Identification of hadronic tau decays using a deep neural network with the CMS experiment at LHC

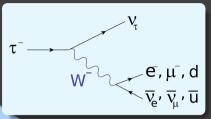
ML4Jets2022 3 Nov 2022

Mykyta Shchedrolosiev¹ on behalf of the CMS Collaboration ¹ Deutsches Elektronen-Synchrotron

Hadronically decaying au at CMS

CMS Experiment at the LHC, CERN Data recorded: 2018-Jul-17 03:21:01.157638 GMT Run / Event/ LS: 319756 / 2934016220 / 1850

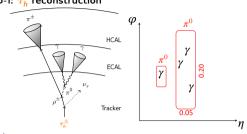
Decay mode	Resonance	B (%)			
Leptonic decays		35.2			
$\tau^- ightarrow { m e}^- \overline{ u}_{ m e} \overline{ u}_{ au}$			17.8		
$\tau^- \rightarrow \mu^- \overline{\nu}_{\mu} \nu_{\tau}$			17.4		
Hadronic decays		64.8			
$\tau^- \rightarrow h^- \nu_{\tau}$			11.5		
$\tau^- \rightarrow h^- \pi^0 \nu_\tau$	$\rho(770)$		25.9		
$\tau^- \rightarrow h^- \pi^0 \pi^0 \nu_\tau$	a ₁ (1260)		9.5		
$\tau^- \rightarrow h^- h^+ h^- \nu_\tau$	a ₁ (1260)		9.8		
$\tau^- \rightarrow h^- h^+ h^- \pi^0 \nu_\tau$	1. ,		4.8	-	
Other			3.3		. ~
,			ţ		



Tau lepton (1.78GeV)

- Heavy enough to decay hadronically (\(\tau_h\))
- > Decays into hadrons + neutrino in ${\sim}64.8\%$ of the cases
- Improvement of performance in reconstruction and identification of the hadronic tau decays important for many SM and BSM analyses

Hadronic au reconstruction and identification

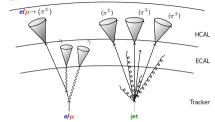


Step-1: τ_h reconstruction

*plot link

- > Stable particles are reconstructed using the **particle flow** (**PF**) algorithm
- > τ_h reconstruction is **seeded by anti-** k_t jets of PF candidates with distance parameter of 0.4 (AK4)
- > τ_h is reconstructed using combinatoric hadron-plus-strip (HPS) algorithm:
 - > π^0 is reconstructed using dynamic η, ϕ window in ECAL (strip)
 - > Require one or three π^{\pm} with high quality track $p_T > 0.5 {\rm GeV}$ originating from PV $d_{\rm xy} < 0.1 {\rm cm}$
 - Mass constraints are put in correspondence to DM resonances and tuning

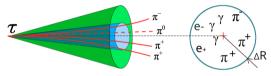
Step-2: τ_h identification



- > Signature of jets originating from quarks/gluons (τ_j), electrons (τ_e) and muons (τ_μ) can fake genuine hadronic tau decays (τ_h) \rightarrow classification task
- > Each background process can have specific that differs it from $\tau_b \rightarrow$ high-dimensional problem
 - > jets can have more hadronic activity, which can be detected in the isolation cone
 - > electrons can have specific patters in the calorimeter clusters
 - > muons can have substantial amount of matched hits in the muon chambers

Input Data

- > The MVA discriminators ^{*a*} used previously were built on higher-level input variables (for τ_j and τ_e) and cutoff-based criteria (τ_{μ}).
- Exploit lower-level information, can lead to improved performance
- > Simultaneous classification \rightarrow reduce maintenance efforts



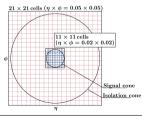
- > Information about all reconstructed particles near the τ_h candidate is directly used as input to the algorithm
- Multiple sub-detectors within CMS is exploited, including the inner tracker, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters, and the muon chambers

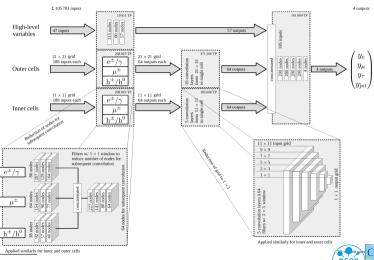
- > Training data consists of \approx 140 million τ_h , τ_j , τ_e , τ_μ which are sampled from the 2017 MC datasets:
 - > Drell-Yan
 - > tī
 - > W+jets
 - > Z', m(Z') ranging from 1 to 5 TeV
 - > QCD multijet
- > Training data are preprocessed and mixed in order to ensure:
 - Homogeneity of the final dataset any sufficiently large consecutive interval are statistically compatible. Probability (p_T, η, τ-type) - should always be the same. Initial tuples dozens TB → can not load in RAM
 - > Balanced contribution / uniformity across different tau candidate types $(\tau_h, \tau_e, \tau_\mu, \tau_j)$ as well as p_T and η , and physical process. (Datasets are overpopulated with low pt taus \rightarrow reweighting with large weights induces numerical instability)

^aJINST 13 (2018) P10005

DeepTau architecture

- > **DeepTau**¹ **convolutional deep NN** with O(1.1M) trainable parameters
- > High-level \u03c4 and event properties (47 variables) are combined with low-level PFCandidates, fully reconstructed electron and fully reconstructed muon information
- Every candidate is put on the (η, φ) grid. Grid is divided on 3 blocks:
 - > Hadrons block 34 variables
 - > muon block 60 variables
 - > e-gamma block 82 variables
- Signal cone: dR < 0.1 (11×11) Isolation cone: dR < 0.5 (21×21)</p>
- Object occupancy in the tensor (1.7% for inner, 7.1% for outer)





¹JINST 17 (2022) P07023

Training

Custom loss function is taken to focus on 50-80% signal efficiency regime and focus more on τ_h vs. other when τ_h probability is low:

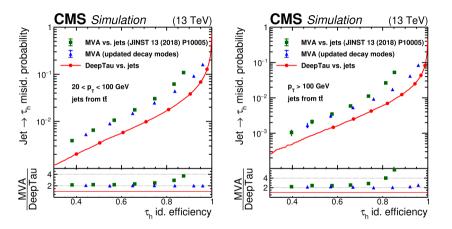
 $L(y^{\text{true}}, y^{\text{pred}}) = \kappa_{\tau} H_{\tau}(\underline{y}^{\text{true}}, \underline{y}^{\text{pred}}; \boldsymbol{\omega})$ (a) categorical CE + $(\kappa_e + \kappa_\mu + \kappa_{jet})\overline{F}_{cmb}(1 - y_\tau^{true}, 1 - y_\tau^{pred})$ (b) normalized binary focal loss $+\kappa_{F} = \sum_{i} \kappa_{i} \hat{\Theta}(y_{\tau}^{\text{pred}} - 0.1) \overline{F}_{i}(y_{i}^{\text{true}}, y_{i}^{\text{pred}}; \gamma_{i}).$ $i \in \{e, \mu, jet\}$ (c) step $\epsilon_{\tau} > 0.1 \otimes$ normalized binary focal loss (a) : Distinguish between τ_b , e, μ , jet (b) : Focused separation e , μ , jet from τ_h , e (c) : Focused separation of τ_h from e , μ , jet for $y_{\tau_h} > 0.1$

> The final discriminator is calculates as:

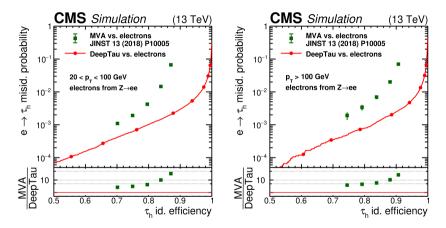
$$D^{lpha}_{ au}(p) = rac{p_{ au}}{p_{ au} + p_{lpha}}$$

where $\alpha = e, \mu, jet$

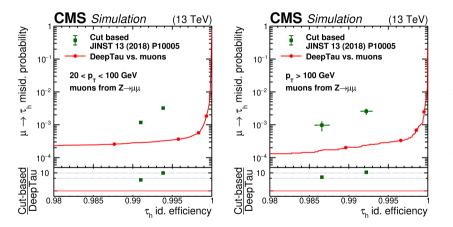
- > The loss function is minimised using NAdam algorithm
- The training is run for 10 epochs on GeForce RTX 2080 (3 days/epoch)
- > The best performance on the validation set is achieved after 7 epochs



- Dots indicate working points of the tagger
- > τ_h efficiency is computed with $H \rightarrow \tau \tau$ sample
- > $\tau_{\rm jet}$ misID probability with $t\bar{t}$ sample
- Jet misID rate is reduced by a factor of 2-4 for low-pt and 2-6 for high-pt.

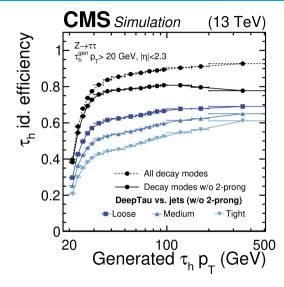


- Dots indicate working points of the tagger
- > τ_h efficiency is computed with $H \rightarrow \tau \tau$ sample
- > τ_e misID probability with $Z \rightarrow ee$ sample
- > Electron misID rate is reduced by factor of \sim 8-11 for low and higt-pt region.

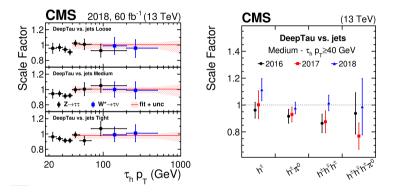


- Dots indicate working points of the tagger
- > τ_h efficiency is computed with $H \rightarrow \tau \tau$ sample
- > τ_{μ} misID probability with $Z
 ightarrow \mu \mu$ sample
- Muon misID rate is reduced by factor of ~ 9-10 for low and higt-pt region.

Performance (against jets) over different p_T regions

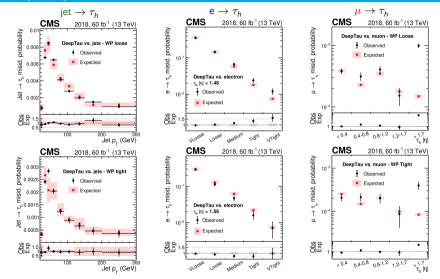


- > The identification efficiency exceeds 80% for p_T >30 GeV and is close to 90% for p_T >100 GeV
- > Limited by the charged-hadron reconstruction efficiency
- > If decay modes with missing charged hadrons are excluded \rightarrow the efficiency is reduced by around 10%
- > Misidentification rate for shown working points (for $t\bar{t}$ and $H\to\tau\tau$ samples):
 - > Loose \sim 2.0%
 - ➤ Medium ~1.0%
 - > Tight \sim 0.5%

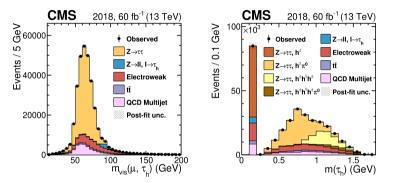


> The scale factors are generally a bit smaller than one but consistent with unity within 10%

DeepTau performance for fake taus



> Good modelling of fake taus in the most parts of the parameter space



Preselection on muon and tau candidates:

- > Well identified and isolated muon with p_T >25 GeV, $|\eta|$ < 2.4,|z|<0.2 cm
- > Tau candidates with p_T >20 GeV, $|\eta|$ <2.3, |z|<0.2 cm
- > $\mu \tau_h$ pair with an opposite charge and $\Delta R(\mu, \tau)$ >0.5, M_T <60GeV, $|\Delta \eta|$ <1.5
- > DeepTau IDs: Tight WP against jets, VVLoose WP against electrons, VLoose against muons
- > The distributions incorporate all measured scale factors and corrections
- Good data/MC agreement for physical observables

Conclusions

- > A new algorithm² has been introduced to discriminate hadronic tau lepton decays against jets, electrons, and muons.
- > The performance of the new τ_h identification and reconstruction algorithms significantly improves over the previously used algorithms, in particular in terms of discrimination against the background from jets and electrons
- > For a given jet rejection level, the efficiency for genuine τ_{h} candidates increases by 10-30%
- The efficiency for genuine \u03c6_h candidates to pass the discriminator against electrons increases by 14% for the loosest working point that is employed in many analyses
- > The superior performance of the algorithm is validated with collision data. The observed efficiencies for genuine τ_h , jets, and electrons to be identified as τ_h typically agree within 10% with the expected efficiencies from simulated events
- > Further improvement of the algorithm are ongoing for Run 3:
 - > DeepTau for online event selection
 - > DeepTau for boosted di-tau topology
 - > DeepTau for displaced taus
 - > Use of domain adaptation techniques to improve the modelling
 - > Alternative NN architectures (GNN, Transformers)

²JINST 17 (2022) P07023