## Ultra-low emittance rings: report for WP7

R. Bartolini (DESY), M. Biagini (INFN), M. Böge (PSI), R. Nagaoka (SOLEIL), A-S Müller (KIT), Y. Papahilippou (CERN)

- ARIES WP7 mission and activities
- ultra low emittance rings examples
- (some) technological challenges and contributions of ARIES WP7
- Conclusions and future work with I-FAST



## WP7: Rings with Ultra-Low Emittance (RULε)

Mission of the network

# Fostering networking activities, exchange of ideas and staff in the accelerator community involved in design, construction and operation of ultra-low emittance rings (light sources, HEP: damping rings and colliders)

via

General Workshops Topical workshops Student support (and student prizes) Supporting staff for joint experiments engagement with industrial partners



WP7 addressed key design and technology challenges in the development of ultra-low emittance rings and tests of key aspects of the beam dynamics

- Task 7.1. Coordination and Communication (R. Bartolini, UOXF)
- Task 7.2. Injection Systems for U-LER (M. Boege, PSI)
- Task 7.3. Technology for ultra low emittance rings (Y. Papaphilippou, CERN, M. Biagini, INFN, R. Nagaoka, SOLEIL)
- Task 7.4. Beam tests and commissioning of U-LER (A.S. Mueller, KIT-ANKA)



## WP7: milestones and deliverables

#### Milestones: General and Topical workshops

| 1    | 1                                                                       |     |           |    |                                        |
|------|-------------------------------------------------------------------------|-----|-----------|----|----------------------------------------|
| MS33 | First general workshop<br>of the RULE network<br>(Task 7.1)             | WP7 | 41 - UOXF | 9  | Agendas, attendance lists on<br>Indico |
| MS34 | First topical meeting<br>of the RULE network:<br>injector (Task 7.2)    | WP7 | 41 - UOXF | 12 | Agenda, attendance lists on<br>Indico  |
| MS35 | First topical meeting<br>of the RULE network:<br>technology (Task 7.3)  | WP7 | 1 - CERN  | 15 | Agenda, attendance lists on<br>Indico  |
| MS36 | Second topical meeting<br>of the RULE network:<br>injector (Task 7.2)   | WP7 | 41 - UOXF | 24 | Agenda, attendance lists on<br>Indico  |
| MS37 | Second topical meeting<br>of the RULE network:<br>technology (Task 7.3) | WP7 | 1 - CERN  | 27 | Agenda, attendance lists on<br>Indico  |
| MS38 | Second general<br>workshop of the RULE<br>network (Task 7.1)            | WP7 | 41 - UOXF | 33 | Agenda, attendance lists on<br>Indico  |

#### Deliverables: summary report on workshops and beam tests

| D7.1 | First beam tests for low emittance rings                         | WP7 | 41 - UOXF | Report | Public | 18 |
|------|------------------------------------------------------------------|-----|-----------|--------|--------|----|
| D7.2 | Final report on injection<br>schemes and injector<br>studies     | WP7 | 41 - UOXF | Report | Public | 27 |
| D7.3 | Final report on<br>technology for low<br>emittance rings         | WP7 | 1 - CERN  | Report | Public | 36 |
| D7.4 | Final report on the<br>Rings with Ultra-Low<br>Emittance network | WP7 | 17 - KIT  | Report | Public | 46 |



R. Bartolini, ARIES Final Review Meeting, (virtual), 15/07/2022

## ARIES WP7 RULE: milestones and deliverables

|      |                                                      | Year 1 |      | Year 2                     |            |                | Year 3            |       |      |                      |      | Year 4 |    |         |    |    |    |
|------|------------------------------------------------------|--------|------|----------------------------|------------|----------------|-------------------|-------|------|----------------------|------|--------|----|---------|----|----|----|
| Task | Description                                          | Q1     | Q2   | Q3                         | Q4         | Q1             | Q2                | Q3    | Q4   | Q1                   | Q2   | Q3     | Q4 | Q1      | Q2 | Q3 | Q4 |
| 1    | Coordination and Communication                       |        |      | M                          |            |                |                   |       |      |                      |      | and    | 6  |         | M  |    | D  |
|      |                                                      |        |      | 1 <sup>st</sup> General WS |            |                |                   |       |      | 2 <sup>nd</sup> Gene |      |        |    | eral WS |    |    |    |
| 2    | Injection systems for ultra-low<br>emittance ring    |        | C    | )                          | Μ          |                |                   |       | М    | D                    |      |        |    |         |    |    |    |
|      | 1 <sup>st</sup> Inje                                 | ctior  | n WS | 5                          |            | 2 <sup>n</sup> | <sup>id</sup> Inj | ectio | on W | S                    |      |        |    |         |    |    |    |
| 3    | Beam dynamics and technology for low-emittance rings |        |      |                            | $\bigcirc$ | Μ              |                   |       |      | Μ                    | C    | )      | D  | C       |    |    |    |
|      | J                                                    | Di     | iagn | ostic                      | s WS       |                |                   |       | Те   | chno                 | olog | y WS   | 5  |         |    |    |    |
| 4    | Beam tests and commissioning of low emittance rings  |        |      |                            |            |                |                   | D     | C    |                      |      |        |    |         |    |    |    |
|      |                                                      |        |      | Bea                        | am te      | st V           | VS                | С     | omm  | nissio               | onin | g W    | S  |         |    |    |    |

#### All milestones and deliverable reached in year 4



## **General and Topical workshops**

General workshop (continuing the tradition of the LER workshops) 7<sup>th</sup> LER Workshop, 15-17 January 2018 CERN <u>https://indico.cern.ch/event/671745/</u> 8<sup>th</sup> LER Workshop 26-30 October 2020 INFN-LNF Frascati (held remotely) <u>https://agenda.infn.it/event/20813/overview</u> – *participants 160* 

Low emittance ring technology ALERT 19 Ioannina Diagnostics DULER Diamond 2018 Injection TWIIS-1 BESSY 2017 TWIIS-2 PSI 2019 Commissioning KIT 2019



## High Energy Physics to Photon Science

In the last 10 years EUCARD2 and ARIES have seen a shift from a community driven in majority by HEP projects, network and R&D to a community based in majority on light sources

Evolution of the field (personal, i.e. limited view)

Hot topics in 2011:

- Fast HV Kickers (ILC)
- Low emittance operation in the V plane (Quantum LOVE prize)
  Light source were used as "examples" by damping rings for low emittance tuning

Upgrade projects based on MBA (2012 - today)

 Design concepts: MBA, HMBA (merging design concepts of HEP and light sources), novel injection schemes, magnet and vacuum technology, optimisation tools (DA/MA and commissioning)

## Low emittance lattice types



## ... and more new projects

•

#### 4GSR Pohang Accelerator Laboratory, Korea



| General Parameter                  |                                      |  |  |  |  |
|------------------------------------|--------------------------------------|--|--|--|--|
| Energy / GeV                       | 4.0                                  |  |  |  |  |
| Symmetry / Sub-Symmetry            | 28                                   |  |  |  |  |
| Straight Sections: No & Length / m | 28 / 6.5                             |  |  |  |  |
| Ring Circumference / m             | 798.8                                |  |  |  |  |
| # Dipole Magnets                   | 28 * 7 = 196                         |  |  |  |  |
| Nat. Emittance / prad m            | 58                                   |  |  |  |  |
| regular hor/ver @ coupling         | 55 / 6 @ 10 %                        |  |  |  |  |
| Diffraction limited source for     | λ > 1.7 / 0.365 nm                   |  |  |  |  |
| Energy spread                      | 1.20E-3                              |  |  |  |  |
| Bunch Length $\sigma_t$ / ps       | 10.68 (without HC) / 53.40 (with HC) |  |  |  |  |

#### **BESSYIII – Helmholtz Zentrum Berlin**

- Energy = 2.5 GeV
- Emittance ~ 100 pm rad
- I ~ 300 mA
- 16 straights
- 5.6 m straight length (max. 5 m useable length)
- Circumference max. 320 m
  - MBA with High coherence fraction from 100 eV to 2.5 keV Flexible repetition rates: TRIBs
  - TopUp full-energy injection (low emittance combined function booster, 1 Hz, in the same tunnel with 100 – 150 MeV linac injector)



## **Cross-fertilisation SR-HEP**

#### SuperB lattice after 1° Low emittance workshop (2011, CERN)



## **Cross-fertilisation SR-HEP**

The technology of fast (~ns) high voltage (tens of kV) kickers originally devised for HEP damping rings has found crucial applications in novel injection schemes for ultralow emittance light sources



|            | energy<br>(Gev) | MAX b'<br>T/m | MAX b"<br>T/m² | MAX b'''<br>T/m <sup>3</sup> | min. bore<br>radius (mm) |
|------------|-----------------|---------------|----------------|------------------------------|--------------------------|
| ALS-U      | J 2.0 10        |               | 10500          | n/a                          | 12.0                     |
| ELETTRA 2  | 2.4             | 50            | 4000           | 45000                        | 13.0                     |
| SLS-II     | 2.7             | 97            | 8000           | 270000                       | 10.5                     |
| SOLEIL-U   | 2.75            | <110          | 16000          | 1500000                      | 8.0                      |
| Diamond II | 3.5             | 85            | 7700           | 660000                       | 12.0                     |
| SIRIUS     | 3               | 45            | 2400           | n/a                          | 14.0                     |
|            |                 |               |                |                              |                          |
| APS-U      | 6               | 86            | 6300           | n/a                          | 13.0                     |
| ESRF-EBS   | 6               | 90            | 3200           | 37000                        | 12.8                     |
| HEPS       | 6               | 80            | 7500           | 670000                       | 12.5                     |
| PETRA IV   | 6               | 115           | 4000           | 150000                       | 11.0                     |

High gradients require

- small bore radius
- difficult vacuum system design (e.g. NEG, extraction of photons)



Vanadium Permendur (e.g. Vacoflux) poles increasingly used

Design optimised for efficiency (e.g. including PM and minimisation of power consumption in cables)



#### WP7.3: Novel magnet designs were extensively discussed

Longitudinally variable dipole are used in many light sources (ESRF-EBS, PETRA IV, SLS-II) Example with transverse gradient developed for the CLIC damping ring



Permanent magnet based quadrupoles: tuneable ZEPTO for the CLIC damping rings





#### WP7.3: NEG coating in small size vacuum chamber

Small bore radius magnet imply the use f small aperture vacuum chamber. Effective vacuum can be achieve with extensive use of NEG coating





- Thickness and uniformity requirements on the coating to achieve pumping
- impedance effect of the coating
- logistic in the activation procedure (e.g. insitu vs ex-situ activation, # cycles)

Resistivity as a function of the NEG thickness for different frequencies and different morphology.



ARIES

accelerators.



### WP7.4: Novel injection scheme were tested

Longitudinally off-energy injection concepts were tested at BESSY-II



Injection efficiency for off-phase off-energy injected beam were measured at BESSY Showing the feasibility of capture and possibly accumulation



## Extremely quick commissioning of ESRF-EBS

**ESRF-EBS** (140 pm – 6 GeV) has achieved the nominal operational parameters ahead of schedule

28/11/2019: start of commissioning (3 turns)

06/12/2019: first stored beam

15/12/2019: first accumulation

14/3/2020: 200 mA





P. Raimondi in <u>http://agenda.infn.it/event/20813</u>



## The networking activities will continue in IFAST WP7 task 7.2

Networking activities on low emittance ring will continue in I-FAST in **WP7: High brightness accelerator for light sources** 

Task 7.2: Led by KIT

Continuation of the network activity on the themes of

Machine design Low emittance ring technology Collective effects Injection systems Commissioning strategies



## Acknowledgments

