
ORNL is managed by UT–Battelle, LLC for the US Department of Energy

Celeritas: GPU detector simulation

Seth R Johnson

HPC methods for nuclear applications

Celeritas core team:


Philippe Canal, Stefano Tognini, Soon Yun Jun, Guilherme 
Lima, Amanda Lund, Vincent Pascuzzi, Paul Romano

Compute Accelerator Forum

29 June, 2022



Background

2



Celeritas overview
• GPU-targeted re-implementation of a subset of Geant4 

physics leveraging both HEP physics community and 
HPC/GPU particle transport domain knowledge


• First code committed June 2020


• First DOE programmatic funding allocation: July 2022 🌈


• Short-term application: offloading EM tracks from 
Geant4 to GPU (Acceleritas bridge library)


• Long-term application: direct high-performance 
integration into LHC analysis workflows

3



High Performance Computing (HPC) in HEP

• High Luminosity upgrade means 
10× higher sampling rate


• More detector data means more 
simulations needed


• Tens of millions of “equivalent 
2006-era CPU hours” for analysis


• 20–25% is from full fidelity MC

4

2020 2022 2024 2026 2028 2030 2032 2034
0

20

40

60

80

100

120

C
ap

ac
it
y

[M
H

S
06

-y
ea

r]

Run 4
10%/year CPU

20%/year CPU

20%/year GPU

ATLAS MC baseline

MC simulation requirements: projection assumes 
 2× performance per watt GPU/CPU



GPUs now dominate calculation throughput on HPCs

• General Purpose Graphics Processing Units (GP-GPU)


• Conceptualized in early ’00s


• Very fast and power efficient for “graphics”-like 
applications


• “Many-core”: massively multithreaded


• Programming models require much more care


• Not good at flexible/dynamic operations


• Ideally lots of operations per memory access

5

CPU

GPU
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html  
©NVIDIA Corporation, reproduced with permission



Challenges
• Execution: divergence and load balancing


• GPUs want every thread doing the same thing


• MC: every particle is doing something (somewhat) 
different


• Memory: data structures and access patterns


• GPUs want direct, uniform, contiguous access


• MC: hierarchy and indirection; random access


• Memory allocation is a particular problem

6

Structured grid data

Monte Carlo data



Code design

• Core principles

• Data-oriented programming

• Object-oriented interfaces to data

• Composition-based objects

• Revisit legacy design/implementation choices


• Development workflow

• Extensive unit testing in CPU execution space

• Some unit testing and more integration testing on GPU

• In-depth merge request review process

• Continuous integration

7

Easily refactored for new architectures, 
data models, performance

RNG State

Particle 
State

RNG

Particle

Particle 
Params

Interactor

Tests

Launcher

Model

Transporter

Model Data

Tests



Features

8



Memory model for hierarchical data

• Define data structures once

• Easily assemble data on CPU

• Data and execution on both CPU 

and GPU

• Single-line data transfer

9

CPU/GPU data

Materials Material component data Element data

Component Items

Element Item

Material Items

Safe and effective framework for physicists 
to implement and test GPU-compatible 

physics



Multi-architecture portability

• Macro-decorated, header-only, 
(inline) C++ execution code 
(no fancy CUDA)


• Kernel “launcher” inline 
functions operate on a single 
thread's data


• Auto-generated CUDA/HIP, 
OpenMP, stdpar (NVIDIA collab)

10

Generated

Model.hh

Model.cc

Interact.hh Launcher.hh

Data.hh

Interact.ccInteract.cu

Interactor.hh

CPU code
Physics 

view, RNG 
engine, etc

Particle track 
view, 

allocator, 
etc.

Requirement for universal DOE LCF usability



VecGeom integration

11
GPU-traced rasterization of CMS 2018



ORANGE Oak Ridge Advanced Nested Geometry Engine

• Designed for deeply nested 
reactor models


• Portable (CUDA/HIP) geometry 
implementation for testing


• Tracking based on CSG tree of 
surfaces comprising volumes


• Maximize run-time performance 
by preprocessing

12 Image credit: Steve Skutnik (ORNL)



ORANGE surface-based tracking methodology

13

Primary initialization Along-step

Boundary

Initialize
Find next step

Secondary 
initialization

Fast-initialize

Find safety

Move
(to boundary
or internal)

Cross boundary

Celeritas geometry interface
Position Volume Surface+Sense

Initialize A 1 —
Find step A 1 —
Move internal B 1 —
Move to bdy C 1 α inside
Cross bdy C 2 α outside
Move internal D 2 —

ɑ

1 2

A B C
ɑ- ɑ+

D



ORANGE surface/volume construction

14

Not yet available in 
Celeritas ORANGE

CPU Diagnostics

GPU Runtime

ORANGE 
geometry 
definition

SCALE input

Triton 
reactor 

description

GDML/
VecGeom

ORANGE 
construction 
object model

Shapes

Universes

Arrays

Transforms

Surfaces

Cells

Transformed
surfaces

CSG leaf Metadata

Simplified
surfaces

CSG tree



Standard EM physics

15 Urban MSC comparison (in progress!)



Transport loop and control flow

16

Pre-step kernel Along-step kernel Discrete kernel

Boundary kernel

Slowing 
down?

Track slot 
active? No actionNo

Discrete action

Range and 
step limiters Range action

Fixed step action

Yes

No

Yes

Hit 
boundary? Boundary action

MSC step 
limiter MSC range

Stopped
w/o rest? Kill

Integral XS
Rejection No interaction

Sample 
process Model action

Exited 
world? KillYes

Yes

Yes

Yes



Geant4 integration

• GDML file plus basic EM list option loads physics data


• Acceleritas bridges Celeritas directly to Geant4 run manager


• In progress: direct VecGeom geometry from in-memory Geant4

• Currently: separate VGDML call constructs VecGeom

• Future: construct ORANGE representation automatically


• Not all Geant4 data is accessible via APIs

• Seltzer–Berger data read from files specified in G4LEDATA

• Some cross sections are constructed on-the-fly from models

17



New features for 0.1.0 🦄

• Polished library experience

• Stable API for runtime setup and transport

• Code documentation and manual

• Separated core/ORANGE/celeritas layout

• Integrates as installable library or as CMake project subdirectory


• Transport on realistic materials (sampling over elements)


• Transport in generalized magnetic field (provide “uniform” option)


• Multiple scattering (still undergoing validation)

18



Performance

19



Benchmark problem

• TestEm3 — simplified calorimeter

• 50 alternating layers of Pb and lAr

• 10,000 10 GeV electron primaries


• Equivalent configurations of Celeritas/Geant4/AdePT

• No magnetic field

• Disabled multiple scattering, energy loss fluctuations, Rayleigh scattering

• Excludes initialization time


• No spline interpolation in Celeritas

• ~3% performance penalty for Geant4 with spline

• Compensate by using 8× cross section grid points: <2% slower

20



Initial performance results

• Per-node performance


• 1–2 batches of 6 simultaneous 
runs on Summit

• CPU: multithreaded with 7 cores

• GPU: one CPU core per GPU


• 40× faster with GPUs

• Apples-to-apples: Celeritas CPU vs GPU

• Similar order-of-magnitude improvement 

irrespective of code

• 280 CPU core to GPU equivalence

21

Wall time per primary (ms)
geo arch mean σ

Geant4 
10.7.1 Geant4 CPU 2.9 0.1170

Celeritas 
8d83ebab 
(29 Apr 2022) 

ORANGE CPU 2.09 0.0192
GPU 0.046 0.0012

VecGeom CPU 1.95 0.0352
GPU 0.0627 0.0004

Number of primaries per run
Geant4 Geant4 CPU 1E+04

Celeritas
ORANGE

CPU 1E+03
GPU 1E+05

VecGeom
CPU 1E+03
GPU 1E+05



Detailed timing

22



Upcoming performance testing

• Multiple scattering


• Tracking in magnetic field


• Acceleritas multithreaded scaling


• Frontier single-node performance (AMD GPUs)

23



Celeritas is open for business!

• Reached a minimal level of feature completion to be useful


• Proven performance advantage (for test problems so far)


• Key areas of continuing work:

• Physics validation (physics models, progression problems, experiment-specific)

• Experiment integration (Acceleritas, or directly)

• Performance experimentation (there’s a long list)

• International collaboration (AdePT, VecGeom, ORANGE)

24


