
WP13: Access to Plasma Beam testing facilities

July 15th, 2022/ Final Review

Brigitte CROS / CNRS - LPGP

Overview

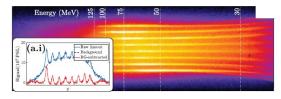
- 3 facilities offering TA in WP13:
 - LULAL (Lund University)
 - O UHI100 LPA (CEA LIDYL)
 - O APOLLON MUST-LPA (CNRS LULI)

- Access provided: 1146 hours, 47 users
 - 2 projects at UHI100 LPA
 - 4 projects at LULAL
 - 1 project at APOLLON

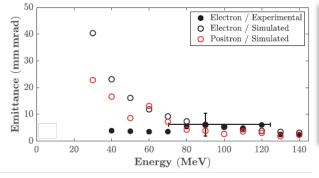
Check for updates

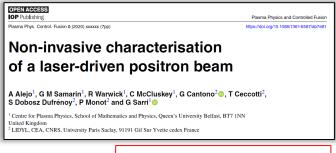
COPEN Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets

Vidmantas Tomkus¹²⁰, Valdas Girdauskas^{1,2}, Juozas Dudutis¹, Paulius Gečys¹, Valdemar Stankevič², Gediminas Račiukaitis², Isabel Gallardo González², Diego Guénot³, Ionas Biōrkiund Svenscon³, Anders Perscon³ 8. Olle Lundh³



Access to UHI100-LPA (CEA Saclay)


S. Dobosz Dufrénoy- Facility coordinator

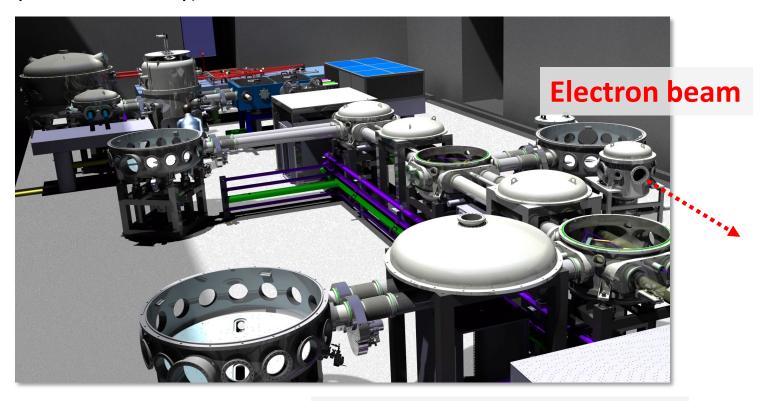

Secondary electron signal through pepper-pot W mask and dipole

Campaign n°1: ARIES-CEA-LIDyL-2017-01 (Janv-Fev 2018 /152 Units)

Emittance characterisation of laser-driven positron beams for injection in conventional accelerators

published, 2020

Laser-driven low-energy positrons for highresolution non-disruptive inspection of materials — G. Sarri and coll. (Queen's University — Belfast)



Upgraded facility implemented at CEA

Orme des Merisiers

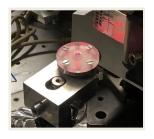
New redesigned experimental facility in a completely refurbished area (few km away from CEA-Saclay)

New laser beam diagnostics, two laser beams available, 40% more energy on one beam in « single beam configuration »

Increase of electron beam energy and charge are expected

Upgraded facility implemented at CEA Orme des Merisiers

New redesigned experimental facility in a completely refurbished area (implementation now completed after long delays due to covid restrictions and lockdowns)

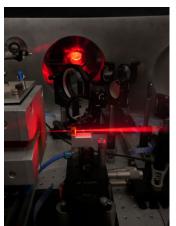

Commissioning of experimental area in Progress: Waiting for permission to operate from ASN

Access to LULAL

4 experiment campaigns completed (30 users, 788 units)

Olle Lundh, olle.lundh@fysik.lth.se

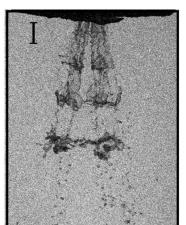
COPEN Laser wakefield accelerated electron beams and betatron radiation from multijet gas targets

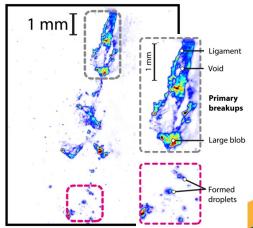

Vidmantas Tomkus¹⁵⁰, Valdas Girdauskas^{1,2}, Juozas Dudutis¹, Paulius Gečys¹, Valdemar Stankevič¹, Gediminas Račiukaitis¹, Isabel Gallardo González¹, Diego Guénot Multistage Laser and Beam Driven
 Plasma Accelerator,

PI: G. Raciukaitis (FTMC), Vilnius, Lithuania

Understanding the breakup and atomization of fuel sprays is essential for improving e.g. engine efficiencies.

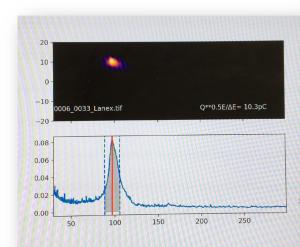
Spray imaging with laser driven X-ray
PI: Lars Zigan (FAU), Erlangen-Nürnberg,
Germany


LWFA X-ray source


Fuel injection spray

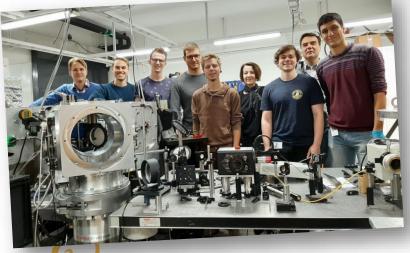
LWFA X-ray image

Laser-induced fluorescence



Access to LULAL

Testing plasma accelerator source for EuPRAXIA 1 & 2


Quantitative detailed study of the impact of laser properties on electron beam properties.

Automated online optimization of the electron beam

EuPRA

2 TNA projects (Nov-Dec 2019 and 2021)

4+4 weeks access,

20 visiting users,

10 participating institutes, 5 countries
Imperial College (UK), University of York (UK), Oxford
University (UK), CLF (UK), CNRS (FR), U Paris-Saclay (FR),
CEA-Saclay (FR), ENEA (IT), IST (PT), Lund University (SE)

Commissioning experiments at

- PI B. Cros (CNRS LPGP) with teams from CEA LIDYL (S.Doboz), CNRS LLR (A. Specka) and CNRS IJCLAB (N. Delerue), supported by Apollon technical teams
- April 2021
- Apollon F2 beam focussed by a 3m focal lens optic, in a gas cell, electron spectrometer and on axis diagnostics

- H2+1%N2 plasma, 2 to 20mm long were explored,
- 4.5 J laser energy at cc
- Electron spectra observed in the detection window: 200 MeV –
 1.6 GeV (lanex + yag detectors)
- Results in agreement with PIC simulations

Access to Apollon

Generation of laser-driven GeVscale high-quality positron beams

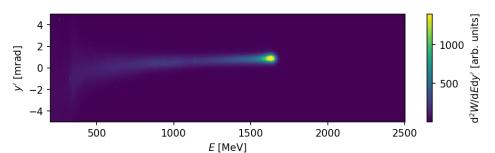
TNA March 14 to April 8 2022

Project selected by the Apollon program committee following the 2021 call for proposals, and by the WP13 User Selection Panel

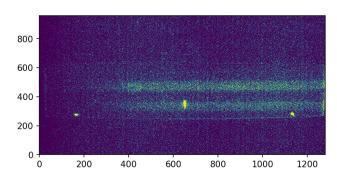
PI G. Sarri

Queen's University Belfast

 Supported by the commissioning team:
 B. Cros (CNRS LPGP), S.Doboz-Dufrénoy (CEA LIDYL) A. Specka (CNRS LLR) and Apollon technical teams



Preliminary results vs. objectives



- Generation of > GeV electron beams from laser-wakefield generation

Max. energy: 1.7 - 1.9 GeV Overall charge: 0.3 - 0.6 nC Divergence: 0.9 mrad

- Production of GeV-scale positron beams of high spatial quality

Max. energy: ~ 1GeV Overall charge: ~ 3 pC emittance and source size measured (*to be analysed*)

- Testing of a gamma-ray spectrometer for high-flux and ~ GeV gamma-ray beams gamma-ray spectrometer successfully tested and showing expected ~% level energy resolution. Results currently being analysed.
- Detection of muons from a laser-driven configuration detectors currently being etched for analysis...

Gianluca Sarri g.sarri@qub.ac.uk

Summary

Access to electron bunches driven by laser in plasma was provided at **UHI100 LPA and LULAL and APOLLON** facilities for various applications:

- physics of plasma accelerators,
- generation of secondary particles or radiation,
- use of secondary radiation for imaging.

- Promising results for future use of plasma accelerators:
 - Large range of parameters can be delivered,
 - Flexibility of set-ups and environments for users
 - Reliability and stability can be improved through the development of dedicated facilities and specific beamlines

Thank you for your attention