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• Uncertainty is present in all experimental measurements


• Uncertainty is necessary to test hypotheses


• Efficacy of many ML algorithms for science is limited by inability to 
quantify uncertainty on parameters

The Need for Uncertainty Quantification



• complex, high-dimensionality, high-fidelity models 


likelihood is intractable


• ML provides a variety of ways to estimate the likelihood


with summary statistics or density estimation

Statistical Model Inference

The frontier of simulation-based inference Cranmer et al. 2020



• Provide a single locally optimal solution


or


• Estimate of uncertainty, usually requires recalibration


• Uncertainty quantification techniques are not interpretable,


  not grounded in probability theory / statistics

Uncertainty Quantification by ML

Interpretable Uncertainty Quantification in AI for HEP Chen et al. 2022



• relatively simple, but powerful


• physically interpretable


• based on a formalism for probabilistic reasoning 


• graph-based representation to compactly represent the likelihood


• designed for inference / uncertainty quantification

Probabilistic Graphical Models

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference Pearl 1988



• reconstruction


• developed for use by a dark 
matter direct detection 
experiment


• TPC


• arrays of PMTs on top and 
bottom


• ρ = 66.4 cm, z = 148.5 cm

Example Use Case in Particle Physics
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Figure credit: Liang et al. 2022



• Physical processes occurring within a detector, such as the 
interaction position, are inferred from sensor observables


• We know (from simulations)  ￼ 

• We want to know                  ￼ 


P(detected by sensors |event location)
P(event location |detected by sensors)

Bayes’ Rule - for reconstruction

P(event location |detected by sensors) =
P(detected by sensors |event location) P(event location)

P(detected by sensors)



Nodes - representation of the variables

Range = { 0, … , Number of Pixels}

L#1#0 #2 #252#250 #251…

Range = { measured intensities }
￼8



Graphical Model - syntax

Node – a random variable (discrete or continuous)

Edge – indicates dependencies between nodes

L #0

￼9



Graphical Model - syntax

Node – a random variable (discrete or continuous)

Edge – indicates dependencies between nodes

Directed edges, indicated with arrows, can 
be used to indicate believed causality.

L #0

￼10



Definition

A Bayesian Network is a probabilistic graphical model that has:

• only directed edges

• no cycles 


i.e. arrows can not be followed in a closed loop


A directed acyclic graph (DAG). 

￼11



Simplest Graph Structure

#2#0 #3 #252#250 #251…

L

known as a Naive Bayes Classifier
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Simplest Graph Structure

#2#0 #3 #252#250 #251…

L

known as a Naive Bayes Classifier
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Conditional Probability

Probability of S0 given 
the parent node(s) of S0:

P(S0 |Parents(S0)) = P(S0 |L)Local probability distributions 
for each node can be learned 
from training data.



Simplest Graph Structure
known as a Naive Bayes Classifier
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P(S0, S1 |L) = P(S0 |L) P(S1 |L)
Conditional Independence

#2#0 #3 #252#250 #251…

L
• The values of Sensor #0 and 

Sensor #1 are not independent.

• Structure implies they are 

conditionally independent given 
location.



Simplest Graph Structure
known as a Naive Bayes Classifier
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#2#0 #3 #252#250 #251…

LGraph structure can be 
learned from data or specified 
by scientist based on domain 
knowledge.



Less Simple Graph Structure

#1#0 #2 #252#250 #251…

L E
Number of 
electrons generated 
in the interaction.

￼16



= P( , ) P( = , , ) P( = , , )
P( , | = , = , )#1
#0 …L

…L

L E

E

E

Inference
Evidence Variables: 

Query Variables: 
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L E

= , = , =#1#0 #2 …#1#0 #2

#1#0

#0 #0 #1
 #1

Non-Evidence & Non-Query Variables:     none       

L E



∑ P( = , , , ) P( = , , , )
P( , | = , = , = , ) = P( , )#1
#0 …L

…

L

L E

E E

Evidence Variables: 

Query Variables: 
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L E

= , = , =#1#0 #3 …#1#0 #3

#1#0

#0 #0 #1
 #1

Non-Evidence & Non-Query Variables:           

L E

e.g. sensor #2 is broken
#2

#2#2

Possible Values of #2

Inference

#3
 #3



∑ P( , | , , , , , )#1#0 #2 #250 #251…L E #252

Inferred Location

Possible Values of E

Sensor Measurements
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∑ P( , | , , , , , )#1#0 #2 #250 #251L E #252

Inferred Location - no interaction

Possible Values of E

Sensor Measurements
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∑ P( , | , , , , , )#1#0 #2 #250 #251L E #252

Inferred Positions - no interaction

Possible Values of E

Sensor Measurements
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A point estimate of this 
position is uninformative.



Towards a More Complex Graph Structure
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IRIS-HEP Fellow
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Towards a More Complex Graph Structure
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IRIS-HEP Fellow

= ∑ ∑ P( , , , , , , , , )#2#1 #3 #4 #5C E #6 #7

Possible Values of #6Possible Values of #4 ￼23



• uncertainty quantification and interpretability is paramount


• wish to constrain the model based on knowledge of the system


• set of variables is (relatively) small

When is this framework most applicable?

￼24



Summary
• Bayesian Networks are a

• type of probabilistic graphical model

• graph-based representation of the joint probability distribution as the basis 

for compactly encoding a high-dimensional distribution

• simple, interpretable model that is designed for uncertainty quantification


• Bayesian network framework applicable to problems in particle physics

• as demonstrated by an example with reconstruction of particle interactions 

in the context of dark matter direct-detection experiments
• Graphical Models are All You Need: Per-interaction reconstruction uncertainties 

in a dark matter detection experiment. Christina Peters et al. (2022). 

   NeurIPS Machine Learning and the Physical Sciences Workshop.

• arXiv 2205.10305

• Probabilistic Graphical Models: Principles and Techniques. 
Daphne Koller and Nir Friedman (2009). 
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Inferred Number of Electrons - no interaction
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