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Particle Flow (PF)
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• Particle flow (PF) 
algorithm combines 
information from all 
subdetectors to 
reconstruct particles


• ex. track + 
electromagnetic  
cluster + hadronic 
cluster 
= charged hadron 
(π+) + photon (+ 
photon ?) 


• Improved  
energy resolution
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• Particle flow (PF) 
algorithm combines 
information from all 
subdetectors to 
reconstruct particles


• ex. track + 
electromagnetic  
cluster + 
hadronic cluster 
= neutral hadron 
(KL) + electron


• Improved 
energy resolution
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Reconstruction
• Particle flow starts from clusters & tracks (not raw hits), 

outputs particle candidates


• Could we replace this with an end-to-end ML algorithm?
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Detector hits Clusters, tracks Blocks Candidates

PFBlock linking PFAlgoClustering, 
tracking

Machine-learned particle flow

Baseline particle flow



MLPF
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• Inputs: tracks (KF & GSF), 
ECAL clusters (default & 
superclusters), HCAL 
clusters, BREM points


• Target set of particles 



• Goal: construct a mapping 
 that 

minimizes some distance 
  

Y = {yi}

𝒰(X) = Y′ � ∼ Y

∥Y − Y′ �∥
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Training
•  


• Separate terms for classification (CLS) and regression 
(REG)


• Focal loss used for classification


•  


• Huber loss used for regression


•
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HL(y, y′�) =
1
2 (y − y′ �)2, for |y − y′�| ≤ δ

δ ⋅ ( |y − y′�| − 1
2 δ), otherwise

FL(pt) = − (1 − pt)γ log(pt)

, ℒ = ∑
i∈event

L(yi, y′�i) L(yi, y′�i) ≡ CLS(ci, c′�i)+α REG(pi, p′ �i)
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Training
• Use object condensation [1] approach:


• Zero-pad target set Y such that 



• Allows loss to handle arbitrary event 
sizes


• In addition to particle classes also 
allow 0 class


• Apply threshold on 0 class to 
remove extra particles

|Y | = |X |

17[1] 2002.03605
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Input set 
X = {xi}

Target set 
Y = {yi}

https://arxiv.org/abs/2002.03605
https://arxiv.org/abs/2002.03605


Network Architecture
• Graph neural network-based architecture


• Graph construction performed in local 
neighborhoods to improve scalability → no 
N2 allocation/computations

18

nontrainable layer 
output (batch, elem, feat)

elementwise layer 
…

graph layer 
…



Network Architecture
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MLPF v1
• First version trained 

using PF as target


• Can’t exceed PF 
performance, but 
useful proof-of-
concept


• Very promising 
results (both for 
physics 
performance and 
computational 
scaling)
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MLPF v2
• How could MLPF improve on standard PF algorithm?


• Train with truth particles as target


• Additional terms in loss for physics quantities (eg. jet/MET response)
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MLPF v1 MLPF v1



Samples
• Mix of physics samples and particle gun, range of PU configurations


• Run 3 conditions, ~500k events in total
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truth

PF



Optimization
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• Multiple variations on standard loss studied


• Attempt to target jets, MET, local 
particle densities


• Baseline loss appears to still perform best 
overall



Performance
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• MLPF is able to predict truth pT and labels well

truth

truth



Performance

• MLPF is able to predict truth pT and labels well
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MLPF 
reconstructed

MLPF 
reconstructed



Performance (CH)
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• Similar distributions from PF and MLPF for charged hadrons


• Similar efficiency & fake rate, small improvements from MLPF
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• Similar distributions from PF and MLPF for charged hadrons


• Similar efficiency & fake rate, small improvements from MLPF



Performance (NH)
• Quite different distributions from PF and MLPF for neutral hadrons, 

improved efficiency from MLPF


• PF operates at high efficiency at the cost of high fake rate for low energy 
neutrals
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• Quite different distributions from PF and MLPF for neutral hadrons, 
improved efficiency from MLPF


• PF operates at high efficiency at the cost of high fake rate for low energy 
neutrals



Performance (pT)

• Slight improvement in charged and neutral particle pT 
resolution
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M = median

IQR = interquartile range (Q75%-Q25%)



Performance (Jets)

• Similar performance for jets from PF and MLPF
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uncorrected



Performance (MET)

• Some large MET tails from MLPF (observed also with MLPF v1)


• Appears to originate from many nearby inputs all from same truth particle
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uncorrected



Conclusions
• MLPF algorithm continues to show promise


• Similar or better performance to PF in many regimes


• Some ongoing investigations (eg. MET tails)


• Computationally stable scaling with number of particles


• Further developments in the pipeline
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CombinedGraph
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MLPF v1
• First version trained using PF as target


• Can’t exceed PF performance, but 
useful proof-of-concept


• Very promising results (both for 
physics performance and 
computational scaling)
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Samples
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2

with the detector, we have to define which of those we wish to reconstruct as PF particles,
and with which granularity. The simulation particles are cleaned with an algorithm, which
proceeds as follows:

1. Coalesce particle labels according to PF granularity: all charged hadrons become charged
pions, all neutral hadrons become K0 etc.

2. Particles that leave energy deposits only to the same. PFElement are not reconstructable
separately, and are thus merged, keeping the label of the highest-energy particle.

3. Electrons or muons with pT < 1 GeV are relabeled as charged or neutral hadrons, based
on the deposited track and calorimeter energy.

The resulting set of simulated particles is denoted as the MLPF ground truth. We may subse-
quently cross-check the distributions of the MLPF truth with respect to the reconstructed PF,
both on the particle as well as event level.

In cases with no pileup, e.g. single-particle gun samples, the simulations inputs can be clearly
isolated. Therefore, we can also compare both the reconstructed PF and the MLPF truth to the
generator-level inputs in gun samples.

1.1 Datasets

With the algorithm above, we generate datasets for MLPF truth validation and subsequent
model optimization. The sample statistics are reported in table 1. We use CMSSW_12_3_0_pre6
for sample generation, with the conditions tag auto:phase1_2021_realistic and the Run3
era, with

p
s = 14 TeV.

For the samples with pileup, we use a flat 55-75 Poisson PU profile with the tag
Run3_Flat55To75_PoissonOOTPU, mixed in from the dataset
/RelValMinBias_14TeV/-
CMSSW_12_2_0_pre2-122X_mcRun3_2021_realistic_v1_HighStat-v1/-
GEN-SIM.

physics process PU configuration MC events
top quark-antiquark pairs flat 55–75 100 k
QCD p̂T 2 [15, 3000]GeV flat 55-75 100 k

QCD p̂T 2 [3000, 7000]GeV flat 55–75 100 k
Z ! tt all-hadronic flat 55–75 100 k

single e flat pT 2 [1, 1000]GeV no PU 10 k
single µ log-flat pT 2 [0.1, 2000]GeV no PU 10k

single p0 flat pT 2 [0, 1000]GeV no PU 10 k
single p± flat pT 2 [0.7, 1000]GeV no PU 10 k

single t flat pT 2 [1, 1000]GeV no PU 10 k
single g flat pT 2 [1, 1000]GeV no PU 10 k

single p flat pT 2 [0.7, 1000]GeV no PU 10 k
single n flat pT 2 [0.7, 1000]GeV no PU 10 k

Table 1: MC simulation samples used for optimizing the MLPF model.

1.2 Single electron

On fig. 1, we show the kinematic distributions of generated particles and the MLPF truth for
single electron gun samples. Event level quantities for this sample are shown on fig. 2. In



Truth Validation
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MLPF truth cross-checked against generator-level info in PU0 particle gun samples
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Hypertuning
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3.3 Resolutions 27

3.3 Resolutions

The particle-level resolutions, comparing PF and MLPF to MLPF truth, are shown on figs. 30
to 32.

4 Event-level validation in CMSSW

In this section, we demonstrate the results of enabling MLPF in CMSSW reconstruction in-
stead of standard PF. The following samples which were never used in training, were used for
validation:

1. /RelValQCD_FlatPt_15_3000HS_14/
CMSSW_12_3_0_pre6-PU_123X_mcRun3_2021_realistic_v11-v1/
GEN-SIM-DIGI-RAW with 46k events

2. /RelValTTbar_14TeV/
CMSSW_12_3_0_pre6-PU_123X_mcRun3_2021_realistic_v11-v1/
GEN-SIM-DIGI-RAW with 8k events

4.1 Jets

The comparison of generated jets to PUPPI jet distributions from PF and MLPF at the MINIAOD
level is shown on fig. 33.

On fig. 34, we compare the reconstructed jets to generator-level jets in terms of the hDET/ETi
and RMS(DET/ET).

4.2 MET

The comparison of generated MET to PUPPI MET distributions from PF and MLPF at the
MINIAOD level is shown on fig. 35.

In fig. 36, we compare the reconstructed MET to generator-level MET in terms of the hDET/ETi
and RMS(DET/ET).

5 Event losses

6 Hypertuning

Table 2: Search space used for ASHA in combination with Bayesian optimization.
Hyperparameter Search space

lr log lr ⇠ U(10�4, 1 · 10�2))
lr schedule {None, cosinedecay}
batch size {24, 40}
bin size {32, 64, 128, 256}
distance dim {32, 64, 128, 256}
ffn dist hidden dim {32, 64, 128, 256}
ffn dist num layers {1, 2, 3}
num graph layers id {0, 1, 2, 3, 4}
num graph layers reg {0, 1, 2, 3, 4}
num node messages {0, 1, 2, 3}
output dim {8, 16, 32, 64, 128, 256}
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Figure 35: Reconstructed PUPPI MET distributions with PF and MLPF, compared with the
true generator-level MET distribution in QCD (left) and tt (right) samples with pileup, recon-
structed in CMSSW.

Table 3: Best hyperparameters found.
Hyperparameter Search space

lr 0.001313
lr schedule cosinedecay
batch size 24
bin size 256
distance dim 128
ffn dist hidden dim 32
ffn dist num layers 2
num graph layers id 4
num graph layers reg 4
num node messages 1
output dim 256
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Performance (Jets)

• Similar performance for jets from PF and MLPF
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Performance (MET)

• Some large MET tails from MLPF (observed also with MLPF v1)


• Appears to originate from many nearby inputs all from same truth particle
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