
AdePT
Accelerated demonstrator of electromagnetic Particle Transport

Andrei Gheata for the AdePT Developers

Compute Accelerator Forum - June 29, 2022

Targets

► Functionality: make all simulation components work on GPU
● Physics, geometry, field, but also scoring code to limited extent

● Prototype e⁺, e⁻ and γ EM shower simulation on GPU

► Correctness: validate results and ensure reproducibility
● Against Geant4 equivalent

► Usability: integrate in a hybrid CPU-GPU Geant4 workflow
● For realistic experimental setups

► Performance: understand/address bottlenecks limiting performance
● Estimate feasibility and effort for efficient GPU simulation

2

The project

► GitHub repository
● Initial commit in Sep 2020, O(10) contributors

► Strategy: integrate gradually features as new examples
● No library build, maximize flexibility to explore different directions

► Few external dependencies
● Geometry: VecGeom library, enhancing GPU-related features
● Physics: G4HepEm library, a GPU-friendly port of Geant4 EM interactions

► Portability aspects not a major priority in this project phase
● Preliminary investigations started with Alpaka and OneAPI

3

https://github.com/apt-sim/AdePT
https://gitlab.cern.ch/VecGeom/VecGeom
https://github.com/mnovak42/g4hepem

The prototype
Initial commit

Fisher-Price like example & Alpaka version of it

Simple workflow with geometry navigation (exa2)

First example working in constant field (exa4)

First integration with G4HepEm physics (exa5)

Sep 2020
Oct 2020

Dec 2020

Feb 2021

First example with geometry and Bz field (exa6)
Mar 2021Added gamma interactions (exa9), added TestEm3 similar to Geant4

Added import/export of geometry and physics between Geant4 and AdePT (exa7) Jun 2021

Jul 2021MT version of TestEm3

Sep 2021Single-precision support in geometry

Standalone example with generalized GDML geometry (exa13)
Added support for multiple scattering

Oct 2021

Feb 2022Integration with Geant4 workflow demonstrator (exa14)

4

GPU-friendly rewrite of EM physics

► G4HepEm: compact library of EM processes for HEP
● Covers the complete physics for e⁻, e⁺ and 𝛾 particle transport

● Initialization of physics tables dependent on Geant4, but usage on GPU standalone and
lightweight

► Design of library very supportive for heterogeneous simulations
● Interfaces: standalone functions without global state

● Data: physics tables and other data structures copied to GPUs

● Reusing > 95% of the code from G4HepEm for GPU shower simulation

5

Interactions modelled for e+, e- and ɣ

6

*Energy loss fluctuation- corresponding to G4UniversalFluctuation model in Geant4-11.p01 also implemented for e+, e-

Correctness checks

► Validation against Geant4 standalone is
essential

● Comparisons to CPU references (in general
Geant4-based) done for each added
functionality

● Both for standalone and Geant4 integration
examples

► EM physics now fully validated
● At ‰ level in the sampling calorimeter test case

► Still working on the last bugs/features in a
hybrid workflow steered by Geant4

Sampling calorimeter example

7

AdePT integration with Geant4

GPU geometry: VecGeom

► First implementation of GPU support few years old
● C++ types re-compiled using nvcc in a separate namespace/library

● In AdePT we wrote a custom global navigation layer calling lower level VecGeom APIs

► Improving gradually GPU support
● Developed custom optimised navigation state, single-precision support

● Moving from a simple “loop” navigator to an optimized BVH navigator

● Adopting modern CMake GPU support

► Moving forward: specializing the VecGeom GPU navigation support
● Portable less complex code, creating a surface-based view on device

● An initial prototype is now being discussed

8

https://indico.cern.ch/event/1176049/

Parallelization in AdePT

► Simulation is done in steps, moving particles to either boundaries or physics
processes

► All active tracks available are stepped at once (Geant4 transports one
particle at a time)

● Much higher degree of parallelism and more uniform work for the GPU

► No “thread-local” state, everything embedded in the track
● Energy, position/direction, state needed across steps
● Random number generator state (RANLUX++) per track to ensure reproducibility

▹ Strategy to spawn a new sequence for daughter particles from the current state

► Tracks pre-allocated per particle type in thread-safe containers
● Atomic counter to hand on track slots to be filled by kernels (explained later)

9

► Investigated entity component systems approach used in gaming (SoA)
● Now also investigating track data structure transformations using
● No definitive conclusion yet

▹ In realistic setups track data access is just a fraction of the loads/stores
▹ Making small kernels accessing just part of the data introduces other overheads

► Difficult to implement coalesced memory access in simulation
● Complex and sparse (accessed) data models. Geometry is a pathologic case.
● The stochastic nature of the problem destroys locality.
● Killed tracks leave random holes in the track data structure.

▹ Placing statically data makes accessing it look like a “whack-a-mole” game
▹ We need data regrouping solutions

Track representation / access pattern

10

https://indico.cern.ch/event/1020971/contributions/4285427/attachments/2214052/3747912/21.03.21_DataLayout_ProfileExample9.pdf
https://github.com/alpaka-group/llama

Handling arrays of tracks in AdePT
► Store indices of active tracks (per

particle type)
● Parallelize transportation kernels over these

indices

► Queue indices for “next” active tracks
● Both secondaries and “surviving” tracks
● Implemented with atomic counter

► Run transportation kernel stepping the
active tracks

● Here track #1 , #2 and #5 survive, track #4 dies,
and track #6 and #7 are produced

► Swap active ↔ next before next iteration
● Compacting unused slots now possible

11

AOS
Pre-allocated buffer

Stepping workflow, a first approach

► Can start kernels for particle types in parallel streams (transport is
independent)

► Synchronization means overhead
● Synchronize on the GPU via CUDA events
● Synchronize with host once at the end of the step (stepping loop control, transfer hits)

► Main optimization playground
● Better work balancing between warps, reducing impact of tails, better device occupancy

12

Simplified Calorimeter Benchmark

13

► Calorimeter with 50 layers
► Simulate 10,000 particles

● 10 GeV electrons as primaries

► Configuration parameter space
● Number of particles per batch
● Number of registers per thread
● Number of threads per block

► Compare on different hardware
● Nvidia RTX 2070
● Nvidia RTX 8000
● Nvidia Tesla V100S

50 layers

Pb or PbWO4 (gap)

LAr (absorber)

Run Time Characteristics

14

batch size = 100

batch size = 1000

Unallocated warps in active SMs
Compute warps in flight

25 %

50 %

75 %

100 %

Occupancy
● putting more work per batch does more work in the same

#iterations (steps)
○ limited by available memory AND available tracks

● hints already to using strategies to fill the gaps
○ e.g. more CPU threads doing concurrent events

fastest

Kernel Launch Configurations
► 1024 Threads / SM

● 4 schedulers x 8 warps/scheduler x 32 threads/warp

► 65536 Registers / SM
● 4 register files x 16384 registers
● 1 float = 1 register, 1 double = 2 registers

► 96 KB L1 Data Cache / Shared Memory
► Theoretical Occupancy (–maxrregcount or __launch_bounds__)

● 256 regs/thread (256 threads, 8 warps) ⇒ 25%
● 160 regs/thread (320 threads, 10 warps) ⇒ 38%
● 128 regs/thread (512 threads, 16 warps) ⇒ 50%
● 96 regs/thread (640 threads, 20 warps) ⇒ 63%
● 80 regs/thread (768 threads, 24 warps) ⇒ 75%
● 64 regs/thread (1024 threads, 32 warps) ⇒ 100%

15

Turing SM

H
ig

he
r p

ar
al

le
lis

m

Fa
st

er
 T

hr
ea

d
s

Relative Performance per SM

16

● sweet spot at about 50% occupancy for a simple geometry,
showing that simulation code is register-hungry

● comparable throughput per SM no matter the card

GPU Throughput (RTX 2070)

17

25 %

50 %

75 %

100 %

Occupancy

Performance does not improve with higher occupancy.
Too many global memory accesses, thread divergence.

More occupancy means more memory accesses spill to global memory.

Case Study: Thread Divergence

18

Problem: Threads in transport kernels diverge
because of diverging interactions
→ 13 / 32 threads active on average

Here: Split off interaction computations from
cross-section and geometry kernels (one
kernel for pair creation, one for ionisation, …)

Result: 17 / 32 threads active for physics + geo
 29 / 32 threads active for Bremsstr.
 Run time: 6.4 s → 5.5 s

Conclusion: Keeping threads coherent is key
for detector simulation
Generally difficult; stochastic processes

Single kernel
Split kernels

End of
step

Single kernel
Split kernels

V100

CPU vs GPU Performance

19
AMD Ryzen 3950X (16 cores, 32 threads, 3.5-4.7GHz), AMD EPYC 7282 (16 cores, 32 threads, 2.8-3.2GHz)

32 threads

64 threads

36 SMs

72 SMs

80 SMs

Performance portability

► oneAdePT - port to oneAPI of an AdePT snapshot
● core utilities, magnetic field, RNG, G4HepEM
● No way around calling legacy CUDA code compiled in VecGeom

► Many obstacles for migrating CUDA to DPC++ code
● SYCL limitations in calling virtual functions or function pointers, non-const globals, support

for std:: math functions, support for CUDA compiled libraries, documentation

► Triggered investigations and work in VecGeom
● Non-virtual dispatch and CUDA compilation using clang, deeper restructuring needed
● Specializing geometry for GPU needed for both portability and better performance
● Further efforts for portability postponed until solving this blocker

20

https://github.com/dosarudaniel/oneAdePT

AdePT-Geant4 integration

21

► AdePT only provides EM physics for e⁺, e⁻ and γ
● Cannot be used standalone for simulating a full experiment
● In a first phase it could be used as accelerator for the EM part, in the

same way as fast simulation models can be used in Geant4

► Developed an integration interface allowing a Geant4
region to become the “GPU region”

● Intercepting and buffering for GPU particles sent asynchronously by
Geant4 threads

● May be in future applicable to the full detector, handing produced
hadrons back to Geant4

ev0

ev1

ev2

ev3

buffer

buffer

buffer

buffer

GPU
thread1

thread2

thread3

thread4

CMS Simulations: Integrated and Standalone

22

CMS

TestEm3

Integrate into Geant 4?
Above is a timeline of a simulation of CMS comparing the
AdePT integration and Geant4 (Ryzen 3950X, RTX2070),
with a speedup of 37% when using 2 CPU threads + 1 GPU
vs only 2 CPU threads.

Impact of detector geometry?
On the right, 106 electrons at E=10 GeV on an Nvidia Tesla
V100 with TestEm3 geometry vs the CMS geometry. The
total simulation run time for the simplified calorimeter
(TestEm3) setup is 549s vs 1455 s for the CMS geometry
(a slowdown of 2.65x).

Geant4 (CPU) + AdePT (GPU) Geant4 (CPU)Init.
126s 200s

divergence…

User actions & scoring
► Geant4 calls user code for performing custom run, event

and stepping actions
● Should we provide the same for simulation running on GPU?
● Do we have to run (complex) user code there?

▹ Code efficiency, device data management, transfer to host

► Solving this was not an immediate priority
● First target: EM calorimeters, allowing for pre-defined scoring type
● However simple energy deposits are not enough in several use cases

► A simplified approach based on static binding possible at
this stage (we compile the transport kernels)

● Init on device, score energy deposits, copy hits to host, clear
● Called for sensitive detectors within the device stepping loop

23

electrons.cuh

template <typename Scoring>
__global__ void
TransportElectrons(Scoring *s)
{
…
 s->Score(track_state_pars);
}

SimpleScoring.h

struct SimpleS
{
 BasicScoring *InitializeOnGPU();

 __device__ void Score(params);

 template <typename Stream>
 void CopyHitsToHost(Stream
 &stream)
 void ClearGPU(Stream &stream)
};

using AdeptScoring = SimpleS;

Outlook
► A challenging project, the problem is far from a perfect match for GPU

● Fast progress due to some code refactoring done before AdePT (VecGeom, field)
▹ Re-writing these is now necessary due to performance reasons

● Several performance limitations in the path still to be addressed, some require deep code
restructuring

► Prototypes for standalone and Geant4-integrated workflows available
● Realistic examples for LHC setups, GPUs can be used in a Geant4 native application
● Optimization work ongoing, performance not yet on a GPU-efficient baseline

► Most initial AdePT objectives complete
● Still to decide on the strategy for larger developments and more efficient integration with the

experiment’s simulation code

► Collaborating on common development topics with the Orange team is
essential: geometry, integration with Geant4 and experiments code, …

24

