# Computing anomalous dimensions of strongly-coupled CFTs from supergravity

#### Emanuel Malek







#### Athens 21st December 2022

with Bobev, Duboeuf, Galli, Giambrone, Guarino, Josse, Nicolai, Petrini, Robinson, Samtleben, Sterckx, Trigiante, van Muiden

#### The importance of Kaluza-Klein spectra



FIG. 2. Mass spectrum of scalars.

- AdS/CFT: conformal dimensions
- Stability of non-SUSY vacua?

# AdS/CFT correspondence



$$L_{\rm CFT} o L_{\rm CFT} + \chi_i \mathcal{O}^i$$



#### Kaluza-Klein masses $\Leftrightarrow$ anomalous dimensions

# AdS/CFT correspondence



Kaluza-Klein masses ⇔ anomalous dimensions

# AdS/CFT correspondence



Kaluza-Klein masses  $\Leftrightarrow$  anomalous dimensions

Computing Kaluza-Klein spectra is hard

Free scalar on  $S^1$ :

$$0 = \partial_x^2 \phi(x, y) + \partial_y^2 \phi(x, y) ,$$
  
$$\phi(x, y) = \phi^{(k)}(x) e^{i k y/R} , \qquad m^2 = \frac{k^2}{R^2} .$$

Computing Kaluza-Klein spectra is hard

Free scalar on  $S^1$ :

$$0 = \partial_x^2 \phi(x, y) + \partial_y^2 \phi(x, y) ,$$
  
$$\phi(x, y) = \phi^{(k)}(x) e^{i k y/R} , \qquad m^2 = \frac{k^2}{R^2} .$$

SUGRA: (linearised) EoMs mix metric & fluxes  $\Rightarrow$  eigenmodes?

$$\nabla_{Q} f^{QMNP} + \frac{1}{2} F^{QMNP} \nabla_{Q} h_{R}^{R} - \nabla_{Q} \left( h^{QR} F_{R}^{MNP} \right) - 3 \nabla^{Q} \left( h^{S[M} F_{QS}^{NP]} \right) = -\frac{1}{288} \epsilon^{MNPQ_{1} \dots Q_{8}} F_{Q_{1} \dots Q_{4}} f_{Q_{5} \dots Q_{4}} + \frac{1}{2} F_{QS}^{MNP} F_{QS}^{NP} + \frac{1}{2} F_{QS}^{MNP} + \frac{1}{2} F_{QS}^{MNP} F_{QS}^{NP} + \frac{1}{2} F_{QS}^{NP} +$$

Computing Kaluza-Klein spectra is hard

Free scalar on  $S^1$ :

$$0 = \partial_x^2 \phi(x, y) + \partial_y^2 \phi(x, y) ,$$
  
$$\phi(x, y) = \phi^{(k)}(x) e^{i k y/R} , \qquad m^2 = \frac{k^2}{R^2} .$$

► SUGRA: (linearised) EoMs mix metric & fluxes ⇒ eigenmodes?

$$\nabla_Q f^{QMNP} + \frac{1}{2} F^{QMNP} \nabla_Q h_R^{\ R} - \nabla_Q \left( h^{QR} F_R^{\ MNP} \right) - 3 \nabla^Q \left( h^{S[M} F_{QS}^{\ NP]} \right) = -\frac{1}{288} \epsilon^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_4} f_{Q_5 \dots Q_8} \cdot \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8} F_{Q_1 \dots Q_8} + \frac{1}{2} e^{MNPQ_1 \dots Q_8} F_{Q_1 \dots Q_8}$$

Previously, only two cases understood:

- Non-linear truncation to subset of KK-modes
- Solutions are solutions to higher-dim theory
- Compute subset of masses for any vacuum.
- Results can be misleading!







- Non-linear truncation to subset of KK-modes
- Solutions are solutions to higher-dim theory
- Compute subset of masses for any vacuum.
- Results can be misleading!



FIG. 2. Mass spectrum of scalars.



- Non-linear truncation to subset of KK-modes
- Solutions are solutions to higher-dim theory
- Compute subset of masses for any vacuum.
- Results can be misleading!







#### Consistent truncation

Non-linear embedding of lower-dimensional theory into 10-/11-d supergravity

- ▶ All solutions of lower-d SUGRA  $\rightarrow$  solutions of 10-/11-d SUGRA
- Non-linearity: highly non-trivial!
- Symmetry arguments crucial

NB: No well-controlled AdS vacua of String Theory have scale separation



FIG. 2. Mass spectrum of scalars.

#### Consistent truncation on group manifold





#### Consistent truncation on group manifold



#### Larger symmetry groups from generalising geometry

Symmetry argument for other consistent truncations?

$$S = \int d^{D+2}x \sqrt{|g|} \left( R_g - (\nabla \phi)^2 - e^{\alpha \phi} F^2 \right)$$



#### Larger symmetry groups from generalising geometry

Symmetry argument for other consistent truncations?

$$S = \int d^{D+3}x \sqrt{|G|} (R_G)$$



#### Larger symmetry groups from generalising geometry

Symmetry argument for other consistent truncations?

$$S = \int d^{D+3}x \sqrt{|G|} (R_G)$$



Consistent truncations beyond group manifolds





[de Wit, Nicolai '82]

#### **Exceptional Field Theory**

..., [Berman, Perry '10], [Coimbra, Strickland-Constable, Waldram '11], [Hohm, Samtleben, '13], ...

Exceptional Field Theory: Unify metric + fluxes of supergravity

11-d SUGRA on  $M_4 \times C_7$ :

$$\{g, C_{(3)}, C_{(6)}, \ldots\} = \mathcal{M}_{MN} \in \frac{E_{7(7)}}{SU(8)}.$$

 $\begin{array}{rcl} \mbox{Diffeo} + \mbox{gauge transf} & \rightarrow & \mbox{generalised vector field } V^M \in {\bf 56} \mbox{ of } E_{7(7)} \\ & \mbox{Lie derivative } \rightarrow & \mbox{generalised Lie derivative} \end{array}$ 

 $\mathcal{L}_{V} = V^{M} \partial_{M} - (\partial \times_{adj} V) = \text{diffeo} + \text{gauge transf},$ 

with  $\partial_M = (\partial_i, \partial^{ij}, \partial^{ijklm}, \ldots) = (\partial_i, 0, \ldots, 0).$ 

## Exceptional Field Theory = reformulation of supergravity

Exceptional Field Theory: Reformulation of 10-/11-d supergravity

$$\{g, C_{(3)}, C_{(6)}, \ldots\} = \mathcal{M}_{MN}$$

$$L = R - \frac{1}{48} F_{\mu\nu\lambda\rho} F^{\mu\nu\lambda
ho} + \dots$$

with  $F_{\mu\nu\rho\lambda} = 4\partial_{[\mu}C_{\nu\rho\lambda]}$ .

## Exceptional Field Theory = reformulation of supergravity

Exceptional Field Theory: Reformulation of 10-/11-d supergravity

 $\{g, C_{(3)}, C_{(6)}, \ldots\} = \mathcal{M}_{MN}$ 

$$L = R - \frac{1}{48} F_{\mu\nu\lambda\rho} F^{\mu\nu\lambda\rho} + \dots$$
$$= \mathcal{M}^{MN} \partial_M \mathcal{M}^{PQ} \partial_N \mathcal{M}_{PQ} + \dots$$

## Exceptional Field Theory = reformulation of supergravity

Exceptional Field Theory: Reformulation of 10-/11-d supergravity

 $\left\{g\,,\ C_{(3)}\,,\ C_{(6)}\,,\ \ldots\right\}=\mathcal{M}_{MN}$ 

$$L = R - \frac{1}{48} F_{\mu\nu\lambda\rho} F^{\mu\nu\lambda\rho} + \dots$$
$$= \mathcal{M}^{MN} \partial_M \mathcal{M}^{PQ} \partial_N \mathcal{M}_{PQ} + \dots$$

Generalised Lie derivative  $\Rightarrow$  generalised Ricci scalar

Similar for type II theories & other dimensions

## Exceptional Field Theory and consistent truncations

Consistent truncations to max. gSUGRA captured by "generalised group manifolds" in ExFT



$$U_A^M \in E_{7(7)}$$

$$\mathcal{L}_{U_A} U_B = X_{AB}{}^C U_C$$

$$\mathcal{M}_{MN}(x, Y) = M_{AB}(x)(U^{-1})_M{}^A(Y)(U^{-1})_N{}^B(Y)$$

## Exceptional Field Theory and consistent truncations

Consistent truncations to max. gSUGRA captured by "generalised Leibniz parallelisable manifolds" in ExFT



$$U_A^M \in E_{7(7)}$$

$$\mathcal{L}_{U_A} U_B = X_{AB}{}^C U_C$$

$$\mathcal{M}_{MN}(x, Y) = M_{AB}(x)(U^{-1})_M{}^A(Y)(U^{-1})_N{}^B(Y)$$

e.g. deformations of  $AdS_4 \times S^7$ ,  $AdS_5 \times S^5$ , ...

 $\mathcal{M}_{MN}(x, Y) = M_{AB}(x)(U^{-1})_{M}{}^{A}(Y)(U^{-1})_{N}{}^{B}(Y)$ 



e.g. deformations of  $\mathsf{AdS}_4\times S^7$ ,  $\mathsf{AdS}_5\times S^5$ ,  $\ldots$ 

 $\mathcal{M}_{MN}(x,Y) = \delta_{AB}(U^{-1})_M{}^A(Y)(U^{-1})_N{}^B(Y)$ 



e.g. deformations of  $\mathsf{AdS}_4\times S^7$ ,  $\mathsf{AdS}_5\times S^5$ ,  $\ldots$ 

 $\mathcal{M}_{MN}(x, Y) = M_{AB}(x)(U^{-1})_{M}{}^{A}(Y)(U^{-1})_{N}{}^{B}(Y)$ 



Warped compactifications with few/no remaining (super-)symmetries

e.g. deformations of  $\mathsf{AdS}_4\times S^7$ ,  $\mathsf{AdS}_5\times S^5$ ,  $\ldots$ 

 $\mathcal{M}_{MN}(x, Y) = M_{AB}(x)(U^{-1})_{M}{}^{A}(Y)(U^{-1})_{N}{}^{B}(Y)$ 



Warped compactifications with few/no remaining (super-)symmetries

"Hidden" group structure!

#### Kaluza-Klein spectroscopy



FIG. 2. Mass spectrum of scalars.

## KK spectroscopy strategy

Traditional KK Ansatz:  $\phi(x, y) = \phi^{\Sigma}(x) \underbrace{\mathcal{Y}_{\Sigma}(y)}_{\text{harmonics}}$ 

## KK spectroscopy strategy



# KK spectroscopy strategy



Warped compactifications with few/no remaining (super)symmetries! Spectrum along RG flow! KK spectroscopy



" $\mathcal{N}=8$  supermultiplet contains all SUGRA fields"

KK spectroscopy



 $\mathcal{M}_{MN}(x,Y)\in E_{7(7)}/\mathrm{SU}(8)$








14

#### Mass matrix

Algebraic mass matrix:

$$M^2 = X^2 + T^2 + XT \,.$$

#### KK spectroscopy at less symmetric point





#### KK spectroscopy at less symmetric point



Use same harmonics as for max. symmetric point

Multiplication by  $E_{7(7)}$  matrix,  $M_{AB}(x)$ !

### KK Spectroscopy Summary

- Only scalar harmonics of maximally symmetric point (round sphere)
- ▶ ExFT KK Ansatz  $\implies$  Differential problem  $\rightarrow$  algebraic problem
- Compute full spectrum for any vacuum in consistent truncation
- Spectrum for compactifications with few/no remaining (super-)symmetries

## Applications



## Applications



- 1. Global properties of conformal manifold
- 2. Non-SUSY AdS

#### Ex 1. $\mathcal{N} = 2 \text{ AdS}_4$ family

 $[\mathsf{SO}(6) \times \mathsf{SO}(1,1)] \ltimes \mathbb{R}^{12}$  supergravity

2 moduli  $(\varphi, \delta) \in \mathbb{R}^2_{\geq 0}$  in 4-d theory  $\Leftrightarrow \mathcal{N} = 2$  conformal manifold [Guarino, Sterckx, Trigiante '20], [Bobev, Gautason, van Muiden '21]



Expected to be compact e.g. [Perlmutter, Rasteli, Vafa, Valenzuela, '20]



























#### Ex 1. Space invaders

Higher KK modes become massless when  $\varphi = \frac{p\pi}{T}$ ,  $p \in \mathbb{Z}$ [Giambrone, EM, Samtleben, Trigiante '21]



Spectrum identical for  $\varphi = \frac{2 p \pi}{T}$ ,  $p \in \mathbb{Z}$ Spectrum differs for  $\varphi = \frac{(2 p+1) \pi}{T}$ ,  $p \in \mathbb{Z}$  Ex 1. KK spectrum along  $\mathcal{N}=2$  conformal manifold

[Giambrone, EM, Samtleben, Trigiante '21]

- $\blacktriangleright \ \varphi \in \mathbb{R}^+$  is a 4-d artefact
- $\varphi \in [0, \frac{2\pi}{T})$  in 10 dimensions
- KK spectrum as fct of φ:

$$\Delta = \frac{1}{2} + \sqrt{\frac{17}{4} + \frac{1}{2}R^2 - J(J+1) - 2k(k+1) + \ell(\ell+4) + 4(\frac{\pi n}{T} - j\varphi)^2}.$$

Lorentz spin: JSU(2) spin: kU(1)<sub>R</sub> charge: RU(1)  $\subset$  SU(2) Cartan: jS<sup>5</sup> level:  $\ell$ S<sup>1</sup> level: n

KK spectrum as fct of δ: non-compact? [Bobev, Gautason, van Muiden '21], [Cesàro, Larios, Varela '21]

# Ex 1. $\varphi$ as complex structure deformation [Giambrone, EM, Samtleben, Trigiante '21] • $\varphi$ -family: AdS<sub>4</sub> × S<sup>5</sup> × S<sup>1</sup>: S<sup>5</sup> → S<sup>3</sup> × S<sup>2</sup> ► $S^3$ Hopf fibre & $S^1$ : $S^2$ $\tau = \frac{i}{4\pi} - \frac{\varphi T}{2\pi}$ $\varphi \to \varphi + \frac{2\pi}{T} \Longrightarrow \tau \to \tau - 1$

▶  $\varphi$  deformation: locally  $\rightarrow$  coordinate transformation Similar in other S-fold vacua [Cesàro, Larios, Varela '22]

#### Application to non-SUSY vacua



#### Application to non-SUSY vacua



#### Can compute spectrum for non-SUSY vacua!

#### Stability of non-SUSY AdS vacua



#### Stability of non-SUSY AdS vacua



#### Stability of non-SUSY AdS vacua



#### Ex 2. Non-SUSY flat deformations

2 other flat directions  $\chi_1,\,\chi_2$  of 4-D supergravity [Guarino, Sterckx '21]



#### Non-supersymmetric conformal manifold?

#### Ex 2. Non-SUSY exactly marginal deformations

Non-SUSY exactly marginal deformations not expected to exist

Evidence for a miracle

[Giambrone, Guarino, EM, Samtleben, Sterckx, Trigiante '21]

- Perturbative stability
- Non-perturbative stability
- $\blacktriangleright \frac{1}{N}$  corrections

 $\chi_1$ ,  $\chi_2$  deformations are locally coordinate transformations!

#### Ex 3. Warning: Kaluza-Klein instability



FIG. 2. Mass spectrum of scalars.

Higher KK modes can still be tachyonic! [EM, Nicolai, Samtleben '20]

#### KK Spectrometry beyond consistent truncations


#### KK spectrum beyond consistent truncations

Deformations not triggered by  $\mathcal{N} = 8$  scalars?



#### KK spectrum beyond consistent truncations

Deformations not triggered by  $\mathcal{N} = 8$  scalars?



e.g. generic single-trace RG flows of  $\mathcal{N}=4$  SYM

#### Generalised parallelisability

[Du Boeuf, EM, Samtleben '22]  $U_A{}^M \in E_{7(7)}$  give basis for all fields

but,  $\mathcal{L}_{U_A}U_B = X_{AB}{}^{C}(Y)U_C$ .



Only need scalar harmonics:  $\mathcal{Y}_\Sigma$ 

#### Generalised parallelisability

[Du Boeuf, EM, Samtleben '22]  $U_A{}^M \in E_{7(7)}$  give basis for all fields

but,  $\mathcal{L}_{U_A}U_B = X_{AB}{}^{C}(Y)U_C$ .



Only need scalar harmonics:  $\mathcal{Y}_\Sigma$ 

$$\mathcal{M}_{MN}(x,Y) = (\delta_{AB} + j_{AB}{}^{\Sigma}(x)\mathcal{Y}_{\Sigma})(U^{-1})_{M}{}^{A}(Y)(U^{-1})_{N}{}^{B}(Y)$$
$$j_{AB}{}^{\Sigma} \in \mathfrak{e}_{7(7)} \ominus \mathfrak{su}(8)$$

#### **Applications**

Compute KK spectrum of generic single-trace deformations, outside  $\mathcal{N}=8$  SUGRA

Examples

 $\begin{array}{l} \blacktriangleright \ \mathcal{N}=1 \ \text{and} \ \mathcal{N}=0 \ \text{AdS}_4 \times \ \text{Squashed} \ \text{S}^7 \colon \frac{\mathrm{USp}(4)}{\mathrm{SU}(2)}, \ \text{not symmetric space} \\ \longrightarrow \ \text{Full spectrum for first time [Du Boeuf, EM, Samtleben '22]} \end{array}$ 

$$L[J] \otimes [p,q,r] \otimes \{s\}: \quad \Delta = 1 + \frac{5}{3}s + \frac{1}{3}\sqrt{(3J+2s^2)^2 + 5C(p,q,r)}.$$

β-deformation of AdS<sub>5</sub> × S<sup>5</sup>
 → Anomalous dimensions along conformal manifold [Galli, Josse, EM, Petrini, *work in progress*]

#### **Applications**

Compute KK spectrum of generic single-trace deformations, outside  $\mathcal{N}=8$  SUGRA

Examples

 $\begin{array}{l} \blacktriangleright \ \mathcal{N}=1 \ \text{and} \ \mathcal{N}=0 \ \text{AdS}_4 \times \ \text{Squashed} \ \text{S}^7 \colon \frac{\mathrm{USp}(4)}{\mathrm{SU}(2)}, \ \text{not symmetric space} \\ \longrightarrow \ \text{Full spectrum for first time [Du Boeuf, EM, Samtleben '22]} \end{array}$ 

$$L[J] \otimes \underbrace{[p,q,r]}_{\mathsf{USp}(4)\times\mathsf{SU}(2)} \otimes \{s\}: \quad \Delta = 1 + \frac{5}{3}s + \frac{1}{3}\sqrt{(3J+2s^2)^2 + 5\mathcal{C}(p,q,r)}.$$

β-deformation of AdS<sub>5</sub> × S<sup>5</sup>
 → Anomalous dimensions along conformal manifold
 [Galli, Josse, EM, Petrini, work in progress]

#### **Applications**

Compute KK spectrum of generic single-trace deformations, outside  $\mathcal{N}=8$  SUGRA

Examples

 $\begin{array}{l} \blacktriangleright \ \mathcal{N}=1 \ \text{and} \ \mathcal{N}=0 \ \text{AdS}_4 \times \ \text{Squashed} \ \text{S}^7 \colon \frac{\mathrm{USp}(4)}{\mathrm{SU}(2)}, \ \text{not symmetric space} \\ \longrightarrow \ \text{Full spectrum for first time [Du Boeuf, EM, Samtleben '22]} \end{array}$ 

$$L[J] \otimes [p, q, r] \otimes \{s\}$$
:  $\Delta = 1 + \frac{5}{3}s + \frac{1}{3}\sqrt{(3J + 2s^2)^2 + 5C(p, q, r)}$ .

β-deformation of AdS<sub>5</sub> × S<sup>5</sup>
 → Anomalous dimensions along conformal manifold
 [Galli, Josse, EM, Petrini, *work in progress*]

### Conclusions

ExFT: Compute full KK spectrum for warped compactifications with few/no remaining (super-)symmetries

- New holographic tests (comparison with SUSY index) & predictions [Bobev, EM, Robinson, Samtleben, van Muiden '21]
- Danger of trusting lower-dimensional supergravity!
- Higher KK modes crucial for physics
  - Compactness of conformal manifold
  - Perturbatively stable non-SUSY AdS, also in mIIA [Guarino, EM, Samtleben '21]
  - Higher KK modes can trigger instabilities [EM, Nicolai, Samtleben '20]

### Conclusions

 $\label{eq:ExFT: Compute full KK spectrum for warped compactifications with few/no remaining (super-)symmetries$ 

- New holographic tests (comparison with SUSY index) & predictions [Bobev, EM, Robinson, Samtleben, van Muiden '21]
- Danger of trusting lower-dimensional supergravity!
- Higher KK modes crucial for physics
  - Compactness of conformal manifold
  - Perturbatively stable non-SUSY AdS, also in mIIA [Guarino, EM, Samtleben '21]
  - Higher KK modes can trigger instabilities [EM, Nicolai, Samtleben '20]

Outlook:

- Vacua of less SUSY truncations?
- Correlation functions?

## Thank you!

Ex 0. Holographic dual of LS SCFT



 $\mathcal{N}=2$  SU(2)<sub>F</sub>  $\times$ U(1)<sub>R</sub> AdS<sub>5</sub> vacuum [Khavaev, Pilch, Warner '00]



Ex 0. Holographic dual of LS SCFT



 $\mathcal{N}=2$  SU(2)<sub>F</sub>  $\times$ U(1)<sub>R</sub> AdS<sub>5</sub> vacuum [Khavaev, Pilch, Warner '00]



#### Ex 0. Checks & Predictions for LS SCFT

[Bobev, EM, Robinson, Samtleben, van Muiden '21]

Full spectrum of single-trace primary operators:

$$\Delta = 1 + \sqrt{7 - 3|j_1 + j_2| + \frac{3}{4}(r^2 - 2(p + 2y)^2 + 2\ell(\ell + 4) - 4k(k + 1))}$$

Lorentz spin:  $j_1, j_2$ SU(2)<sub>F</sub> spin: kU(1)<sub>R</sub> charge: r  $S^5$  level:  $\ell$ U(1)<sub>P</sub> × U(1)<sub>Y</sub> charges: p, y

Unprotected operators with finite  $\Delta$  at strong coupling!

Semi-short multiplets match superconformal index

#### Ex 2. KK Spectroscopy

[Giambrone, Guarino, EM, Samtleben, Sterckx, Trigiante '21]

 $\mathsf{KK} \text{ spectroscopy} \to \mathsf{full} \ \mathsf{KK} \ \mathsf{spectrum}$ 

Perturbatively stable!

$$\Delta = \frac{3}{2} + a + \frac{1}{2}\sqrt{9 + 2\ell(\ell+4) + 4\ell_1(\ell_1+1) + 4\ell_2(\ell_2+1) + 2\left(\frac{2n\pi}{T} + j_1\chi_1 + j_2\chi_2\right)^2}$$

Position within  $\mathcal{N} = 4$  multiplet: *a* SO(4) spin:  $\ell_1$ ,  $\ell_2$ Charges under U(1) × U(1) Cartan:  $j_1$ ,  $j_2$  $S^5$  level:  $\ell$  $S^1$  level: *n* 

### Ex 2. Non-perturbative stability?

[Giambrone, Guarino, EM, Samtleben, Sterckx, Trigiante '21]

- Probe-brane analysis: T > Q
   Branes more stable than in SUSY case!
- No Ooguri-Vafa instability [Ooguri, Vafa '16]
- ▶  $S^1$  and  $S^5$  protected against "bubble of nothing" [Witten '82]
- D3-brane bubble of nothing [Bomans, Cassani, Dibitetto, Petri '21] ??

Ex 2.  $\frac{1}{N}$  corrections

[Giambrone, Guarino, EM, Samtleben, Sterckx, Trigiante '21]

Flat directions lifted by  $\frac{1}{N}$  corrections?

Protection by diffeomorphism symmetry

•  $\chi_1, \chi_2 \rightarrow \text{coordinate transformations (locally)}$ 

•  $\chi_1$ ,  $\chi_2$  do not appear in diffeo-invariant quantities

Also applies to  $\mathcal{N}=1$  exactly marginal deformations [Bobev, Gautason, van Muiden '21]

Ex 2.  $\frac{1}{N}$  corrections

[Giambrone, Guarino, EM, Samtleben, Sterckx, Trigiante '21]

Flat directions lifted by  $\frac{1}{N}$  corrections?

Protection by diffeomorphism symmetry

•  $\chi_1$ ,  $\chi_2 \rightarrow$  coordinate transformations (locally)

•  $\chi_1$ ,  $\chi_2$  do not appear in diffeo-invariant quantities

Also applies to  $\mathcal{N}=1$  exactly marginal deformations [Bobev, Gautason, van Muiden '21]

Corrections from D5-instantons?

 $\textit{vol}_{\mathrm{S}^5 \times \mathrm{S}^1}$  independent of  $\chi_1\text{, }\chi_2$ 

# Ex 3. Tachyonic KK modes 11-d SUGRA 4-D $\mathcal{N} = 8 \text{ SO(8) SUGRA}$

- Only one non-SUSY vacuum that is stable in 4-d! [Fischbacher, Pilch, Warner '10], [Comsa, Firsching, Fischbacher '19]
- ▶ Non-SUSY SO(3) × SO(3) AdS<sub>4</sub> vacuum [Warner '83]





# Ex 3. Tachyonic KK modes 11-d SUGRA 4-D $\mathcal{N} = 8 \text{ SO(8) SUGRA}$

- Only one non-SUSY vacuum that is stable in 4-d! [Fischbacher, Pilch, Warner '10], [Comsa, Firsching, Fischbacher '19]
- ▶ Non-SUSY SO(3) × SO(3) AdS<sub>4</sub> vacuum [Warner '83]







#### Modes $\ell \leq 1$ : still stable!

[EM, Nicolai, Samtleben '20]



#### Modes $\ell \leq 2$ : tachyons!

[EM, Nicolai, Samtleben '20]







Ex 4. Perturbatively stable non-SUSY AdS<sub>4</sub> vacua



•  $G_2$  invariant + 6 less symmetric non-SUSY AdS<sub>4</sub>, stable in 4-D

Ex 4. Perturbatively stable non-SUSY AdS<sub>4</sub> vacua



•  $G_2$  invariant + 6 less symmetric non-SUSY AdS<sub>4</sub>, stable in 4-D

Ex 4. Stability of  $G_2$  vacuum in mIIA

Analytic spectrum:

$$L^2\mathbb{M}^2_{(
m scalar)} = (\ell+2)(\ell+3) - rac{3}{2}\mathcal{C}_{G_2} \ge 0\,.$$

 $\ell$ :  $S^6$  KK level  $C_{G_2}$ :  $G_2$  Casimir

*G*<sub>2</sub> vacuum is perturbatively stable in mIIA SUGRA [Guarino, EM, Samtleben '21]

- No signs of Ooguri-Vafa instability [Guarino, Tarrio, Varela '20]
- Protected against "bubble of nothing"
- May suffer from different non-perturbative instabilities [Bomans, Cassani, Dibitetto, Petri '21]

Ex 4. Stability of six other  $AdS_4$  vacua in mIIA

Evidence for perturbative stability in mIIA SUGRA [Guarino, EM, Samtleben '21]

• Numerical evaluation up to level  $\ell = 4$ :

- no tachyons
- Iowest-lying masses increase monotonically with level
- No signs of Ooguri-Vafa instability [Guarino, Tarrio, Varela '20]
- Protected against "bubble of nothing"
- Other non-perturbative instabilities?