implicit assumptions made by the network on mapping $input \rightarrow output$

- \rightarrow neural nets are not invariant to physical symmetries in data
- ightarrow we typically try to solve this through 'pre-processing'

Learning physical quantities

Neural networks ⇒ inductive bias

i.e. implicit assumptions made by the network on mapping $input \rightarrow output$

- ightarrow neural nets are not invariant to physical symmetries in data
- ightarrow we typically try to solve this through 'pre-processing'

Our goal: control the training to ensure we learn physical quantities

- → rotational & translation invariant, permutation invariant, IRC safe
- → deep neural networks can never be completely interpretable
 - ... but we can place limits on what they can learn

Optimising observables / representations

How?

Reframe the definition of our observables as an optimisation problem to be solved with machine-learning

What do we fundamentally want from observables?

- 1. invariance to certain transformations / augmentations of the jets
- 2. discriminative within the space of jets

Optimising observables / representations

How?

Reframe the definition of our observables as an optimisation problem to be solved with machine-learning

What do we fundamentally want from observables?

- 1. invariance to certain transformations / augmentations of the jets
- 2. discriminative within the space of jets
- \star Contrastive-learning \to JetCLR (SimCLR, Google Brain, Hinton et al) map raw jet data to a new representation / observables

Optimising observables / representations

How?

Reframe the definition of our observables as an optimisation problem to be solved with machine-learning

What do we fundamentally want from observables?

- 1. invariance to certain transformations / augmentations of the jets
- 2. discriminative within the space of jets
- ★ Contrastive-learning → JetCLR (SimcLR, Google Brain, Hinton et al)
 map raw jet data to a new representation / observables
- * Self-supervision

neural networks are optimised using pseudo-labels, not truth labels

- \rightarrow independent of signal-types
- \rightarrow can run directly on expt. data

1. Jet physics & ML

2. Self-supervision

3. Results

4. Conclusion

hep-ph/2108.04253, 'Symmetries, Safety, and Self-Supervision' B. M. Dillon, G. Kasieczka, H. Olischlager, T. Plehn, P. Sorrenson, and L. Vogel

Dataset: mixture of top-jets and QCD-jets

From the dataset of jets $\{x_i\}$ define:

- positive-pairs: {(x_i, x'_i)} where x'_i is an augmented version of x_i related by augmentation
- negative-pairs: $\{(x_i, x_j)\} \cup \{(x_i, x_j')\}$ for $i \neq j$ not related by augmentation

Augmentation: any transformation (e.g. rotation) of the original jet

positive and negative pairs = pseudo-labels

Train a network to map raw data to a new representation space, $f: \mathcal{J} \to \mathcal{R}$ $\to \dim(\mathcal{R})=$ 1000

Optimise for:

- 1. alignment: positive-pairs close together in $\mathcal{R} \Rightarrow \text{invariance}$
- 2. uniformity: negative-pairs far apart in $\mathcal{R}\Rightarrow$ discriminative

Optimise for:

- 1. alignment: positive-pairs close together in $\mathcal{R} \Rightarrow \text{invariance}$
- 2. uniformity: negative-pairs far apart in $\mathcal{R} \Rightarrow$ discriminative

Contrastive loss:

$$\mathcal{L}_i = -\log \frac{\exp(s(z_i, z_i')/\tau)}{\sum_{x \in batch} \mathbb{I}_{i \neq j} \left[\exp(s(z_i, z_j')/\tau) + \exp(s(z_i, z_j')/\tau) \right]}$$

Similarity measure in R:

$$s(z_i, z_j) = \frac{z_i \cdot z_j}{|z_i||z_j|}, \quad z_i = f(x_i)$$

⇒ defined on unit-hypersphere

JetCLR → code at https://github.com/bmdillon/JetCLR

The training procedure:

- 1. sample batch of jets, x_i
- 2. create an augmented batch of jets, x_i'
- 3. forward-pass both through the network
- 4. compute the loss & update weights

The training procedure:

- 1. sample batch of jets, x_i
- 2. create an augmented batch of jets, x_i'
- 3. forward-pass both through the network
- 4. compute the loss & update weights

rotations

Angles sampled from $[0, 2\pi]$

translations

Translation distance sampled randomly

The training procedure:

- 1. sample batch of jets, x_i
- 2. create an augmented batch of jets, x_i'
- 3. forward-pass both through the network
- 4. compute the loss & update weights

collinear splittings

some constituents randomly split,

$$p_{T,a} + p_{T,b} = p_T, \quad \eta_a = \eta_b = \eta$$

$$\phi_a = \phi_b = \phi$$

low p_T smearing

 (η, ϕ) co-ordinates are re-sampled:

$$\begin{split} & \eta' \sim \mathcal{N} \left(\eta, \frac{\Lambda_{soft}}{p_T} \right) \\ & \phi' \sim \mathcal{N} \left(\phi, \frac{\Lambda_{soft}}{p_T} \right). \end{split}$$

The training procedure:

- 1. sample batch of jets, x_i
- 2. create an augmented batch of jets, x_i'
- 3. forward-pass both through the network
- 4. compute the loss & update weights

permutation invariance

Transformer-encoder network

- based on 'self-attention' mechanism
- output invariant to constituent ordering

more info, in additional slides

Quality measure of observables

Many representations used in practice:

- raw constituent data $(dim \sim 300)$
- jet images (dim \sim 1600)
- Energy Flow Polynomials (dim ~ 1000) (Thaler et al: arXiv:1712.07124)

Quality measure of observables

Many representations used in practice:

- raw constituent data $(dim \sim 300)$
- jet images (dim ~ 1600)
- Energy Flow Polynomials (dim ~ 1000) (Thaler et al: arXiv:1712.07124)

Compare these using a Linear Classifier Test (LCT)

- * use top-tagging as a test
- * linear cut in the observable space
- * supervised uses simulations
- * measures:
 - $\epsilon_{\rm S}$ true positive rate
 - ϵ_{h} false positive rate

1. Jet physics & ML

2. Self-supervision

3. Results

4. Conclusion

Linear classifier test results

Linear classifier test results

Where does the performance come from?

Augmentation	$\epsilon_b^{-1}(\epsilon_s = 0.5)$	AUC
none	15	0.905
translations	19	0.916
rotations	21	0.930
soft+collinear	89	0.970
all combined (default)	181	0.980

- soft + collinear has the biggest effect
 translations + rotations also significant in final combination
- * also not very sensitive to S/B

Invariances in representation space

without rotational invariance

with rotational invariance

- \star $s(z,z') = \frac{z \cdot z'}{|z||z'|}$, $z = f(\vec{x})$, $z' = f(R(\theta)\vec{x})$
- \Rightarrow The network $f(\vec{x})$ is approx rotationally invariant

1. Jet physics & ML

2. Self-supervision

3. Results

4. Conclusion

Conclusion

Self-supervision allows for:

- 1. data-driven definition of observables
- 2. invariance to pre-defined symmetries/augmentations
- 3. high discriminative power

An example: JetCLR (contrastive learning of jet observables)

The network

We use a transformer-encoder network \rightarrow permutation invariance

Equivariance \rightarrow invariance is similar to Deep-Sets/Energy-Flow-Networks: arXiv:1810.05165, P. T. Komiske, E. M. Metodiev, J. Thaler

The attention mechanism captures correlations between constituents by allowing each constituent to assign attention weights to every other constituent.

