
ORNL is managed by UT–Battelle, LLC for the US Department of Energy

Celeritas: GPU detector simulation

Seth R Johnson

HPC methods for nuclear applications

Celeritas core team:


Philippe Canal, Stefano Tognini, Soon Yun Jun, Guilherme 
Lima, Amanda Lund, Vincent Pascuzzi, Paul Romano

Compute Accelerator Forum

29 June, 2022



Background
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Celeritas overview
• GPU-targeted re-implementation of a subset of Geant4 

physics leveraging both HEP physics community and 
HPC/GPU particle transport domain knowledge


• First code committed June 2020


• First DOE programmatic funding allocation: July 2022 🌈


• Short-term application: offloading EM tracks from 
Geant4 to GPU (Acceleritas bridge library)


• Long-term application: direct high-performance 
integration into LHC analysis workflows
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High Performance Computing (HPC) in HEP

• High Luminosity upgrade means 
10× higher sampling rate


• More detector data means more 
simulations needed


• Tens of millions of “equivalent 
2006-era CPU hours” for analysis


• 20–25% is from full fidelity MC
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GPUs now dominate calculation throughput on HPCs

• General Purpose Graphics Processing Units (GP-GPU)


• Conceptualized in early ’00s


• Very fast and power efficient for “graphics”-like 
applications


• “Many-core”: massively multithreaded


• Programming models require much more care


• Not good at flexible/dynamic operations


• Ideally lots of operations per memory access
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https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html  
©NVIDIA Corporation, reproduced with permission



Challenges
• Execution: divergence and load balancing


• GPUs want every thread doing the same thing


• MC: every particle is doing something (somewhat) 
different


• Memory: data structures and access patterns


• GPUs want direct, uniform, contiguous access


• MC: hierarchy and indirection; random access


• Memory allocation is a particular problem
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Code design

• Core principles

• Data-oriented programming

• Object-oriented interfaces to data

• Composition-based objects

• Revisit legacy design/implementation choices


• Development workflow

• Extensive unit testing in CPU execution space

• Some unit testing and more integration testing on GPU

• In-depth merge request review process

• Continuous integration
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Easily refactored for new architectures, 
data models, performance
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Features
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Memory model for hierarchical data

• Define data structures once

• Easily assemble data on CPU

• Data and execution on both CPU 

and GPU

• Single-line data transfer
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CPU/GPU data

Materials Material component data Element data

Component Items

Element Item

Material Items

Safe and effective framework for physicists 
to implement and test GPU-compatible 

physics



Multi-architecture portability

• Macro-decorated, header-only, 
(inline) C++ execution code 
(no fancy CUDA)


• Kernel “launcher” inline 
functions operate on a single 
thread's data


• Auto-generated CUDA/HIP, 
OpenMP, stdpar (NVIDIA collab)
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Generated

Model.hh

Model.cc

Interact.hh Launcher.hh

Data.hh

Interact.ccInteract.cu

Interactor.hh

CPU code
Physics 

view, RNG 
engine, etc

Particle track 
view, 

allocator, 
etc.

Requirement for universal DOE LCF usability



VecGeom integration
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ORANGE Oak Ridge Advanced Nested Geometry Engine

• Designed for deeply nested 
reactor models


• Portable (CUDA/HIP) geometry 
implementation for testing


• Tracking based on CSG tree of 
surfaces comprising volumes


• Maximize run-time performance 
by preprocessing
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ORANGE surface-based tracking methodology
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ORANGE surface/volume construction
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Standard EM physics

15 Urban MSC comparison (in progress!)



Transport loop and control flow
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Geant4 integration

• GDML file plus basic EM list option loads physics data


• Acceleritas bridges Celeritas directly to Geant4 run manager


• In progress: direct VecGeom geometry from in-memory Geant4

• Currently: separate VGDML call constructs VecGeom

• Future: construct ORANGE representation automatically


• Not all Geant4 data is accessible via APIs

• Seltzer–Berger data read from files specified in G4LEDATA

• Some cross sections are constructed on-the-fly from models
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New features for 0.1.0 🦄

• Polished library experience

• Stable API for runtime setup and transport

• Code documentation and manual

• Separated core/ORANGE/celeritas layout

• Integrates as installable library or as CMake project subdirectory


• Transport on realistic materials (sampling over elements)


• Transport in generalized magnetic field (provide “uniform” option)


• Multiple scattering (still undergoing validation)
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Performance
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Benchmark problem

• TestEm3 — simplified calorimeter

• 50 alternating layers of Pb and lAr

• 10,000 10 GeV electron primaries


• Equivalent configurations of Celeritas/Geant4/AdePT

• No magnetic field

• Disabled multiple scattering, energy loss fluctuations, Rayleigh scattering

• Excludes initialization time


• No spline interpolation in Celeritas

• ~3% performance penalty for Geant4 with spline

• Compensate by using 8× cross section grid points: <2% slower
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Initial performance results

• Per-node performance


• 1–2 batches of 6 simultaneous 
runs on Summit

• CPU: multithreaded with 7 cores

• GPU: one CPU core per GPU


• 40× faster with GPUs

• Apples-to-apples: Celeritas CPU vs GPU

• Similar order-of-magnitude improvement 

irrespective of code

• 280 CPU core to GPU equivalence
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Wall time per primary (ms)
geo arch mean σ
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10.7.1 Geant4 CPU 2.9 0.1170
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(29 Apr 2022) 

ORANGE CPU 2.09 0.0192
GPU 0.046 0.0012

VecGeom CPU 1.95 0.0352
GPU 0.0627 0.0004
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Geant4 Geant4 CPU 1E+04

Celeritas
ORANGE

CPU 1E+03
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Detailed timing
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Upcoming performance testing

• Multiple scattering


• Tracking in magnetic field


• Acceleritas multithreaded scaling


• Frontier single-node performance (AMD GPUs)
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Celeritas is open for business!

• Reached a minimal level of feature completion to be useful


• Proven performance advantage (for test problems so far)


• Key areas of continuing work:

• Physics validation (physics models, progression problems, experiment-specific)

• Experiment integration (Acceleritas, or directly)

• Performance experimentation (there’s a long list)

• International collaboration (AdePT, VecGeom, ORANGE)
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