

WP16: Intense, RF Modulated E-Beams

for Application in Pulsed Electron Lenses

Final Review / 15.07.2022

David Ondreka (GSI) for the WP16 collaboration

Outline

- Motivation
- WP16 objectives
- WP16 achievements
- Summary

Motivation

- Strong interest of accelerator community in pulsed electron lenses
 - Space charge compensation in bunched beams
 - Prevention of instabilities in bunched beams
 - Goal: increasing intensities
- Challenging requirements on electron gun
 - Currents of 10 to 20 A (factors more than present)
 - High bandwidth to follow bunch profiles
- Limitations of existing pulsed guns
 - Direct modulation of extraction voltage
 - Excessively high power for large currents

WP16 JRA goal:

Build a *pulsed electron gun* for application in electron lenses for space charge compensation

Space charge compensation with e-lenses in bunched beams

Pulsed electron lens TEL-2 at the Tevatron (Fermilab)

WP16: Objectives and Organization

- JRA activity among four beneficiaries CERN, GSI, IAP, RTU
- Tasks
 - 16.1: Coordination and communication
 - 16.2: System integration
 - Definition of boundary conditions and requirements from reference case
 - 16.3: Manufacturing of an RF modulated electron gun for application in electron lenses
 - High electron currents up to 10 A
 - RF modulated at 0.4 to 1 MHz with a bandwidth of up to 10 MHz
 - Gaussian shaped transverse electron beam profile
 - Grid modulation to lower power requirements on modulator
 - 16.4: Operation of a test stand for the RF modulated electron gun
 - Construction of a test stand for qualification of the gun
 - Conduction of tests on the gun

RIGA TECHNICAL UNIVERSITY

Final Review / WP16 / 15.07.2022

Task 16.2: Reference Case

- Heavy ion synchrotron SIS18 at GSI
 - Circumference 216m, max. B field 1.8 T
 - Provides heavy ion across the periodic table
 - Intensity limited by space charge at low energies
- Time dependent space charge compensation
 - Compensation strength varies with time
 - Bunch length varies with time
- Advantages of low energy ions
 - Large ion beam radii ($\sigma_{x/y} \sim 10 / 20$ mm)
 - Long ion bunches (4σ_t > 300 ns)
- Main requirements on pulsed gun
 - Electron currents of 10 A at 30 kV
 - Modulation at 0.4 1 MHz with 10 MHz bandwidth
 - Gaussian transverse profile

Task 16.2: Electron Beam Dynamics

- Layout of complete electron lens established
 - Magnet system of solenoids and toroids
 - Metallic boundaries and collector
- Simulation of electron beam dynamics
 - Extraction from IRME-gun including grid
 - Transport of electron beam through lens
 - Benchmarking with analytical models
- Gun fully compatible with lens requirements

Layout of the electron lens for space charge compensation in SIS18

Electron beam transport simulation through the electron lens

Simulation of extraction from the IRME-gun

U_=30k

Task 16.3: RF Modulated Gun

- Thermionic emission from tungsten cathode
- Gaussian profile by shaping of cathode
- Novel concepts
 - Heating by plasma stream from arc discharge •
 - Modulation by grid to reduce power consumption •
 - Compact and robust design for T ~ 2500 K
- Final design developed in two steps •
 - Prototype (TE²) based on ion source
 - Optimizations after tests with prototype

Final IRME gun: design and manufactured device

Task 16.3: RF Modulator

- Challenging requirements
 - Sweeping central frequency (0.4 1 MHz)
 - Bandwidth of 10 MHz for SIS18 bunches
 - 3 kV on capacitive load (~100 pF)
- Design iterations based on prototypes
 - Vacuum tube solution tried but discarded
 - Final design multi-level RF inverter topology
 - 26 modules supplying 150 V each
 - Allows operation outside tunnel
 - Prototypes with 4 modules built
 - Final device not ready due to supply problems

Additional signal generator for testing

Task 16.4: Gun Test Stand at CERN

Designed for CERN HEL gun and IRME gun

- Co-founded by HiLumi-LHC and ARIES
- Goals
 - Testing components for HEL lens
 - Testing components for SCC lens
 - **Operational experience**
- **Diagnostics** equipment
 - Current transformer at cathode
 - Diagnostic box (YAG screen, movable pin-hole cup)
 - Collector measuring total current
- Test stand successfully completed
 - Available at beginning of P3
 - Inaccessible for IRME gun due to Covid-19 crisis
 - Decision to build second test stand at IAP •

Diagnostic Box (DB)

Task 16.4: E-Lens-Lab at IAP

Features

- HV platform for 50 kV in Faraday cage
- Collector Faraday cup up to 27 kW
- Solenoids for beam transport
- Remote control for safe operation
- Pressure and temperature diagnostics
- Transverse diagnostics
- Two separate benches
- Construction started mid 2020
 - Floor space and infrastructure available
 - Huge work load on IAP personnel
 - Hampered by Covid-19 regulations
 - Completed thanks to prolongation

Transport simulation for stage 2 (I = 5 A)

Two benches connected to HV cage

HV terminal inside cage

User interface for remote control

Task 16.4: Gun Tests at IAP

- Basic tests
 - Vacuum conditioning and pressure
 - Control of cooling circuit performance
- Cathode heating
 - Novel concept using directed arc discharge
 - Uniform heating of cathode essential
 - Pyrometric measurements
 - Characterization of filament performance
- Electrical tests on grid
 - Measurements of capacitance
 - Measurements of transmission properties
 - Grid characteristics at low temperatures
- Extraction tests in preparation

Cathode heat-up tests

WP16: Summary

- Main objective achieved (D16.2)
 - Grid-modulated electron gun manufactured
 - Modulator prototype manufactured
- Electron beam dynamics studies done (D16.1)
- Completion of tests hampered by Covid-19
 - Testing at CERN test stand impossible
 - New test stand had to be built at IAP from mid 2020
 - Big amount of unforeseen work
 - Limited access to IAP facilities due to regulations
 - Zero time margin despite ARIES prolongation
 - Extraction testing delayed
 - Gun installed and ready for testing
 - Last minute problems with cooling
 - Project will be continued beyond ARIES
- Bonus: second gun test stand
 - Accessible to accelerator community mid-term
 - Fits with increased interest in pulsed e-lenses

Code	Deliverable	Туре	Status
D16.1	Electron beam dynamics studies	Report	ACHIEVED
D16.2	Manufacturing of electron gun and power modulator completed	Demonstrator	ACHIEVED
D16.3	Tests of electron gun at test stand completed	Demonstrator	ACHIEVED*

Thanks for your attention!

Thanks to all the collaborators who contributed to WP16 during the ARIES project: Adriana Rossi, Sergey Sadovich (CERN) Kathrin Schulte-Urlichs, Sayyora Artikova, Katrin Thoma (GSI) Oliver Meusel, Martin Droba, Julian Rausch, Thomas Dönges (GUF/IAP) Peteris Apse-Apsitis, Ingars Steiks, Johann Van De Pol (RTU)

Final Review / WP16 / 15.07.2022