
ACTS Parallelization Meeting
detray - Actor Implementation

Joana Niermann1,2

13.05.2022

1CERN
2II. Physikalisches Institut, Georg-August-Universität Göttingen

The detray Geometry Model

Building Blocks

• Volumes: containers for surfaces,
defined by their boundary surfaces
(portals).

• Surfaces: Placed by transformations
and defined by boundary masks.

• Masks: Define the shape types by
providing local coordinates and extent
of surfaces.

• Portals: Surfaces that tie volumes
together through links.

Supported masks: Rectangles, trapezoids, ring/discs, cylinders and an annulus shape (No runtime
polymorphism:).

Geometry Implementation ACTS Parallelization Meeting 1 / 7

Navigation Model

• Propagator: steers the workflow
between the stepper and
navigator.

• Stepper: Advances the track state
through the geometry.

• Navigator: Provides the next
candidate surface and its distance.

Volumes in outer layers can contain thousands of surfaces: Implement local navigation.

Navigation Model ACTS Parallelization Meeting 2 / 7

Navigation Model - Implementation

The Navigator as a data structure . . .

• . . . is a cache around line-surface intersections.

• Different trust levels determine how that cache is updated after track state changes.

• Full trust: Do nothing.

• High trust: Only update the current next target surface.

• Fair trust: Update all entries and sort again.

• No trust: (Re-)initialize the entire (current) volume, i.e. fill cache and sort by distance.

⇒ A call to the navigator update function restores full trust, otherwise aborts the propagation.

Navigation Model ACTS Parallelization Meeting 3 / 7

Navigation Policy

Navigation policies

• After an actor modifies the track state, determine severity of change.
• Actors can decide for themselves how to reduce the trust level.
• No actor can raise the trust level!

⇒ Navigation policies are actors and can be plugged in e.g. as observing actors.

Example: Current stepper-default-policy

• Uses step constraints to estimate severity of track state change.
• Reduce trust level when a constraint has been hit. Might also resolve type of constraint in

the future.

⇒ Also available: guided_navigation [and always_init].

Navigation Model ACTS Parallelization Meeting 4 / 7

The detray Actor Model

// initialize the navigation
navigator .init(propagation);

// Run while there is a heartbeat
while (propagation . heartbeat) {

// Take the step
stepper .step(propagation);

// And check the status
navigator . update (propagation);

// Run all registered actors
run_actors (propagation . actor_states , propagation);

}

What is an actor in detray?

• Callable that performs a task after
every step.

• Has a per track state, where results
can be passed.

• Can be plugged in at compile time.
• In detray: Aborters are actors

Implementation

• Actors can ’observe’ other actors, i.e. additionally act on their subject’s state.
• Observing actors can be observed by other actors and so forth (resolved at compile time!).
• Observer is being handed subject’s state by actor chain

⇒ no need to know subject’s state type and fetch it.
• Greater flexibility in testing different setups

⇒ Currently implemented: Navigation policies, pathlimit aborter, propagator inspectors.

Actor Implementation ACTS Parallelization Meeting 5 / 7

Actor Chain Implementation
Overview of actor implementation:

/// Base class actor implementation
struct actor {

/// Tag whether this is a composite type
struct is_comp_actor :

public std :: false_type {};

/// Defines the actors state
struct state {};

};

// Actor with observers
template <class actor_impl_t = actor ,

typename ... observers >
class composite_actor final :

public actor_impl_t {
struct is_comp_actor : public std :: true_type {};
// Implement this actor
using actor_type = actor_impl_t ;
// Actor implementation + notify call
void operator ()(...) const { [...] notify (...);}

private :
// Call all observers
void notify (...) const {...}

};Building a chain:

// Define types
...
using observer_lvl1 = composite_actor <dtuple , print_actor , example_actor_t , observer_lvl2 >;
using chain = composite_actor <dtuple , example_actor_t , observer_lvl1 >;

// Aggregate actor states to be able to pass them through the chain
auto actor_states = std :: tie(example_actor_t :: state , print_actor :: state);

// Run the chain
actor_chain <dtuple , chain > run_chain {};
run_chain (actor_states , prop_state);

Full example available at detray#248
Actor Implementation ACTS Parallelization Meeting 6 / 7

https://github.com/acts-project/detray/pull/248

Summary

What’s new

• Some groundwork for adding actors/aborters in detray, including the modeling of
interdependencies.

• Added flexibility in how to configure behaviour of navigation updates.
• Additional tuning points

Outlook ACTS Parallelization Meeting 7 / 7

Backup

	Geometry Implementation
	Navigation Model
	Actor Implementation
	Outlook
	Appendix

