CARROLL, COTTON AND EHLERS

Marios Petropoulos

XMAS THEORETICAL PHYSICS WORKSHOP NATIONAL AND KAPODISTRIAN UNIVERSITY ATHENS

December 2022

STARRING

Lewis Carroll (1832 - 1898)

Poet and mathematician – Christ Church College, Oxford Alice's Adventures in Wonderland & Through the Looking-Glass

ÉMILE COTTON (1872 - 1950)

Professor of mathematics at the University of Grenoble *Cotton tensor*

Jürgen Ehlers (1929 – 2008)

Max Planck Institute for Gravitational Physics – Potsdam Ehlers group

- 1 Motivations & Main Messages
- 2 CARROLLIAN GEOMETRY & DYNAMICS
- 3 Bulk from Carrollian Boundary Data
- 4 EHLERS GROUP & CARROLLIAN PERSPECTIVE
- 5 OUTLOOK

FRAMEWORK

ASYMPTOTICALLY FLAT SPACETIMES

- Gravitational waves
- Charges and asymptotic symmetries
- Flat holography as opposed to AdS/CFT

Defining feature of asymptotic flatness

From ADS_n to flat, asymptotics

$$\Lambda = -\frac{(n-1)(n-2)}{2}k^2 \rightarrow 0$$

 \mathscr{I}^{\pm} is a null hypersurface \rightarrow Carrollian geometry with $\operatorname{ccarr}(n-1) \equiv \operatorname{BMS}_n$ conformal isometry group

WHY CARROLLIAN? [LÉVY-LEBLOND '65; SEN GUPTA '66]

Carroll group = $\lim_{c\to 0}$ Poincaré group

- ullet light cone shrinks, causality fades o mad tea-party on the other side of the looking-glass
- $\bullet \ \ Riemannian \ (relativistic) \ geometry \rightarrow Carrollian \ geometry \\$

What is BMS? [Bondi, van der Burg, Metzner, Sachs '62]

Asymptotic isometry group of asymptotically flat spacetimes often ∞-dimensional

If flat holography exists the dual theory should be defined on a Carrollian spacetime and be $BMS_n \equiv ccarr(n-1)$ -invariant

RECONSTRUCTING THE BULK FROM THE BOUNDARY

EINSTEIN SPACETIMES - TIME-LIKE CONFORMAL BOUNDARY

- boundary metric
- boundary energy-momentum tensor

RICCI-FLAT SPACETIMES - NULL CONFORMAL BOUNDARY

- boundary Carrollian geometric data
- boundary Carrollian momenta
- boundary Chthonian (infinite) data

PROMINENT ROLE OF THE COTTON/CARROLLIAN-COTTON TENSOR

- enters explicitly the bulk-metric expansion
- defines magnetic duals to energy and momenta

HIDDEN VS. VISIBLE SYMMETRIES IN RICCI-FLAT SPACES

Isometries or asymptotic isometries are visible and act locally

Reductions along isometric orbits exhibit hidden symmetries

- from 4 to 3 dimensions: Ehlers' Möbius group [Ehlers'62]
- larger reduction: bigger group even exceptional acting non-locally in the parent space

Ehlers group is realized on the boundary and acts locally on the Carrollian data including the Carrollian-Cotton attributes

- 1 MOTIVATIONS & MAIN MESSAGES
- 2 CARROLLIAN GEOMETRY & DYNAMICS
- 3 Bulk from Carrollian Boundary Data
- 4 Ehlers group & Carrollian perspective
- 5 OUTLOOK

Basic ingredients in d+1 dimensions (coordinates t, \mathbf{x})

- degenerate metric: $ds^2 = 0 \times (\Omega dt b_i dx^i)^2 + a_{ij} dx^i dx^j$
- field of observers: $\frac{1}{\Omega}\partial_t$ (t should be spelled u)
- clock form: $\mu = -\Omega dt + b_i dx^i$ (Ehresmann connection)

GENERAL COVARIANCE (IN THE PRESENT PARAMETERIZATION)

Carrollian diffeomorphisms: $t' = t'(t, \mathbf{x}) \quad \mathbf{x}' = \mathbf{x}'(\mathbf{x})$

Dynamics - relativistic

GENERAL-COVARIANT ACTION AND ENERGY-MOMENTUM TENSOR

Pseudo-Riemannian spacetimes in d+1 dim $T^{\mu\nu}=rac{2}{\sqrt{-g}}rac{\delta S}{\delta g_{\mu\nu}}$

- ullet Weyl invariance $o T^{\mu}_{\ \mu} = 0$
- general covariance ($\xi=\xi^{\mu}(t,\mathbf{x})\partial_{\mu}$ diffeos) $ightarrow
 abla_{\mu}T^{\mu\nu}=0$

Dynamics - Carrollian

CARROLLIAN-COVARIANT ACTION, ENERGY AND MOMENTA

$$\begin{cases} \Pi^{ij} = \frac{2}{\sqrt{a\Omega}} \frac{\delta S}{\delta a_{ij}} & \text{energy-stress tensor} \\ \Pi^{i} = \frac{1}{\sqrt{a\Omega}} \frac{\delta S}{\delta b_{i}} & \text{energy flux} \\ \Pi = -\frac{1}{\sqrt{a}} \left(\frac{\delta S}{\delta \Omega} + \frac{b_{i}}{\Omega} \frac{\delta S}{\delta b_{i}} \right) & \text{energy density} \end{cases}$$

CONSERVATION EQUATIONS IN CARROLLIAN SPACETIMES

• Carollian covariance $(\xi = \xi^t(t, \mathbf{x})\partial_t + \xi^i(\mathbf{x})\partial_i$ diffeos)

$$\rightarrow \begin{cases} \frac{1}{\Omega} \hat{\mathcal{D}}_t \Pi + \hat{\mathcal{D}}_i \Pi^i + \Pi^{ij} \xi_{ij} = 0 & \text{time} \\ \left(\frac{1}{\Omega} \hat{\mathcal{D}}_t \delta^i_j + \xi^i_j \right) P_i + \hat{\mathcal{D}}_i \Pi^i_j + 2\Pi^i \varpi_{ij} = 0 & \text{space} \end{cases}$$

- \rightarrow momentum P_i
- Weyl covariance $\rightarrow \Pi^{i}_{i} = \Pi$

APPLICATIONS

BLACK-HOLE HORIZONS

Membrane paradigm – wrongly confused with Galilean Navier–Stokes equations

HERE: RICCI-FLAT SPACETIMES

- Null boundaries in asymptotically flat spacetimes are Carrollian geometries – zero speed of light
- These Carrollian geometries have an infinite tower of conformal Killings [Ciambelli, Leigh, Marteau, Petropoulos '19]

$$d+1=3
ightarrow \mathfrak{ccarr}(3) \equiv \mathfrak{so}(3,1) \ltimes \text{supertransls.} \equiv BMS_4$$

in line with expected asymptotic symmetries

- 1 MOTIVATIONS & MAIN MESSAGES
- 2 CARROLLIAN GEOMETRY & DYNAMICS
- 3 Bulk from Carrollian Boundary Data
- 4 EHLERS GROUP & CARROLLIAN PERSPECTIVE
- 5 OUTLOOK

Pure gravity – asymptotically flat or AdS

Solving Einstein' equations in n=d+2 dim for g_{AB} $\{r,t,x^i\}$, $i=1,\ldots,d$ plus gauge fixing (n=d+2 conditions) \rightarrow find g_{AB} as O $(1/r^\ell)$ with coefficients $f(t,\mathbf{x})$ obeying a set of remaining Einstein' eqs.

Solution space \equiv collection of data $f(t, \mathbf{x})$

Spirit: organize $f(t, \mathbf{x})$ and their dynamics tensorially wrt a covariant structure on the boundary

GAUGE CHOICE

- Fefferman–Graham covariant but singular at $k \to 0$
- Bondi valid at $k \to 0$ but not boundary-covariant

EINSTEIN 4-DIM SPACETIMES IN A NUTSHELL

COVARIANT INCOMPLETE MODIFIED NEWMAN-UNTI GAUGE

- boundary metric ds² (6)
- conformal boundary energy-momentum tensor $T_{\mu\nu}$ (5)
- congruence u_{μ} (2) \rightarrow boundary local Lorentz invariance remaining Einstein' equations $\nabla_{\mu} T^{\mu\nu} = 0$ ("fluid")

THE BOUNDARY COTTON TENSOR APPEARS EXPLICITLY IN gar [FG '85;

$$C_{\mu\nu} = \eta_{\mu}^{\rho\sigma} \nabla_{\rho} \left(R_{\nu\sigma} - \frac{R}{4} g_{\nu\sigma} \right)$$
 symmetric, traceless, $\nabla_{\mu} C^{\mu\nu} = 0$
 $C_{\mu\nu} \neq 0 \Leftrightarrow \text{non-conformally flat bry.} \Leftrightarrow \text{asymptotically locally}$

COTTON SPIN-OFFS

 ξ bry. conformal Killing \to ${\it I}^{\mu}=\xi_{\nu}{\it T}^{\mu\nu}$ and ${\it I}^{\mu}_{\rm Cot}=\xi_{\nu}{\it C}^{\mu\nu}$

$$Q_{\xi} = \int_{\Sigma_2} *\mathsf{I} \quad \mathsf{and} \quad Q_{\mathsf{Cot}\xi} = \int_{\Sigma_2} *\mathsf{I}_{\mathsf{Cot}}$$

electric and magnetic dual conserved charges (bulk mass vs. nut)

- $Q_{\text{Cot}\xi} \sim \text{magnetic Komar charges: off-shell conservation}$
- Limitation in AdS: at most 10 conformal Killings (d + 1 = 3)

Extendable in Ricci-flat spacetimes - more interesting

RICCI-FLAT IN COVARIANT NEWMAN-UNTI GAUGE

```
FULL SOLUTION SPACE IN n = 4 [Brussels & Paris Groups]
ds^2_{Ricci-flat} described in terms of 2 + 1 Carrollian boundary data
   • Carrollian geometry (6) with zero geometrical shear \xi_{ii}
        • degenerate metric (3) d\ell^2 = a_{ii} dx^i dx^j
        • Ehresmann connection (3) \mu = \Omega dt - b_i dx^i

    Carrollian conformal "fluid" (5)

        • energy (1) \varepsilon \to \text{Bondi mass aspect}
        • momenta – heat current (2) and stress tensor (2) E_{ii} &

    Carrollian-fluid "velocity" (2) hydro-frame freedom

   • Carrollian dynamical shear (2) \mathcal{C}_{ii}
   • infinite number of further Carrollian data - at every
     O(1/r^n): Chthonian challenges flat "hologtaphy"
obeying Carrollian dynamics
```

3+1 Ricci-flat bulk from its 2+1 Carrollian boundary

• Here
$$C_{\mu\nu} \rightarrow c, \psi_i, \chi_i, \Psi_{ii}, \chi_{ii}$$
 Carrollian Cotton tensors

• Resummability condition $\pi^i = \frac{1}{8\pi G} * \psi^i \rightarrow \text{algebraic Petrov}$

Resummability condition
$$\pi^{i} = \frac{1}{8\pi G} * \psi^{i} \rightarrow \text{algebraic Petrov}$$

$$ds_{\text{res. Ricci-flat}}^{2} = \mu \left[2dr + 2 \left(r\varphi_{j} - * \hat{\mathcal{D}}_{j} * \varpi \right) dx^{j} - \left(r\theta + \hat{\mathcal{K}} \right) \mu \right] + \rho^{2} d\ell^{2} + \frac{\mu^{2}}{\rho^{2}} \left[8\pi G \varepsilon r + * \varpi c \right]$$

$$\frac{1}{\Omega}\hat{\mathcal{D}}_t\varepsilon + \frac{1}{8\pi G}\hat{\mathcal{D}}_i * \chi^i = 0 \quad \hat{\mathcal{D}}_j\varepsilon - \frac{1}{8\pi G} * \hat{\mathcal{D}}_jc = 0 \quad \frac{1}{\Omega}\hat{\mathcal{D}}_tc + \hat{\mathcal{D}}_i\chi^i = 0$$

• Assuming
$$\partial_t$$
 be a Killing $\to \Omega = 1$, $\theta = \varphi_i = 0$, $\hat{\mathcal{H}} = K$

$$d\ell^2 = \frac{2}{P^2(\zeta,\bar{\zeta})}d\zeta d\bar{\zeta}$$

$$-2c = \hat{\tau}(\zeta) + \hat{\bar{\tau}}(\bar{\zeta}) \quad 16i\pi G\varepsilon = \hat{\tau}(\zeta) - \hat{\bar{\tau}}(\bar{\zeta}) \quad 2K = \hat{k}(\zeta) + \hat{\bar{k}}(\bar{\zeta})$$

EXAMPLE: KERR-TAUB-NUT FAMILY

$$P = A\zeta\overline{\zeta} + D$$
 $\hat{k} = K = 2AD$ $\hat{\tau} = 2i(M + iKn),$

- 1 MOTIVATIONS & MAIN MESSAGES
- 2 CARROLLIAN GEOMETRY & DYNAMICS
- 3 Bulk from Carrollian Boundary Data
- 4 Ehlers group & Carrollian perspective
- 5 OUTLOOK

Bulk reduction along a Killing $\zeta \colon \mathcal{M} \to \mathcal{S} = \mathcal{M}/_{\text{orb}(\zeta)}$

$$\lambda = \zeta^A \zeta_A \Rightarrow h_{AB} = g_{AB} - \frac{\zeta_A \zeta_B}{\lambda}$$

FURTHER INGREDIENTS: TWIST AND ITS ON-SHELL POTENTIAL

$$w_A = \eta_{ABCD} \zeta^B \nabla^C \zeta^D \Rightarrow \mathbf{w} = \mathsf{d}\omega$$

THREE-DIMENSIONAL DYNAMICS (SIGMA-MODEL)

DOFS.
$$\tau = \omega + i\lambda$$
 $\tilde{h}_{AB} = \lambda h_{AB}$
EQS. $\tilde{\mathcal{R}}_{AB} = -\frac{2}{(\tau - \bar{\tau})^2} \tilde{\mathcal{D}}_{(A} \tau \tilde{\mathcal{D}}_{B)} \bar{\tau}$ $\tilde{\mathcal{D}}^2 \tau = \frac{2}{\tau - \bar{\tau}} \tilde{\mathcal{D}}_{M} \tau \tilde{\mathcal{D}}_{N} \tau \tilde{h}^{MN}$
INV. $\tau \to \frac{\alpha \tau + \beta}{\gamma \tau + \delta}$, $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in SL(2, \mathbb{R})$: Ehlers' group

Algebraic Ricci-flat spacetimes with Killing ∂_t

$$\tau\left(r,\zeta,\bar{\zeta}\right) = \frac{\hat{\tau}\left(\zeta\right)}{r + \mathrm{i}*\varpi\left(\zeta,\bar{\zeta}\right)} - \mathrm{i}\hat{k}\left(\zeta\right)$$

CARROLLIAN BOUNDARY LOCAL TRANSFORMATIONS

$$P' = \frac{P}{\left|\gamma \hat{k} + i\delta\right|} \quad \hat{k}' = i\frac{\alpha \hat{k} + i\beta}{\gamma \hat{k} + i\delta} \quad \hat{\tau}' = -\frac{\hat{\tau}}{\left(\gamma \hat{k} + i\delta\right)^2}$$

EXAMPLE: KERR-TAUB-NUT FAMILY

$$P = A\zeta\bar{\zeta} + D$$
 $\hat{k} = K = 2AD$ $\hat{\tau} = 2i(M + iKn),$
 $*\varpi(\zeta,\bar{\zeta}) = n + a - \frac{2Da}{P}$

 $M \& n \leftrightarrow \text{electric } \& \text{ magnetic charges} - \text{mixed under M\"obius}$

- 1 Motivations & Main Messages
- 2 CARROLLIAN GEOMETRY & DYNAMICS
- 3 Bulk from Carrollian Boundary Data
- 4 EHLERS GROUP & CARROLLIAN PERSPECTIVE
- 5 Outlook

QUOTABLE FACTS

- Ricci-flat spacetimes are reconstructed from boundary Carrollian-covariant data including the Cotton tensors
- A bulk isometry reveals into a boundary Ehlers' Möbius local invariance involving the Cotton as a magnetic facet
- Origin of the localization: ¹/r-expansion of the bulk Weyl → energy-momentum & Cotton (→ Petrov classification)

FURTHER KNOWLEDGE AND INVESTIGATION

- Towers of charges and dual charges are available from boundary Carrollian methods \rightarrow organized wrt $SL(2,\mathbb{R})$
- Further comparison with bulk approaches for towers of charges and duality issues [Godazgar, Godazgar, Pope '18-21]
- ullet Method generalizable beyond algebraic spaces or ∂_t Killing
- Hope for this boundary invariance without bulk isometry?
- What could we learn for flat holography?

6 Killings & Charges

KILLINGS AND CONSERVED CHARGES

RELATIVISTIC CONFORMAL DYNAMICS

- ξ conformal Killing $\to I^{\mu} = \xi_{\nu} T^{\mu\nu}$ divergence-free
- $Q_{\xi} = \int_{\Sigma_{J}} *I \text{ conserved}$

CONFORMAL CARROLLIAN DYNAMICS [PETKOU, PETROPOULOS, RIVERA-BET., SIAMPOS '22]

- Conformal Killings via $\mathcal{L}_{\xi}a_{ij}$ and $\mathcal{L}_{\xi}\frac{1}{\Omega}\partial_t$ but not $\mathcal{L}_{\xi}\mu$
- ξ plus $\left\{\Pi,\Pi^{ij},P^i,\Pi^i\right\} \rightarrow \left\{\kappa,K^i\right\}$
- Carrollian divergence: $\mathcal{K} = \frac{1}{\Omega} \hat{\mathcal{D}}_t \kappa + \hat{\mathcal{D}}_j K^j = 0$ if $\Pi^i = 0$
- Charge: $Q_K = \int_{\Sigma_d} d^d x \sqrt{a} \left(\kappa + b_i K^i \right)$ conserved if K = 0

APPLICATION FOR 4-DIM RICCI-FLAT SPACETIMES

Main consequences

- Null boundaries in asymptotically flat spacetimes are Carrollian geometries
- Boundary Carrollian geometries with have an infinite tower of conformal Killings generating BMS₄
- Carrollian dynamics appears for the energy-momentum and the Cotton
- Infinite towers of conformal-Killing charges exist in electric and magnetic versions but not all are always conserved
- The Möbius group acts on these charges only $\begin{pmatrix} \cos \chi & -\sin \chi \\ \sin \chi & \cos \chi \end{pmatrix}$ is a genuine transformation