How can Bayesian networks be used for uncertainty quantification in particle physics?

Christina Peters

Computer & Information Sciences
University of Delaware

Physics & Astronomy Rice University

Aaron Higuera, Shixiao Liang, Venkat Roy Waheed U. Bajwa, Hagit Shatkay, Christopher D. Tunnell Data-Intensive Discovery Accelerated by Computational Techniques for Science (DIDACTS) Collaboration

3 November 2022 Rutgers University

The Need for Uncertainty Quantification

- Uncertainty is present in all experimental measurements
- Uncertainty is necessary to test hypotheses
- Efficacy of many ML algorithms for science is limited by inability to quantify uncertainty on parameters

Statistical Model Inference

 complex, high-dimensionality, high-fidelity models likelihood is intractable

 ML provides a variety of ways to estimate the likelihood with summary statistics or density estimation

Uncertainty Quantification by ML

- Provide a single locally optimal solution or
- Estimate of uncertainty, usually requires recalibration
- Uncertainty quantification techniques are not interpretable,
 not grounded in probability theory / statistics

Probabilistic Graphical Models

- relatively simple, but powerful
- physically interpretable
- based on a formalism for probabilistic reasoning
- graph-based representation to compactly represent the likelihood
- designed for inference / uncertainty quantification

Example Use Case in Particle Physics

- reconstruction
- developed for use by a dark matter direct detection experiment
 - TPC
 - arrays of PMTs on top and bottom
 - $\rho = 66.4$ cm, z = 148.5 cm

Figure credit: Liang et al. 2022

Bayes' Rule - for reconstruction

 Physical processes occurring within a detector, such as the interaction position, are inferred from sensor observables

- We know (from simulations) P(detected by sensors | event location)
- We want to know P(event location | detected by sensors)

$$P(\text{event location} | \text{detected by sensors}) = \frac{P(\text{detected by sensors} | \text{event location}) P(\text{event location})}{P(\text{detected by sensors})}$$

Nodes - representation of the variables

Range = { measured intensities }

Range = $\{0, ..., Number of Pixels\}$

Graphical Model - syntax

Node – a random variable (discrete or continuous)

Edge – indicates dependencies between nodes

Graphical Model - syntax

Node – a random variable (discrete or continuous)

Edge – indicates dependencies between nodes

Directed edges, indicated with arrows, can be used to indicate believed causality.

Definition

A Bayesian Network is a probabilistic graphical model that has:

- only directed edges
- no cycles
 i.e. arrows can not be followed in a closed loop

A directed acyclic graph (DAG).

known as a Naive Bayes Classifier

known as a Naive Bayes Classifier

known as a Naive Bayes Classifier

#2

Conditional Independence

 The values of Sensor #0 and Sensor #1 are not independent.

• Structure implies they are conditionally independent given location.

#0

known as a Naive Bayes Classifier

Less Simple Graph Structure

Inference

Evidence Variables:

Query Variables:

Non-Evidence & Non-Query Variables: none

$$P([L], [E] | \#0 = \#0], \#1 = \#1], ...$$

$$= P([L], [E]) P(\#0 = \#0], [L], [E]) P(\#1 = \#1], [L], [E]) ...$$

Inference

Evidence Variables:

Query Variables:

Non-Evidence & Non-Query Variables:

e.g. sensor #2 is broken

$$P(\text{L},\text{E}|\text{\#0}=\text{\#0},\text{\#1}=\text{\#1},\text{\#3}=\text{\#3},\dots)=P(\text{L},\text{E})$$

$$\sum P(\text{\#0}=\text{\#0},\text{\#2},\text{L},\text{E}) P(\text{\#1}=\text{\#1},\text{\#2},\text{L},\text{E})\dots$$

Inferred Location

Sensor Measurements

Inferred Location - no interaction 90°

Sensor Measurements

, E #0 , #1 , #2 , #250 , #251 , #252)

Towards a More Complex Graph Structure

Zoë Bilodeau IRIS-HEP Fellow

Towards a More Complex Graph Structure

Possible Values of #4 Possible Values of #6

23

When is this framework most applicable?

- uncertainty quantification and interpretability is paramount
- wish to constrain the model based on knowledge of the system
- set of variables is (relatively) small

Summary

- Bayesian Networks are a
 - type of probabilistic graphical model
 - graph-based representation of the joint probability distribution as the basis for compactly encoding a high-dimensional distribution
 - simple, interpretable model that is designed for uncertainty quantification
 - Probabilistic Graphical Models: Principles and Techniques. Daphne Koller and Nir Friedman (2009).
- Bayesian network framework applicable to problems in particle physics
 - as demonstrated by an example with reconstruction of particle interactions in the context of dark matter direct-detection experiments
 - Graphical Models are All You Need: Per-interaction reconstruction uncertainties in a dark matter detection experiment. Christina Peters et al. (2022). NeurIPS Machine Learning and the Physical Sciences Workshop.
 - arXiv 2205.10305

Inferred Number of Electrons

Sensor Measurements

Inferred Number of Electrons - no interaction

