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Figure 2.4: The PDF4LHC15 NLO PDFs at a low scale µ2 = Q2 = 4 GeV2 (left plot) and at µ2 = Q2 =
102 GeV2 (right plot) as a function of x. We show the uv and dv valence combinations, the ū, d̄, s and c sea
quark PDFs, and the gluon (note that the latter is divided by a factor 10).

are respectively related to the baryon octet �-decay constants, whose measured values are [28]

gA = a3 =

Z
1

0

dx�T3(x, µ
2) = h1i�u+ � h1i�d+ = 1.2723± 0.0023 , (2.53)

a8 =

Z
1

0

dx�T8(x, µ
2) = h1i�u+ + h1i�d+ � 2 h1i�s+ = 0.585± 0.025 . (2.54)

Fairly significant violations of SU(3) symmetry are advocated in the literature (see e.g. Ref. [205] for a
review). In this case, an uncertainty on the octet axial charge, which could be as large as 30% of the
experimental value of a8 in Eq. (2.54), see Ref. [206].

Experimental data. The bulk of the experimental information on polarized PDFs comes from
neutral-current (photon exchange) inclusive and semi-inclusive deep-inelastic scattering (DIS and SIDIS)
with charged lepton beams and nuclear targets. As photon scattering does not distinguish quarks and
antiquarks, inclusive DIS data constrain only the total quark combinations �q+, while SIDIS data
with identified pions or kaons in the final state constrain individual quark and antiquark flavors. In
principle, both DIS and SIDIS are also sensitive to the gluon distribution �g, as it directly enters the
factorized expressions of the corresponding structure functions beyond LO, and indirectly via DGLAP
evolution. In practice, the constraining power of DIS and SIDIS data on �g is rather weak because the
Q2 range covered by the data is limited, especially if one restricts to the kinematic region not a↵ected
by power-suppressed corrections and very precise data from JLab are therefore excluded.

Note that, in the case of SIDIS, a reliable knowledge of fragmentation functions (FFs) is required
in the factorized expressions of the corresponding observables. Since FFs are nonperturbative objects

27

Fits to experimental cross section data

Determination of Parton distribution functions from Experiment



x
3−10 2−10 1−10 1

0.2−

0.1−

0

0.1

0.2

0.3

0.4

g/10

vu

vd

d
c

s u

NNPDFpol1.1 (NLO)
)2=4 GeV2µxf(x,

 

x
3−10 2−10 1−10 1

0.2−

0.1−

0

0.1

0.2

0.3

0.4

g/10

vu

vd

d

u
s

cb

)2 GeV2=102µxf(x,

 

Figure 2.6: Same as Fig. 2.4, but for the polarized NNPDFpol1.1 NLO PDFs [16].
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Figure 2.7: (Left) The polarized gluon momentum distribution x�g from the DSSV14 (with 90% C.L. uncer-
tainty band) and NNPDFpol1.1 PDF sets at Q2 = 10 GeV2. The NNPDF3.1 positivity bound is also shown.
(Right) 90% C.L. areas in the plane spanned by the truncated moments of �g computed for 0.05  x  1 and
0.001  x  0.05 at Q2 = 10GeV2 [27].

• The 2012 STAR data sets on W production [232], included in NNPDFpol1.1, provide evidence of
a positive �ū distribution and a negative �d̄ distribution, with |�d̄| > |�ū| [16]. The size of the
flavor symmetry breaking for polarized sea quarks is quantified by the asymmetry �ū��d̄, which,
in the NNPDFpol1.1 analysis, turn out to be roughly as large as its unpolarized counterpart (in
absolute value) [11], though much more uncertain [234]. Even within this uncertainty, polarized
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Figure 2.3: Comparison between the CT14, MMHT2014 and NNPDF3.1 NNLO PDF sets at Q = 100 GeV,
normalized to the central value of the latter. From top to bottom and from left to right we show the u, d̄ and
s quark PDFs as well as the gluon. The error bands indicate the 1-� PDF uncertainties associated with each
set. These PDF comparison plots have been produced using the APFEL-Web online plotting interface [199].

2.3.3 Polarized PDFs

Theoretical features. The dependence on the momentum fraction x, fixed by nonperturbative QCD
dynamics, should satisfy some theoretical constraints. First, PDFs must lead to positive cross-sections.
At leading order (LO), this implies that polarized PDFs are bounded by their unpolarized counterparts6,
|�f(x, µ2)|  f(x, µ2) [202]. Second, PDFs must be integrable: this corresponds to the assumption
that the nucleon matrix element of the axial current for each flavor is finite. Third, SU(2) and SU(3)
flavor symmetry, if assumed to be exact, imply that the zeroth moments of the nonsinglet C-even PDF
combinations, �T3 = �u+

��d+ and �T8 = �u+ +�d+ � 2�s+ (where �q+ = �q+�q̄, q = u, d, s),
are respectively related to the baryon octet �-decay constants, whose measured values are [28]

gA = a3 =

Z
1

0

dx�T3(x, µ
2) = h1i�u+ � h1i�d+ = 1.2723± 0.0023 , (2.53)

a8 =

Z
1

0

dx�T8(x, µ
2) = h1i�u+ + h1i�d+ � 2 h1i�s+ = 0.585± 0.025 . (2.54)

Fairly significant violations of SU(3) symmetry are advocated in the literature (see e.g. Ref. [203] for a
review). In this case, an uncertainty on the octet axial charge, which could be as large as 30% of the
experimental value of a8 in Eq. (2.54), see Ref. [204].

Experimental data. The bulk of the experimental information on polarized PDFs comes from
neutral-current (photon exchange) inclusive and semi-inclusive deep-inelastic scattering (DIS and SIDIS)

6Beyond LO, more complicated relations hold [202]; however they have little e↵ect on PDFs.
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The Electron-Ion Collider
A machine that will unlock the secrets of the strongest force in Nature

!  Call for Collaboration Proposals for Detectors at the Electron-Ion Collider

The computers and smartphones we use every day depend on
what we learned about the atom in the last century. All
information technology—and much of our economy today—
relies on understanding the electromagnetic force between the
atomic nucleus and the electrons that orbit it. The science of
that force is well understood but we still know little about the
microcosm within the protons and neutrons that make up the
atomic nucleus. That’s why Brookhaven Lab is building a new
machine—an Electron-Ion Collider, or EIC—to look inside the
nucleus and its protons and neutrons.

The EIC will be a particle accelerator that collides electrons
with protons and nuclei to produce snapshots of those
particles’ internal structure—like a CT scanner for atoms. The
electron beam will reveal the arrangement of the quarks and
gluons that make up the protons and neutrons of nuclei. The
force that holds quarks together, carried by the gluons, is the
strongest force in Nature. The EIC will allow us to study this
“strong nuclear force” and the role of gluons in the matter
within and all around us. What we learn from the EIC could
power the technologies of tomorrow.

GOALS
The Electron-Ion Collider will be a
discovery machine for unlocking the
secrets of the "glue" that binds the
building blocks of visible matter in the
universe.

THE MACHINE
The Electron-Ion Collider will consist of
two intersecting accelerators, one
producing an intense beam of
electrons, the other a beam of protons
or heavier atomic nuclei which are
steered into head-on collisions.

BENEFITS
Beyond sparking scientiLc discoveries
in a new frontier of fundamental
physics, the Electron-Ion Collider will
trigger technological breakthroughs
that have broad-ranging impact on
human health and national challenges.

EIC SCIENCE
The unique and powerful tools of the
Electron-Ion Collider will cast fresh light
on the forces that bind protons and
neutrons together to form nuclei.

Brookhaven National Lab's EIC Directorate coordinates with domestic and international partners to deliver the EIC construction project.

Brookhaven National Laboratory advances fundamental research in nuclear and particle physics to gain a deeper
understanding of matter, energy, space, and time; applies photon sciences and nanomaterials research to energy
challenges of critical importance to the nation; and performs cross-disciplinary research on climate change,
sustainable energy, and Earth’s ecosystems.

IMAGESIMAGESNEWSNEWSSCIENCESCIENCEBENEFITSBENEFITSTHE MACHINETHE MACHINEGOALSGOALSElectron-Ion ColliderElectron-Ion Collider

taken from https://www.bnl.gov/eic/
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DVCS factorization

Ill-defined  inverse problem —-> Lattice QCD computations are essential 
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= ū(p, s)

↵
/n�5 H̃(x, ⌅, t) +

n · ⇥
2m
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= ū(p, s)

↵
/n�5 H̃(x, ⌅, t) +

n · ⇥
2m
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= ū(p, s)

↵
/n�5 H̃(x, ⌅, t) +

n · ⇥
2m
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Ẽ(x, �, t)H̃(x, �, t)

HT (x, �, t)

H̃T (x, �, t) ẼT (x, �, t)
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Generalized Parton Distributions
Unified Hadronic structure
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= ū(p, s)

↵
/n�5 H̃(x, ⌅, t) +

n · ⇥
2m
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Moments of GPDs
Operator Product Expansion 

• Generalized form factors: Ank(t) Bnk(t) Cnk(t) 

• Moments of GPDs are polynomials in ξ with coefficients the generalized form factors.

• Breaking of rotational symmetry: Mixing with lower dimensional operators


• Only first few moments can be computed on the lattice


• Perturbative renormalization has been used extensively


• Non-perturbative (ex. Rome-Southampton RI-MOM)

Unpolarized (F1/F2):
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{µ1µ2···µn} = q

⇤�
i
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⇥n�1
�µ1
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Dµ2 · · ·
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q

Polarized (g1/g2):

Oq
{µ1µ2···µn} = q
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i

2

⇥n�1
�5�µ1

⌅
Dµ2 · · ·

⌅
Dµn �trace

⌅

q

• Broken Lorentz symmetry =⇧

higher moment operators mix with lower dimensional op-
erators. Operators belonging in irreducible representations
of O(4) transform reducibly under the lattice Hyper-cubic
group.

On the lattice we can measure:  x⌦q,  x2⌦q,  x3⌦q
 1⌦�q (gA),  x⌦�q,  x2⌦�q
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Transversity (h1):

�P, S|O⌃q
⇧⌅{µ1µ2···µn}|P, S =

2

mN
�xn ⇥q[(S⇧P⌅�S⌅P⇧)Pµ1Pµ2···Pµn+···�traces]
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Dµ1 · · ·

⌅
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On the lattice we can measure: �1 ⇥q and �x ⇥q.

• Only �1 ⇥q can be measured with ⇠P = 0
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Polarized

Unpolarized

Transversity

�
dxHT (x, �, t) = gT (t) (9)

⇤P, S|O|P, S⌅ (10)

⇤P, S|O|P �, S �⌅ (11)Off forward Matrix elements of local operators



Lattice QCD
Defined on a Euclidean Lattice
• Lattice QCD: QCD on discrete Euclidean space time


• The lattice regulates UV divergences


• QCD: the continuum limit of Lattice QCD


• Provides a numerical, non-perturbative method for computing correlation 
functions : Monte Carlo evaluation of integralsThe Path Integral

�O⇥ =
1
Z

�
D[U ]D[�̄]D[�] O(�̄, �, U) e��̄D(U)��Sg(U)

First integrate out the  fermions

Z =
�
D[U ]D[�̄]D[�] e��̄D(U)��Sg(U)

Z =
�
D[U ]D[�̄]D[�] e��̄D(U)��Sg(U)Z =

�
D[U ]D[�̄]D[�] e��̄D(U)��Sg(U)

If Nf flavor each one will give a power of Nf to the 
determinant

Thursday, June 3, 2010



Computation of equal time matrix elements
LQCD

Typical matrix element computation

Ratios of two and three point functions

Disconnected diagrams usually ignored

Isovector quantities are easier

Dynamical fermions (2 and 2+1 flavors) are 
now the standard
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Typical matrix element computation

Ratios of two and three point functions

Disconnected diagrams usually ignored

Isovector quantities are easier

Dynamical fermions (2 and 2+1 flavors) are 
now the standard
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Two point function 

Three point function 

C2pt = hN(p, s, T )N̄(p, s, 0)i = h0|N, p, sie
�EpT

2Ep
hN, p, s, |0i

<latexit sha1_base64="Mnh58VdrtQerFRm5YHg71yyrWOs="></latexit>

C3pt = h0|N, p, si
e�Ep(T�t)

2Ep
hN, p, s|O|N, p0, s0i

e�E0
pt

2E0
p

hN, p0, s0, |0i

<latexit sha1_base64="fXzvJRVmS0lC12KxuVGVI4lpm3E="></latexit>

Computation  of ground state energy and overlap factors 

Computation of ground state matrix elements 

At sufficiently large T and t we get 

In practice we need to account for contributions from excited states

Energies and equal matrix elements are the same as those in Minkowski space Briceno et al arXiv:1703.06072



Moments of Generalized Parton 
Distributions 

Slope at small t decreases as we go to higher moments

Higher moments dominated by higher x
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FIG. 10: Flattening of the slope of the An0 GFFs with increasing n for flavor combinations u− d (left) and u + d (right). The
solid curves and error bands correspond to dipole fits described in the text. Disconnected contributions are not included.

In Figs. (8) and (9) we show results for the vector generalized form factors A20, B20, C20 and axial vector GFFs
Ã20, B̃20 as functions of the momentum transfer squared t. We observe that the absolute values in the isovector and
isosinglet channels are in qualitative agreement with the predictions from large Nc counting rules, see e.g. [41], for
the unpolarized GFFs

|Au+d
20 | ∼ N2

c " |Au−d
20 | ∼ Nc, |Bu−d

20 | ∼ N3
c " |Bu+d

20 | ∼ N2
c , |Cu+d

20 | ∼ N2
c " |Cu−d

20 | ∼ Nc . (19)

In the polarized case, the inequalities from the counting rules are not satisfied nearly as strongly. Whereas the counting
rules predict:

|Ãu−d
20 | ∼ N2

c " |Ãu+d
20 | ∼ Nc, |B̃u−d

20 | ∼ N4
c " |B̃u+d

20 | ∼ N3
c , (20)

LHPC: Phys. Rev. D 77, 094502 (2008)
hep-lat/0705.4295

q2 q2
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FIG. 13: Ratio of generalized form factors A30(t)/A10(t) for the flavor combinations u − d (left) and u + d (right) compared
with the parametrization in Ref. [11]. Disconnected contributions are not included.

Since the range of values for the momentum transfer t is much smaller for the large volume (L3 = 283) dataset, we
have restricted the dipole fits for all datasets to the overlapping region of t = 0 . . . − 0.8 GeV2. Our results for the
2d rms radii versus the pion mass squared are presented in Figs. (11) and (12). These results confirm the dramatic
dependence of the transverse rms radius on the moment and thus the average momentum fraction as first observed[14]
for pion masses 750 MeV and higher, and show that this dependence increases as the pion mass decreases. Indeed,
considering the ratio of the n = 3 moment to the n = 1 moment, which both correspond to the same sum or difference
of quarks and antiquarks, we observe that for vector GFFs this ratio decreases from approximately 0.58 to 0.22 as the
pion mass decreases from 750 MeV to 350 MeV, and for axial vector GFFs, it decreases from roughly 0.71 to 0.43.

In Figs. (13) and (14) we present a first comparison of our results for ratios of generalized form factors A30(t)/A10(t)
and Ã30(t)/Ã10(t) to the parametrization by Diehl et al.[11] as function of the momentum transfer squared t. As the
pion mass decreases, the slope of our results approaches that of the phenomenological parametrization. Our results
clearly indicate that a factorized ansatz for the GPDs in x and t, which would lead to constant ratios in Figs. (13)
and (14) breaks down already for small values of the momentum transfer squared |t| " 1 GeV2.
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FIG. 14: Ratio of polarized generalized form factors eA30(t)/ eA10(t) for the flavor combinations u − d (left) and u + d (right)
compared with the parametrization in Ref. [11]. Disconnected contributions are not included.

The GFFs Aq
20(t = 0) = 〈x〉q and Bq

20(t = 0) enable us to compute the total quark angular momentum contribution

to the nucleon spin [5], Jq = 1/2(Aq
20(0) + Bq

20(0)). Figures (15) and (16) show results for the quark spin Ãq
10(t =

0)/2 = ∆Σq/2 and the orbital angular momentum Lq = Jq − ∆Σq/2 contributions to the nucleon spin S = 1/2
versus the pion mass squared. Preliminary chiral extrapolations of ∆Σq based on self-consistently improved one-loop
ChPT [44, 45, 46, 47, 48] for ∆Σu+d and ChPT including the ∆ resonance [49, 50] for gA = ∆Σu−d and are shown
as shaded bands. The values for Bq

20(t = 0) have been obtained from a linear extrapolation of Bu+d
20 (t) and a dipole

extrapolation for Bu,d
20 (t) in t. The resulting uncertainty in Bq

20(t = 0), which contributes to the uncertainty in Lq,
depends on the details of the corresponding fit, such as the functional form and range of t, and is therefore partially
systematic. To allow the reader to assess the absolute statistical errors, we represent the errors for Lq coming from
the extrapolation in t by error bands around the m2

π-axis in Figs. (15) and (16). Experimental results for the quark
spin fractions ∆Σu+d and ∆(u, d) = ∆Σu,d are represented by open stars for the prediction given in the HERMES
publication from 1999 [51] and filled stars for the 2007 HERMES results [52]. The significant difference between the

Polarized
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The Proton Momentum
 sum rule

ETMC: Phys. Rev. Lett. 119 (2017) 142002

MSbar 2 GeV

5

TABLE II: Our results for the intrinsic spin ( 12�⌃), angular
(L) and total (J) momentum contributions to the nucleon
spin and to the nucleon momentum hxi, in the MS-scheme
at 2 GeV, from up (u), down (d) and strange (s) quarks and
from gluons (g), as well as the sum of all contributions (tot.),
where the first error is statistical and the second a systematic
due to excited states.

1
2�⌃ J L hxi

u 0.415(13)(2) 0.308(30)(24) -0.107(32)(24) 0.453(57)(48)
d -0.193(8)(3) 0.054(29)(24) 0.247(30)(24) 0.259(57)(47)
s -0.021(5)(1) 0.046(21)(0) 0.067(21)(1) 0.092(41)(0)
g - 0.133(11)(14) - 0.267(22)(27)

tot. 0.201(17)(5) 0.541(62)(49) 0.207(64)(45) 1.07(12)(10)

ours are in overall agreement [41]. Results within lattice
QCD for the individual quark hxiq and Jq contributions
are scarce. The current computation is the first one using
dynamical light quarks with physical masses. A recent
quenched calculation yielded values of hxiu,d consistent
with ours.

In Fig. 3 we show schematically the various contri-
butions to the spin and momentum fraction. Using a
di↵erent approach to ours, the gluon helicity was re-
cently computed within lattice QCD and found to be
0.251(47)(16) [8]. Although we instead compute the
gluon total angular momentum and the two approaches
have di↵erent systematic uncertainties, we both find non-
negligible gluon contributions to the proton spin.

FIG. 3: Left: Nucleon spin decomposition. Right: Nu-
cleon momentum decomposition. All quantities are given in
the MS-scheme at 2 GeV. The striped segments show valence
quark contributions (connected) and the solid segments the
sea quark and gluon contributions (disconnected).

Conclusions: In this work we present a calculation of
the quark and gluon contributions to the proton spin,
directly at the physical point.

Having a single ensemble, we can only assess lat-
tice systematic e↵ects due to the quenching of the
strange quark, the finite volume and the lattice spac-
ing indirectly from other twisted mass ensembles. A
direct evaluation of these systematic errors is cur-
rently not possible and will be carried out in the fu-
ture. Individual components are computed for the up,

down, strange and charm quarks, including both con-
nected (valence) and disconnected (sea) quark contri-
butions. Our final numbers are collected in Table II.
The quark intrinsic spin from connected and discon-
nected contributions is 1

2�⌃u+d+s=0.299(12)(3)|conn. �
0.098(12)(4)|disc.=0.201(17)(5), while the total quark
angular momentum is Ju+d+s=0.255(12)(3)|conn. +
0.153(60)(47)|disc.=0.408(61)(48). Our result for the
intrinsic quark spin contribution agrees with the up-
per bound set by a recent phenomenological analy-
sis of experimental data from COMPASS [50], which
found 0.13 < 1

2�⌃ < 0.18. Using the spin
sum one would deduce that Jg=

1
2�Jq=0.092(61)(48),

which is consistent with taking Jg=
1
2 hxig=0.133(11)(14)

via the direct evaluation of the gluon momen-
tum fraction, which suggests that Bg

20(0) is indeed
small. Furthermore, we find that the momentum
sum is satisfied

P
qhxiq + hxig=0.497(12)(5)|conn. +

0.307(121)(95)|disc.+0.267(12)(10)|gluon=1.07(12)(10) as
is the spin sum of quarks and gluons giving JN=

P
q Jq+

Jg=0.408(61)(48) + 0.133(11)(14)=0.541(62)(49) resolv-
ing a long-standing puzzle.

Acknowledgments: We thank all members of ETMC
for an enjoyable collaboration and in particular Fernanda
Ste↵ens for fruitful discussions. We acknowledge funding
from the European Union’s Horizon 2020 research and
innovation program under the Marie Sklodowska-Curie
grant agreement No 642069. M. C. acknowledges finan-
cial support by the National Science Foundation under
Grant No. PHY-1714407. This work used computational
resources from the Swiss National Supercomputing Cen-
tre (CSCS) under project IDs s540, s625 and s702, from
the John von Neumann-Institute for Computing on the
Jureca and the BlueGene/Q Juqueen systems at the re-
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Go beyond moments

• Goal: Compute full x-dependence (generalized) parton distribution functions (GPDFs)


• Operator product: Mellin moments are local matrix elements that can be computed in Lattice 
QCD 


• Power divergent mixing limits us to few moments


• X. Ji suggested an approach for obtaining PDFs from Lattice QCD


• First calculations quickly became available
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Quasi-PDF
X. Ji’s Basic idea

• Lattice QCD computes equal time matrix elements


• Displace quarks in space-like interval


• Boost states to infinite momentum


• On the frame of the proton displacement becomes light-
like


• Infinite momentum not possible on the lattice


• Perurbative matching from finite momentum 


• LaMET

X. Ji, Phys.Rev.Lett. 110, (2013)
X. Ji  (2014) Sci. China Phys. Mech. Atron. 57 arXiv:1404.6680
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FIG. 2. Schematic illustration of the relation between a finite momentum frame, with the Wilson line in a spatial direction
and the light-cone frame of a hadron at rest. Due to Lorentz contraction, going to the light-cone frame increases the length
by a boost factor �, � ! 1 in the IMF. Source: Ref. [74], reprinted with permission by the Author and Springer Nature.

However, the former can only be overcome by simulating at a large enough nucleon boost and by using a matching
procedure.

In the original paper that introduced the quasi-distribution approach [45], Ji pointed out an intuitive way to
understand the above result: “(...) consider the Lorentz transformation of a line segment connecting (0, 0, 0, z)
with the origin of the coordinates. As the boost velocity approaches the speed of light, the space-like line segment
is tilted to the light-cone direction. Of course, it cannot literally be on the light-cone because the invariant length
cannot change for any amount of boost. However, this slight o↵-light-cone-ness only introduces power corrections
which vanish asymptotically.” This intuition is schematically represented in Fig. 2.

We turn now to discussing how to match results obtained on the lattice, with a hadron momentum that is finite
and relatively small, to the IMF. The subtlety of this results from the fact that regularizing the UV divergences
does not commute with taking the infinite momentum limit. When defining PDFs, the latter has to be taken
first, i.e. before removing the UV cuto↵, whereas on the lattice one is bound to take all scales, including the
momentum boost of the nucleon, much smaller than the cuto↵, whose role is played by the inverse lattice spacing.
To overcome this di�culty, one needs to formulate an e↵ective field theory, termed Large Momentum E↵ective
Theory (LaMET) [74], which takes the form of matching conditions that take the quasi-distribution to the IMF,
or light-cone, distribution. LaMET is an e↵ective theory of QCD in the presence of a large momentum scale P 3,
in a similar sense as Heavy Quark E↵ective Theory (HQET) [97] is an e↵ective theory of QCD in the presence of
a heavy quark, that can have a mass larger than the lattice UV cuto↵.

The parallels of LaMET with HQET are more than superficial. We again follow Ji’s discussion [74]. In HQET,
a generic observable O depends on the heavy mass mb and a cuto↵ ⇤. The matching with an observable o defined
in the e↵ective theory, in which the heavy quark has infinite mass, can be written in the following way, due to
asymptotic freedom:

O(mb/⇤) = Z(mb/⇤, ⇤/µ)o(µ) + O(1/mb) , (23)

where o is renormalized at a scale µ in the e↵ective theory. Additionally, renormalization of the full theory translates
the cuto↵ scale ⇤ to a renormalization scale µ. The crucial aspect is that O and o have the same infrared physics.
Thus, the matching coe�cient, Z, is perturbatively computable as an expansion in the strong coupling constant.
Apart from the perturbative matching, there are power-suppressed corrections, which can also be calculated.

Using the same ideas, one can write the relation between an observable in the lattice theory, Q, dependent on
the analogue of a heavy mass, i.e. a large momentum P 3 (and on the cuto↵ scale), and an observable in a theory

Renormalization of UV divergences is required



Good Lattice Cross sections 
Current-Current Correlators

Hadron Structure from Lattice QCD Konstantinos Orginos

x-dependent, and it is recognized that the small x physics is not accessible with today’s computational re-
sources and methodology. A study of the systematics of the PDF extraction given mock lattice data recently
appeared in [30] indicating that the region of x > 0.1 is well within reach of todays lattice QCD calcula-
tions. As argued above, this is precisely the region where theoretical input may have the largest impact on
phenomenology.

It has been shown that various measures of hadron structure can be extracted in terms of a class of matrix
elements, called “lattice cross sections” (LCSs)[6], computable directly in lattice QCD, that are factorizable
into PDFs with calculable coe�cients, in the same manner as the hadronic cross sections measured in
experiment. In particular, these hadron cross sections are expressed as single-particle matrix elements of
non-local operators On(z):

�n(⌫, z2) = hP | T {On(z)} | Pi (4)

where n labels the operator, P is the hadron momentum and, z is the largest separation of the fields in the
operator On. These LCS can then be related to the PDFs fa(x), where a labels the parton flavor, through

�n(⌫, z2) =
X

a

Z 1

�1

dx
x

fa(x, µ2) Ka
n (x⌫, z2µ2) + O(z2⇤2

QCD), (5)

where µ is the factorization scale. The kernels Ka
n are calculable in (continuum) perturbation theory.

A simple choice of LCSs is gauge-invariant currents, separated in space,

OS (z) = (z2)2Z2
S [ ̄q q](z)[ ̄q ](0)

OV0(z) = z2Z2
V0[ ̄q(z · �) q0](z)[ ̄q0z · � ](0), (6)

representing scalar and flavor-changing current combinations respectively. The factors ZS , ZV0 are the rele-
vant quark bi-linear renormalization constants that render the left hand side of Eq. 5 renormalization group
invariant and absorb the UV divergences of the quark bi-linear currents. Note that the quark flavor q0 in
Eq. 6 is not required to correspond to a physical quark in the hadron, but can be a heavy “auxiliary” quark
as we note below. The heavier quark improves the computational e�ciency of the method. This procedure
has been also suggested for improving the signal in lattice calculations of x moments of distributions in
ref. [10]. A large number of di↵erent two-current correlators can be studied and together with pseudo-PDFs
can resulting in additional constraints to PDFs. A ’global’ analysis of these results can then provide a better
handle on systematics of the final PDF reconstruction from lattice QCD. The first study demonstrating the
feasibility of this approach was published in [31].

It should be noted that the formalism we are following in all these projects has been introduced by two of
the co-PIs in this projects, Radyushkin and Qiu.

1.3 Status report
In 2019, we were awarded an ALCC allocation on Summit at OLCF (NPH134). The prime objective of this
project was the determination of momentum fraction x dependence of the pion and nucleon PDFs. The were
several publications that used results obtained by this award. We discuss these publications in the following.

Parton Distribution Functions from Io↵e time pseudo-distributions
B. Joo, J. Karpie, K. Orginos, A. V. Radyushkin, D. G. Richards, S. Zafeiropoulos
DOI: 10.1007/JHEP12(2019)081
In this paper, we present a detailed study of the unpolarized nucleon PDF employing the approach of parton
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representing scalar and flavor-changing current combinations respectively. The factors ZS , ZV0 are the rele-
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invariant and absorb the UV divergences of the quark bi-linear currents. Note that the quark flavor q0 in
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as we note below. The heavier quark improves the computational e�ciency of the method. This procedure
has been also suggested for improving the signal in lattice calculations of x moments of distributions in
ref. [10]. A large number of di↵erent two-current correlators can be studied and together with pseudo-PDFs
can resulting in additional constraints to PDFs. A ’global’ analysis of these results can then provide a better
handle on systematics of the final PDF reconstruction from lattice QCD. The first study demonstrating the
feasibility of this approach was published in [31].

It should be noted that the formalism we are following in all these projects has been introduced by two of
the co-PIs in this projects, Radyushkin and Qiu.

1.3 Status report
In 2019, we were awarded an ALCC allocation on Summit at OLCF (NPH134). The prime objective of this
project was the determination of momentum fraction x dependence of the pion and nucleon PDFs. The were
several publications that used results obtained by this award. We discuss these publications in the following.
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Figure 1: The left-hand panel shows the reduced MS Io↵e-Time Distribution matched to a scale
of µ = 2 GeV; the circle and diamonds show the reduced Io↵e-time matrix elements obtained on
the smaller 243 and larger 323 ensembles, respectively. The band is obtained from a simultaneous
fit to the matched ITDs in the limit of infinite volume. The right-hand panel shows the resulting
PDF xq⇡V (x), at a scale µ = 4 GeV,together with other lattice results: our calculation using the LCS
approach[17], and two calculations using the quasi-PDF approach[18, 19].

Figure 2: The left-hand plot shows the current-current matrix elements determined on our four
ensembles against Io↵e time ⌫ = p · ⇠, where ⇠ is the spatial separation between the currents; the
band is the Io↵e-time distribution at the physical limit. The right-hand plot shows the resulting
valence PDF of the pion in comparison with phenomenological determinations[21, 22].
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III. QUASI-DISTRIBUTIONS

A. Definition and relation to TMDs

Since one cannot arrange light-like separations on the
lattice, it was proposed [2] to consider spacelike separa-
tions z = (0, 0, 0, z3) [or, for brevity, z = z3]. Then, in the
p = (E, 0?, P ) frame, one can introduce the quasi-PDF
Q(y, P ) through a parametrization

hp|�(0)�(z3)|pi =

Z
1

�1

dy Q(y, P ) eiyPz3 . (8)

Following this definition, the function Q(y, P ) describes
the probability that the the fraction y of the hadron’s
third momentum component P is carried by the parton.
Returning to the idea to treat the matrix element as a
function of the variables ⌫ and �z2 (which in this case
are given by Pz3 and z2

3), we have

M(⌫, z2
3) =

Z
1

�1

dy Q(y, P ) eiy⌫ . (9)

Since z2
3 = ⌫2/P 2, the inverse Fourier transformation

reads as follows

Q(y, P ) =
1

2⇡

Z
1

�1

d⌫ e�iy⌫
M(⌫, ⌫2/P 2) . (10)

It shows that Q(y, P ) tends to f(y) in the P ! 1 limit,
since formally M(⌫, ⌫2/P 2) ! M(⌫, 0) when P ! 1.

Therefore, the deviation of the quasi-PDF Q(y, P )
from the PDF f(y) is controlled by the dependence of
M(⌫, z2

3) on its second argument. By virtue of Eq. (7),
this dependence is related to the dependence of the TMD
F(x,2) on 2 (its second arguement). Consequently, the
difference between Q(y, P ) and f(y) is associated to the
transverse momentum dependence of the TMDs.

The explicit relation was derived in Ref. [7]

Q(y, P )/P =

Z
1

�1

dk1

Z 1

�1
dx F(x, k2

1 + (y � x)2P 2) .

(11)

It is a mere consequence of Lorentz invariance, but it
tells us that the distribution of the parton k3 momentum
is affected by the same physics that generates the k?-
dependence of the TMDs!

B. Quantum chromodynamics (QCD) case

The formulae that were derived previously can be di-
rectly applied to the non-singlet parton densities of QCD.
Here, one is considering matrix elements of the following
type

M
↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)

where Ê(0, z; A) is the standard 0 ! z straight-line
gauge link in the quark (fundamental) representation. By
Lorentz invariance, these matrix elements can actually be
decomposed into p↵ and z↵ part

M
↵(z, p) =2p↵Mp(�(zp), �z2) + z↵Mz(�(zp), �z2) .

(13)

The Mp(�(zp), �z2) part gives the twist-2 distribution
when z2

! 0, compared to Mz(�(zp), �z2) which is a
purely higher-twist contamination, and one may wish to
make an effort to eliminate it from definitions of TMDs
and quasi-PDFs.

Introducing TMDs, one takes z = (z�, z?) and the
↵ = + component of M

↵. Hence, the z↵-part drops
out, and one gets a TMD F(x, k2

?
) that is related to

Mp(⌫, z2
?

) by the scalar formulas (2), (7). Defining
quasi-distributions, the easiest path that avoids the z↵

contamination is by considering the time component of
M

↵(z = z3, p) and define

M
0(z3, p) = 2p0

Z 1

�1
dy Q(y, P ) eiyPz3 . (14)

Then, the scalar formula (11) connects the quasi-PDF
Q(y, P ) and the TMD F(x, k2

?
).

It should be emphasized that the operator defining
M

↵(z, p) includes a 0 ! z straight-line link instead of
a stapled link which is common in most of the definitions
of TMDs which appear ias part of the description of semi-
inclusive DIS and Drell-Yan processes. It is well known
that the stapled links reflect initial or final state inter-
actions specific to these processes. The “straight-link”
TMDs, in this sense, describe the structure of a hadron
when it is in its non-disturbed or “primordial” state. One
may argue that such a TMD cannot be directly measured
in a scattering experiment, however, it is a well-defined
QFT object, and its study on the lattice could be per se,
an interesting idea.

C. Factorized models

A very popular idea is that the nonperturbative (or
soft) part of the TMDs F(x, k2

?
) may be represented by

a product

F(x, k2
?

) = f(x)K(k2
?

) (15)

of the collinear parton distribution f(x) and a
k2
?

-dependent factor K(k2
?

), usually modeled by a Gaus-
sian. For the Ioffe-time distribution M(⌫, �z2), this
Ansatz corresponds to the factorization assumption

M
soft(⌫, z2

3) = M
soft(⌫, 0)M(0, z2

3) (16)

Still, even if the TMD factorizes, the quasi-PDF has the
convolution structure of Eq. (11). Taking, for illustra-
tion, a Gaussian form

KG(k2
?

) =
1

⇡⇤2
e�k2

?/⇤2

, (17)

Ê(0, z;A) = P exp


�ig

Z z

0
dz0µ A

µ
↵(z

0)T↵

�

space-like separation of quarks
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↵(z, p) ⌘ hp| ̄(0) �↵ Ê(0, z; A) (z)|pi , (12)
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P(x,�z2) =
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Z 1
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d⌫Mp(⌫,�z2)e�ix⌫ the pseudo-PDF x 2 [�1, 1]

Radyusking Phys.Lett. B767 (2017) 314-320
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Z 1
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d⌫Mp(⌫, ⌫

2/p23)e
�iy⌫

P(x,�z2) =
1
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Z 1

�1
d⌫Mp(⌫,�z2)e�ix⌫

 

z23

p3 ! 1

�z2{

Alternative approach to the light-cone:

�z2 ! 0PDFs can be recovered

z3 = ⌫/p3Large values of are problematic

Ji’s quasi-PDF

Radyusking Phys.Lett. B767 (2017) 314-320
x 2 [�1, 1]Note that

ν



V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

Q(⌫, µ) is called the Ioffe time PDF

Q(⌫, µ) =

Z 1

�1
dx e�ix⌫f(x, µ)

Radyushkin Phys.Rev. D98 (2018) no.1, 014019

Izubuchi et al.  Phys.Rev. D98 (2018) no.5, 056004 


Zhang et al. Phys.Rev. D97 (2018) no.7, 074508


Calculation of the KernelMS

Mp(⌫, z
2) =

Z 1

0
d↵ C(↵, z2µ2,↵s(µ))Q(↵⌫, µ) +O(z2⇤2

qcd)

�z2 ! 0

Factorization of collinear divergence at 

Collinear singularity at 

�z · p = ⌫
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Ioffe time 



Statistical noise

C2p(P, t) = hON (P, t)O†
N (P, 0)i ⇠ Ze

�E(P )t

var [C2p(P, t)] = hON (P, t)ON (P, t)†ON (P, 0)O†
N (P, 0)i ⇠ Z3⇡e

�3m⇡t

Nucleon with momentum P two-point function: 

Variance of nucleon two-point function: 

Variance is independent of the momentum

Statistical accuracy drops exponentially with the increasing momentum limiting the 
maximum achievable momentum.

var [C2p(P, t)]
1/2

Cap(P, t)
⇠ Z

Z 3⇡
e[E(P )�3/2m⇡ ]t
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Lattice QCD requirements

a ⇠ 0.05fm ! Pmax = 20⇤

a ⇠ 0.1fm ! Pmax = 10⇤ ⇤ ⇠ 300MeV

For practical calculations large momentum is needed

*Higher twist effect suppression (qpdfs)

*Wide coverage of Ioffe time ν 

P= 3 GeV is already demanding due to statistical noise

                 achievable with easily accessible lattice spacings

P= 6 GeV exponentially harder

                 maybe intractable without new ideas

aPmax =
2⇡

4
⇠ O(1)



One loop calculation of the UV divergences results in  

M0(z, P, a) ⇠ e�m|z|/a
✓
a2

z2

◆2�end

after re-summation of one loop result resulting exponentiation 

• J.G.M.Gatheral,Phys.Lett.133B,90(1983)


•  J.Frenkel, J.C.Taylor,Nucl.Phys.B246,231(1984),


• G.P.Korchemsky, A.V.Radyushkin,Nucl.Phys.B283,342(1987). 

UV divergences appear multiplicatively



Cusp indicates “linear” divergence of Wilson line

0 5 10 15
z

0

0.2

0.4

0.6

0.8

1

1.2

M
(0
,z
2 )

0 5 10 15
z

0

0.2

0.4

0.6

0.8

1

1.2

M
(0
,z
2 )

M(0, z23)

z3/a



Consider the ratio

UV divergences will cancel in this ratio resulting a renormalization 
group invariant (RGI) function

Mp(0, 0) = 1 Isovector matrix element

The lattice regulator can now be removed

Mcont(⌫, z23) Universal independent of the lattice

M(⌫, z23) ⌘
Mp(⌫, z23)

Mp(0, z23)
The collinear divergences at      =0  limit only appear in the numerator

M(⌫, z23) ⌘
Mp(⌫, z23)

Mp(0, z23)

Its Fourier transformation with respect to ν is a particular definition of a PDF



Continuum limit matching to MS computed at 1-loop
Radyushkin Phys.Rev. D98 (2018) no.1, 014019

Zhang et al. Phys.Rev. D97 (2018) no.7, 074508


Polynomial corrections to the Ioffe time PDF may be suppressed 

A. Radyushkin Phys.Lett. B767 (2017)

B. U. Musch, et al   Phys. Rev. D 83, 094507 (2011)
M. Anselmino et al. 10.1007/JHEP04(2014)005 

which using our conventions becomes
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where
B̃(x) =

Z 1

0

d↵B(↵) [cos(x↵)� cos(x))] (11)

and
D̃(x) =

Z 1

0

d↵D(↵) [cos(x↵)� cos(x)] . (12)

Note the the new kernel depends on the product ⌫x and not on x and ⌫ separately. With
this new kernel we can now write a direct relation between the pseudo-Ioffe time PDF and
the the momentum space PDF as following:

M(⌫, z2) =

Z 1

0

dx qv(x, µ)K(x⌫, z2µ2) +
1X

k=1

Bk(⌫)(z
2)k . (13)

One can evaluate analytically the B̃(x) and D̃(x) integrals resulting in

B̃(x) =
1� cos(x)

x2
+ 2 sin(x)

xSi(x)� 1

x
+

3� 4�E
2

cos(x) + 2 cos(x) [Ci(x)� ln(x)] , (14)

where Si(x) and Ci(x) are the sine and cosine integrals respectively and,

D̃(x) = xIm
⇥
e
ix

3F3(111; 222;�ix)
⇤
�

2� (2 + x
2) cos(x)

x2
, (15)

where 3F3(111; 222; x) is the generalized Hypergeometric function.

A. Numerical Evaluation of the Convolution Integrals

In order to implement numerically the convolution required for the matching, we need
to worry about both the precision of the integration as well as the computational efficiency.
Although the although some of the integrals can be done analytically as indicated above, the
resulting special functions are difficult to evaluate accurately and in fact the Hypergeometric
function requires multi-precision arithmetic resulting in expensive computations. Further-
more, as the Ioffe time ⌫ becomes large, simple integration rules such as the trapezoid rule
break down even with O(103) integration points. Furthermore, potential divergence of the
PDF at x = 0 further complicates numerical evaluation of the final convolution integral over
x. These numerical instabilities arise from the fact that the integrand is oscillatory with a
frequency of oscillations that is ⌫/2⇡. One way to address the problem is to use an improved
trapezoid rule just like the rule we used in the "moments" paper. Unfortunately, this still
results in special functions but at least in may give us better precision.
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FIG. 1. Evolution of quasi-PDF Q(y, P ) in the factorized
Gaussian model for P/⇤ = 1, 10, 50.

one gets the following model for the quasi-PDF

QG(y, P ) =
P

⇤
p

⇡

Z 1

�1
dx f(x) e�(x�y)2P 2/⇤2

. (18)

Choosing for f(x) a simple PDF resembling the nucleon
valence densities f(x) = 4(1 � x)3✓(0  x  1), one gets
the curves shown in Fig. 1. For large P , it clearly tends
to the f(y) PDF form. In particular, using a momentum
P ⇠ 10⇤ one gets a quasi-PDF that is rather close to
the P ! 1 limiting shape. Still, since ⇤ ⇠ hk?i, assum-
ing the folklore value hk?i ⇠ 300 MeV one translates the
P ⇠ 10⇤ estimate into P ⇠ 3 GeV, which is uncomfort-
ably large. Thus, a natural question is how to improve
the convergence.

D. Pseudo-PDFs

The involved structure of a quasi-PDF Q(y, P ) can
be attributed to the fact that it is given by the Fourier
transform of the function M(⌫, ⌫2/P 2) with respect to ⌫,
where ⌫ appears both in the first and second argument of
the Ioffe-time distribution. Due to this complication, to
get close to the PDF limit, one should take P -values that
are sufficiently large to neglect the ⌫-dependence coming
from the second argument.

Another way [11] is to try to eliminate the
z2
3-dependence induced by M(⌫, z2

3). The main idea is
based on the observation that if one takes the ⌫-Fourier
transform of the modified function M(⌫, z2

3)/D(z2
3), the

z3 ! 0 limit will give the same PDF as the original Ioffe-
time distribution, provided that D(z2

3) is a function of
z2
3 only (but not of ⌫) equal to 1 for z2

3 = 0. Thus, one
should find a function D(z2

3) whose z2
3-dependence would

compensate, as much as possible, the z2
3-dependence of

M(⌫, z2
3). Then one may build a modified quasi-PDF by

taking the Fourier transform of M(⌫, ⌫2/P 2)/D(⌫2/P 2).
The resulting function will approach the same PDF limit,
but at much smaller P than the quasi-PDF built from
M(⌫, ⌫2/P 2).

The most lucky situation is when M(⌫, z2
3) factorizes,

i.e., M(⌫, z2
3) = M(⌫, 0)M(0, z2

3). Then taking D(z2
3) =

M(0, z2
3), i.e. considering the reduced function

M(⌫, z2
3) ⌘

M(⌫, z2
3)

M(0, z2
3)

(19)

one concludes that it is equal to M(⌫, 0), and the goal of
obtaining the z3 ! 0 limit becomes trivial.

As we mentioned already, the soft part of M(⌫, z2
3) fac-

torizes if the TMD F(x, k2
?

) factorizes. That this hap-
pens for the soft part of the TMD, is a standard (and
apparently well-verified) assumption of the TMD prac-
titioners. So, there are good chances that this part of
the z2

3-dependence of M(⌫, z2
3) will be canceled by the

rest-frame function M(0, z2
3) (at least, to a large extent).

On the lattice, there is another (and troublesome, see,
e.g., Ref. [15]) source of z3-dependence: the Z(z2

3) fac-
tor generated by the renormalization of the gauge link
Ê(0, z3; A). Fortunately, this problematic factor Z(z2

3)
does not depend on ⌫ and is the same for the numerator
and denominator of the ratio M(⌫, z2

3).
Thus, if one observes that the ratio M(⌫, z2

3) does not
have z3-dependence, one may conclude that M(⌫, z2

3) fac-
torizes. In fact, such a factorization has been already
observed several years ago in the pioneering study [16] of
the transverse momentum distributions in lattice QCD.

Still, there is an unavoidable source of factorization
breaking. When z3 is small, M(⌫, z2

3) has logarithmic
ln z2

3 singularities generating the perturbative evolution
of PDFs. As we discussed, z3 is analogous then to
the renormalization parameter µ of the scale-dependent
PDFs f(x, µ2) within the standard OPE approach. More
specifically, for small values of z3, the pseudo-PDF
P(x, z2

3) satisfies a leading-order evolution equation with
respect to 1/z3 that is identical with the evolution equa-
tion for f(x, µ2) with respect to µ. An evolution equation
[13] for the Ioffe-time distribution M(⌫, z2

3) can also be
written namely,

d

d ln z2
3

M(⌫, z2
3) = �

↵s

2⇡
CF

Z 1

0
du B(u)M(u⌫, z2

3),

(20)

where CF = 4/3, and the leading-order evolution kernel
B(u) for the non-singlet quark case is given [13] by

B(u) =


1 + u2

1 � u

�

+

, (21)

where [. . .]+ denotes the conventional “plus” prescription,
i.e.

Z 1

0
du


1 + u2

1 � u

�

+

M(u⌫)

=

Z 1

0
du

1 + u2

1 � u
[M(u⌫) � M(⌫)]. (22)

DGLAP kernel in position space
V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

At 1-loop  

µ2 d

dµ2
Q(⌫, µ2)=� 2

3

↵s

2⇡

Z 1

0
duB(u)Q(u⌫, µ2)

Q(⌫, µ02)=Q(⌫, µ2) � 2

3

↵s

2⇡
ln(µ02/µ2)

Z 1

0
duB(u)Q(u⌫, µ2)

M(⌫, z02)=M(⌫, z2) � 2

3

↵s(z2)

⇡
ln(z02/z2)

Z 1

0
duB(u) [M(u⌫, z2)
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Which implies (ignoring higher twist)
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The Moments

power divergences may arise. In particular, if a lattice regulator is used then the break-

ing of rotational symmetry introduces mixing between di↵erent spins even at the leading

twist. In our analysis, we will first ignore higher twist e↵ects and focus only onto the

impact of power divergences due to mixing between operators with di↵erent spin at twist

2. The breaking of O(4) symmetry on a Euclidean lattice collapses the infinite number of

continuum irreducible representations of the rotation group to a set of finite irreducible

representations of the hypercubic group H(4). Operators that belong to a particular H(4)

irreducible representation can always be written as a linear combination of the continuum

operators of definite spin. As a result, operators of di↵erent dimensions can mix under

renormalization, resulting in power divergences as the continuum limit is taken. The mix-

ing of a particular operator can be classified by the di↵erence in dimension between it and

the operator whose matrix element it is contaminating. Mixing with higher dimensional

operators comes with positive powers of the lattice spacing and hence is eliminated in the

continuum limit. Therefore, we can ignore this mixing. On the contrary, mixing with op-

erators of the same or lower dimension survives in the continuum (or even worse, diverges).
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ik
1

k!
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2/a2)hp|O0↵1···↵k
(k) |pia +O(z2) , (2.13)

where now a is the lattice spacing and c̃k are the Wilson coe�cients of the lattice expansion.

In the above expression, the matrix elements hP |O
0↵1···↵k
(k) |P ia, which are finite at fixed a,

do not have a well defined continuum limit. However, the left hand side in the equation is
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Using OPE:

3 Computation of Moments

In this section we discuss the computation of moments of PDFs from M(⌫, z2) which can

be computed on the lattice and has a well defined continuum limit. Having established

that the expansion in moments is well defined in any scheme, we chose to work in the

MS scheme in this section. First one can further simplify the expression in Eq. (2.12) by

replacing the matrix elements with moments in MS an(µ). These moments are defined by

hp|O0↵1···↵k
(k) |piµ = 2[p0p↵1 · · · p↵k � traces]sym ak+1(µ) , (3.1)

where [· · · ]sym stands for symmetrization of indices. Inserting this in Eq. (2.12) we obtain

M(⌫, z2) = 1 +
1X

k=1

ik
1

k!
⌫kck(z

2µ2)ak+1(µ) +O(z2) , (3.2)

where the product p3z3 has been replaced by the Io↵e time ⌫. This formula for the moments

is derived by the traditional definition

an(µ) =

Z 1

�1
dx xn�1 q(x, µ) , (3.3)

where q(x, µ) is the parton distribution function. Recalling the definition of Io↵e time

PDFs,

Q(⌫, µ) =

Z 1

�1
dx q(x, µ)eix⌫ , (3.4)

we can derive that

(�i)n
@n

Q(⌫, µ)

@⌫n

����
⌫=0

=

Z 1

�1
dx xn q(x, µ) = an+1(µ) (3.5)

where an(µ), is the n-th moment of the parton distribution function. From this expression

and Eq. (2.6) we obtain that if one expands in a Taylor series with respect to ⌫ the reduced

function M(⌫, z2), the coe�cients of this Taylor series expansion are the moments of the

PDFs up to a multiplicative constant and up to O(z2) higher twist e↵ects. In other words

from Eq. (3.2) one can right,

(�i)n
@nM(⌫, z2)

@⌫n

����
⌫=0

= cn(z
2µ2)an+1(µ) +O(z2) . (3.6)

Furthermore, Eq. (3.5) implies that the Wilson coe�cients are

cn(z
2µ2) =

Z 1

0
d↵ C(↵, z2µ2,↵s(µ))↵

n . (3.7)

Since C(↵, z2µ2,↵s(µ)) is known analytically [19, 24, 30] to first order in ↵s in MS, we can

easily compute the Wilson coe�cients cn(z2µ2) in MS, by simple integration of Eq. (3.7).

The leading order MS expression for C(↵, z2µ2,↵s(µ)) is

C(↵, z2µ2,↵s(µ)) = �(1� ↵)�
↵s

2⇡
CF


B(↵) ln

✓
z2µ2 e

2�E+1

4

◆
+D(↵)

�
, (3.8)
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Where

are the moments of the PDFs
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As a consequence:
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• All coefficient functions respect 
continuum symmetries 


• Lattice spacing corrections to 
higher twist effects are ignored  


• On dimensional ground a/z terms 
must exist


• Additional  O(a) effects (last term)

3.1 Separating continuum PDFs from systematic errors

The CP symmetry implies that the reduced pseudo-ITD has the property

M(p, z, a) = M⇤(�p, z, a) = M⇤(p, �z, a) = M(�p, �z, a) , (3.1)

which we used when constructing the summed three-point correlation functions to in-
crease the statistical precision by averaging, after appropriate complex conjugations, the
correlation functions with positive and negative momenta and separations. The relation
M(p, z, a) = M(�p, �z, a) restricts lattice spacing errors with odd powers of a to be func-
tions of a|p| and a/|z|. A Taylor expansion in lattice spacing gives the continuum reduced
pseudo-ITD Mcont and lattice spacing corrections

M(p, z, a) = Mcont(⌫, z
2) +

X

n=1

✓
a

|z|

◆n

Pn(⌫) + (a⇤QCD)nRn(⌫) . (3.2)

With an O(a) improved lattice action, the lattice spacing errors related to the momentum
p, must come in from the momentum transfer. This feature is known in the improvement of
the local vector current [122], the case of z = 0, where the local vector current mixes with
the divergence of the tensor current. The operators discussed in [51] also demonstrate these
features when considering the hadronic matrix elements in question. These momentum
transfer effects are necessary for the studies of Generalized Parton Distributions, but not for
the PDF. There is also potential z

2 dependence on the lattice spacing coefficient functions,
Pn and Rn. Those effects which can come from logarithmic perturbative corrections, higher
twist contributions, or target mass corrections are additionally suppressed either by ↵s,
⇤2
QCDz

2, or m
2
z
2 respectively on top of the suppression by a/|z| and a⇤QCD. These z

2

dependencies are neglected here.
The relationship between the reduced pseudo-ITD and the ITD is through a convolution

with Wilson coefficient function. Ultimately, the ITD is not the goal of this study, but
instead its Fourier transform, the PDF. We adopt an approach analogous to [73, 90, 100]
where the intermediate ITD is not required, but a parameterization of the PDF is directly
related to the reduced pseudo-ITD. Unlike [73, 90, 100], the PDF is related to the leading
twist reduced pseudo-ITD through its moments. The higher twist power corrections are
added as nuisance terms similar to the lattice spacing terms. The functional form is given
by

Mcont(⌫, z
2) = Mlt(⌫, z

2) +
X

n=1

(z2⇤2
QCD)nBn(⌫) . (3.3)

in terms of the leading twist continuum limit reduced pseudo-ITD, Mlt, and the higher
twist distributions Bn. In principle, the higher twist distributions could have non-trivial z

2

dependence. Similarly to the lattice spacing terms, these effects which come from pertur-
bative corrections and target mass effects are additionally suppressed by powers of ↵s or
m

2
z
2 respectively and are neglected in the remainder of this study.
In principle, there exist higher twist power corrections and lattice spacing errors of

all orders. With these errors sufficiently under control, only the leading contributions are
significant. We therefore make the approximation that Pn = Rn = Bn = 0 for n > 1.
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However on the Lattice after expanding in lattice spacing we have 

which using our conventions becomes

K(x⌫, z2µ2) = cos(x⌫)�
↵s

2⇡
CF

h
ln(e2�E+1

z
2
µ
2
/4)B̃(x⌫) + D̃(x⌫)

i
, (10)

where
B̃(x) =

Z 1

0

d↵B(↵) [cos(x↵)� cos(x))] (11)

and
D̃(x) =

Z 1

0

d↵D(↵) [cos(x↵)� cos(x)] . (12)

Note the the new kernel depends on the product ⌫x and not on x and ⌫ separately. With
this new kernel we can now write a direct relation between the pseudo-Ioffe time PDF and
the the momentum space PDF as following:

M(⌫, z2) =

Z 1

0

dx qv(x, µ)K(x⌫, z2µ2) +
1X

k=1

Bk(⌫)(z
2)k . (13)

One can evaluate analytically the B̃(x) and D̃(x) integrals resulting in

B̃(x) =
1� cos(x)

x2
+ 2 sin(x)

xSi(x)� 1

x
+

3� 4�E
2

cos(x) + 2 cos(x) [Ci(x)� ln(x)] , (14)

where Si(x) and Ci(x) are the sine and cosine integrals respectively and,

D̃(x) = xIm
⇥
e
ix

3F3(111; 222;�ix)
⇤
�

2� (2 + x
2) cos(x)

x2
, (15)

where 3F3(111; 222; x) is the generalized Hypergeometric function.

A. Numerical Evaluation of the Convolution Integrals

In order to implement numerically the convolution required for the matching, we need
to worry about both the precision of the integration as well as the computational efficiency.
Although the although some of the integrals can be done analytically as indicated above, the
resulting special functions are difficult to evaluate accurately and in fact the Hypergeometric
function requires multi-precision arithmetic resulting in expensive computations. Further-
more, as the Ioffe time ⌫ becomes large, simple integration rules such as the trapezoid rule
break down even with O(103) integration points. Furthermore, potential divergence of the
PDF at x = 0 further complicates numerical evaluation of the final convolution integral over
x. These numerical instabilities arise from the fact that the integrand is oscillatory with a
frequency of oscillations that is ⌫/2⇡. One way to address the problem is to use an improved
trapezoid rule just like the rule we used in the "moments" paper. Unfortunately, this still
results in special functions but at least in may give us better precision.

2

�z · p = ⌫
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Ioffe time 

The inverse problem to solve: Obtain q(x,μ) from the lattice matrix elements  

see dicussion in J. Karpie et al JHEP 04 (2019) 057         and        L. DelDebio et al JHEP 02 (2021) 138  
Exploration of various methods for LO matching Exploration of the NNPDF approach applied to lattice data



• Obtain the PDF from a limited set of   
matrix elements obtained from 
lattice QCD


• z2 is a physical length scale 
sampled on discrete values


• z2 needs to be sufficiently small so 
that higher twist effects are under 
control


• ν is dimensionless also sampled in 
discrete values


• the range of v is dictated by the 
range of z and the range of 
momenta available and is typically 
limited


• Parametrization of unknown 
functions

Our inverse problem
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PDFs can be individually extracted from the real and imaginary components separately.
The components are factorized as

Re M(⌫, z
2) =

Z 1

0
dx KR(x⌫, µ

2
z
2)q�(x, µ

2) + O(z2)

Im M(⌫, z
2) =

Z 1

0
dx KI(x⌫, µ

2
z
2)q+(x, µ

2) + O(z2) , (2.14)

where

KR(x⌫, µ
2
z
2) =

Z 1

0
du C(u, µ

2
z
2) cos(u⌫x)

KI(x⌫, µ
2
z
2) =

Z 1

0
du C(u, µ

2
z
2) sin(u⌫x) . (2.15)

Use of these matching kernels which factorize directly to the PDF removes the need for the
intermediate determination of the MS ITD. Unfortunately, they prove to be complicated
functions whose direct numerical evaluation is inefficient when incorporated into the analysis
of the matrix elements computed from lattice QCD. In Sec. 3.2, we adopt a power series
approximation to the convolution integrals that the above kernel functions participate in
which allows for efficient computations within the available range of the Ioffe time. With
sufficient number of terms, this power series approximates the convolution integrals to
numerical precision.

3 Determination of the continuum limit PDF and nuisance parameters

The continuum limit is a critical step in any precision lattice calculation. In this study, we
take advantage of the symmetries of the reduced pseudo-ITD to parameterize the lattice
spacing correction to the continuum limit, as well as the higher twist effects. The continuum
PDF is also parameterized and a simultaneous analysis of all three ensembles obtains the
continuum limit PDF with higher twist contamination removed. This method of adding
“nuisance parameters” to parameterize the systematic errors of experimental cross sections is
also used in the phenomenological extractions of PDFs. Such a combined analysis approach
can also be used with results obtained with different pion masses, lattice spacings, matrix
elements, and even lattice actions given appropriate parameterizations of those effects.
Ultimately, one can imagine taking all published lattice matrix elements and analyzing them
within this approach, given sufficiently novel nuisance parameterizations, just as a global
phenomenological fit is performed using experimental data with vastly different systematic
errors. In order to minimize the dependence of the effect of nuisance parameters, in this
study only higher twist and lattice spacing errors are considered for data with the same
physical quark mass and lattice action. Future work will study the extension of this method
to include other effects.

It is important to note that the coefficients of the lattice spacing errors can be functions
of the Ioffe time. Previous parameterizations of lattice spacing errors for parton observables
have only used simple dependences on the Ioffe time, which all diverge as ⌫ ! 1. In [80,
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Sample data
arXiv:2105.13313 [hep-lat]  J. Karpie et. al.

ID a(fm) M⇡(MeV) � cSW  L
3
⇥ T Ncfg

eA5 0.0749(8) 446(1) 5.2 2.01715 0.13585 323 ⇥ 64 1904
E5 0.0652(6) 440(5) 5.3 1.90952 0.13625 323 ⇥ 64 999
N5 0.0483(4) 443(4) 5.5 1.75150 0.13660 483 ⇥ 96 477

Table 1. Parameters for the lattices generated by the CLS collaboration using two flavors of O(a) improved
Wilson fermions. More details about these ensembles can be found in [128].

4 Lattice QCD calculation

This study utilizes three ensembles of configurations with decreasing lattice spacing. These
ensembles have two flavors of dynamical Wilson clover fermions and pion mass around
440 MeV. The specific parameters of these ensembles are given in Table 1. The lattice
spacings of the configurations are 0.0749, 0.0652, and 0.0483 fm. The finer two ensembles
were generated by the CLS effort [128] while the coarsest was generated by the authors for
this study. These ensembles allow for a controlled continuum limit extrapolation which is a
necessary step for precision calculations of PDFs. Apart from that, the finest lattice spacing
employed in this study is half compared to our previous studies allowing us to reach much
higher momenta and smaller separations.

The nucleon interpolating fields are constructed with Gaussian smearing [129] and
momentum smearing [130]. The source field is always be smeared, and an unsmeared
and a smeared sink field is used. These scenarios are referred to as “SP” (standing for
smeared-point) and “SS” (standing for smeared-smeared) respectively. For both of these
scenarios, three values of the momentum smearing parameter ⇣ are used. To implement the
momentum smearing, prior to the Gaussian smearing step, the gauge links are modified by

Uµ(x) ! e
i 2⇡L ⇣x3Uµ(x) , (4.1)

in order to smear only the direction parallel to the momentum. The smearing parameters
are chosen to increase the overlap to the ground state, and thereby the signal-to-noise ratio,
for correlation functions over a range of momenta.

The matrix elements are calculated using the summation Generalized Eigenvalue Prob-
lem (sGEVP) technique [131] to have optimal control over the excited state contamination,
as described in Sec. 4.1. Summation techniques have proven to be extremely powerful in
controlling excited state errors [132] and have been used in a number of lattice calculations
of PDFs [34, 60, 68, 73–75, 133]. These methods have dramatically reduced excited state
contamination O(e��T ) compared to typical ratio methods O(e��T/2). These methods
are necessary for efficient calculations especially for future work with physical pion masses
where � is smaller making excited states persistent for larger T/a which consequently in-
creases the computational cost needed to achieve equivalent statistical precision. To obtain
comparable statistical precision of a summation method calculation with N measurements,
a ratio method calculation can be estimated to require N

2 measurements.
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Jacobi Polynomials
Inverse problem

where B(a, b) is the beta function. Since the Jacobi polynomials form a complete basis of
functions in the interval of [0,1], the PDFs can be written as

q±(x) = x
↵(1 � x)�

1X

n=0

±d
(↵,�)
n J

(↵,�)
n (x) (3.11)

for any ↵ and �. The choice of those parameters does affect the convergence of the coef-
ficients ±d

(↵,�)
n . In practice, one needs to truncate the series introducing in this way some

model dependence which can be easily controlled. The control of the truncation can be
improved if one fits for the optimal values of ↵ and � for that given order of truncation. In
other words, the rate of convergence of the series can be optimized by tuning the values of ↵

and �. One way to understand why tuning of ↵ and � can result in improved convergence of
the series is to realize that phenomenological considerations tell us that the Jacobi weight is
a good approximation to the shape of the PDF, therefore if ↵, � are tuned to roughly match
the shape of the PDF, the Jacobi polynomials need only to approximate a smooth, slowly
varying function with small coefficients. Using Eq. 3.9, we can easily convert an expansion
of the PDF in terms of (↵, �) Jacobi polynomials to one with (↵0

, �
0) Jacobi polynomials.

The transformation of the expansion coefficients is linear and if a truncation of the series
up to order N is used the linear transformation involves only coefficients up to that order.
Finally, there also exists a linear transformation which connects these coefficients and the
Mellin moments of the PDF given by

±d
(↵,�)
n =

1

N
(↵,�)
n

nX

j=0

!
(↵,�)
n,j a

±
j (3.12)

where a
±
n =

R 1
0 dx x

n
q±(x), so this parameterization can be thought as another way to

parameterize the PDF by a set of its moments.
To determine the relationship between the reduced pseudo-ITD and the parameters of

the PDF, the matching kernels KR,I are expanded in terms of Jacobi polynomials. It can
be shown that the kernels can be written as

KR(x⌫, µ
2
z
2) =

1X

n=0

�
(↵,�)
n (⌫, µ

2
z
2)

N
(↵,�)
n

J
(↵,�)
n (x)

KI(x⌫, µ
2
z
2) =

1X

n=0

⌘
(↵,�)
n (⌫, µ

2
z
2)

N
(↵,�)
n

J
(↵,�)
n (x) , (3.13)

with

�
(↵,�)
n (⌫, z

2
µ
2) =

nX

j=0

1X

k=0

(�1)k

(2k)!
c2k(z

2
µ
2)!(↵,�)

n,j B(↵ + 2k + j + 1, � + 1) ⌫
2k

⌘
(↵,�)
n (⌫, z

2
µ
2) =

nX

j=0

1X

k=0

(�1)k

(2k + 1)!
c2k+1(z

2
µ
2)!(↵,�)

n,j B(↵ + 2k + j + 2, � + 1)⌫2k+1
.(3.14)

Numerically, the sum over k can be performed to a sufficiently high order (k ⇠ 30) to
achieve convergence to double precision accuracy in the relevant range of Ioffe time. Given
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Jacobi Polynomials: Orthogonal and complete in the interval [0,1]

3.2 Parameterization of unknown functions

Extracting PDFs from matrix elements using a functional form to parametrize them may
induce unwanted model dependence. Therefore, a careful study of such parametrization-
dependent systematic error is required. For that purpose, the functional forms used should
be varied in order to understand how certain choices affect the final result. In previous
lattice PDF studies [34, 65, 74, 75, 80, 86, 87, 110], the chosen functional forms are similar
to those used in phenomenological analyses of PDFs [123–126]. Progress has also been made
on the application of neural networks to parameterize the PDF [67, 99, 127]. In this work,
all of the unknown functions, q�(x), q+(x), P1(⌫), R1(⌫), and B1(⌫), are parameterized
using Jacobi polynomials.

The Jacobi polynomials, j
(↵,�)
n (z), are defined in the interval [�1, 1] and they satisfy

the orthogonality relation
Z 1

�1
dz(1 � z)↵(1 + z)�j

(↵,�)
n (z)j(↵,�)m (z) = Ñ

(↵,�)
n �n,m , (3.4)

for ↵, � > �1. For the purposes of this study, it is useful to change variables to x = 1�z
2

or z = 1 � 2x. This transformation maps the interval [�1, 1] to the interval [0, 1] and the
orthogonality weight becomes (1 � z)↵(1 + z)� = 2↵+�

x
↵(1 � x)� . We therefore introduce

the transformed Jacobi polynomials J
(↵,�)
n (x), which are referred to as Jacobi polynomials

from now on, as

J
(↵,�)
n (x) =

nX

j=0

!
(↵,�)
n,j x

j
, (3.5)

with

!
(↵,�)
n,j =

✓
n

j

◆
(�1)j

n!

�(↵ + n + 1)�(↵ + � + n + j + 1)

�(↵ + � + n + 1)�(↵ + j + 1)
. (3.6)

The orthogonality relation becomes
Z 1

0
dx x

↵(1 � x)�J
(↵,�)
n (x)J (↵,�)

m (x) = N
(↵,�)
n �n,m , (3.7)

where

N
(↵,�)
n =

1

2n + ↵ + � + 1

�(↵ + n + 1)�(� + n + 1)

n! �(↵ + � + n + 1)
. (3.8)

One thing to note is that there exists a formula that relates Jacobi polynomials for different
values of the weight parameters, ↵ and �. This formula reads as following

J
(↵,�)
n (x) =

nX

m=0

ĉ
n
m(↵, ↵

0; �, �
0)J (↵0,�0)

m (x) , (3.9)

where the coefficients ĉ
n
m(↵, ↵

0; �, �
0) are analytically known. Finally, it can be shown that

the coefficients of the Jacobi polynomials satisfy the orthogonality relationship
1X

i,j=0

!
(↵,�)
n,i B(↵ + i + j + 1, � + 1)!(↵,�)

m,j = N
(↵,�)
n �n,m , (3.10)
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Complete basis of functions in the interval [0,1] for any α and β

q+(x) = q(x) + q̄(x)
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Bayesian Inference
Optimize model parameters

• Fix the expansion order in the  Jacobi polynomial expansion


• Optimize α,β and the expantion of coefficients by maximizing the posterior probability


• Average over models using AICc


• Note that one could fix α,β at a reasonable value and the vary the order of trancation 
in the Jacobi polynomial expansion

4.2 Fitting matrix elements

The sGEVP is applied to each scenario of smearing parameters individually. It is likely that
modifying the operators by only changing smearing parameters will not drastically change
its overlap with the ground and excited states. This means combining them within the
sGEVP will have little effect. This feature can be seen in Fig. 3, where the effective matrix
elements with different ⇣ are largely consistent within errors. With the same overlap they
cannot significantly improve the cancellation of higher state effects. Instead, combinations
of these six smearing scenarios are simultaneously fit to obtain a common matrix element
and an excited state mass. When the signal-to-noise ratio for some of smearing scenarios
is poor, they are excluded from the fit, for example large ⇣ at small p or vice versa.

There exists a systematic error from the particular choices of the maximum and min-
imum values of T used within the fits for the matrix elements. The maximum value was
chosen based upon the statistical noise of the correlation functions at those times. When
the noise was sufficiently large that the fit result was not significantly affected, the maxi-
mum value was set. The minimum value was chosen to minimize the �

2
/d.o.f. of the fit.

The change of the central values when fitting with a minimum time decreased by a single
time slice is used, in order to estimate the systematic error from the choice of minimum
time. The square of this systematic error is added to the diagonal of the covariance matrix
for the remainder of the analysis. The majority of the data points do not see a dramatic
increase in error, but some do highlighting the importance of this analysis.

5 Fits with Bayesian Priors

In order to determine the PDF from our lattice matrix elements, we create a model to
describe our data in terms of the PDF and various systematic errors as described in Sec. 3.
Let ML(⌫, z

2) be the lattice matrix elements while M(⌫, z
2
, ✓) be the matrix element from

our model which depends on a set of parameters ✓. These parameters are the exponents ↵,
�, and the linear coefficients of the Jacobi series for the PDF and the nuisance terms.

We attempt to determine the most likely values of the unknown parameters ✓ given
our lattice matrix elements, ML and some prior information, I by using Bayes’ theorem,
which states

P
⇥
✓|ML

, I
⇤

=
P
⇥
ML

|✓
⇤
P [✓|I]

P [ML|I]
. (5.1)

Here P
⇥
✓|ML

, I
⇤

is the posterior distribution, which describes the probability distribu-
tion that a given set of parameters are the true parameters given a set of data and prior
information. P

⇥
ML

|✓
⇤

is the probability distribution of the data given a set of model pa-
rameters. P [✓|I] is the prior distribution which describes the probability distribution of a
set of parameters given some previously held information about it. Finally, P

⇥
ML

|I
⇤

is the
marginal likelihood or evidence which describes the probability that the data are correct
given the previously held information. Ultimately, since the evidence does not depend on
the model parameters it will be an unnecessary normalization for finding the most likely
parameters.
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Isovector quark and anti-quark distributions
Comparison with phenomenology

Figure 28. The results of the AICc weighted average of the models of Sec. 6.3.
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Figure 29. A comparison of the AICc averaged results to the global fit PDFs, CT18 [124], NNPDF
3.1 [127], MSHT’20 [125], and JAM20 [126]. The upper plots are the parton distributions and the
lower plots are the distributions weighted by x to emphasize the large x region.
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Unpolarized Isovector PDF
2+1 flavors single lattice spacing 350 MeV pion

23
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FIG. 17: Parameter covariances of the optimal Jacobi polynomial fit to the real (17a) and the imaginary (17b)
component of the unpolarized reduced pseudo-ITD for z/a  12 with truncation orders

{nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v and {nlt, naz, nt4, nt6}+ = {3, 3, 1, 0}+. Entries are normalized according to
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FIG. 18: The leading-twist real ITD (purple) (18a) at 2 GeV derived from the Jacobi polynomial expansion of the
reduced pseudo-ITD for z/a  12 with {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v. The result is compared with the

uncorrelated 2-parameter phenomenological form of Eq. 24 shown in red. The valence quark leading-twist PDF
(purple) (18b) obtained from the {nlt, naz, nt4, nt6}v = {4, 1, 3, 2}v Jacobi polynomial expansion of the reduced

pseudo-ITD. The a/z (orange), twist-4 (brown), and twist-6 (navy) x-space distributions are also shown and seen to
be sub-leading. The distributions are compared with the uncorrelated 2-parameter phenomenological fit of Eq. 24
(red), as well as the NLO global analyses CJ15 [82] and JAM20 [88], and the NNLO analyses of MSTW [89] and

NNPDF [87] at the same scale.

the reduced pseudo-ITD data. That is, we perform the matching of Re M
�
⌫, z

2
�

to a common scale in MS according
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FIG. 11. Results of the AICc prescription applied to Re Y
�
⌫, z2

�
cut on platt 2 [1, 6] and z/a 2 [2, 8], where our matrix

element fitting systematic (31) is considered. (Left) The AICc averaged leading-twist valence helicity quark PDF (purple)
and model-averaged x-space distributions corresponding to an O (a/ |z|) discretization (orange) and O

�
z2n⇤2n

QCD

�
higher-twist

(brown) e↵ects. Comparisons continue to be made with select global analyses. (Right) Histogram of AICc weights associated
with all models considered in the data cut.

Among the many prescriptions that can be utilized to create an average model description, one we explore is the
Akaike Information Criterion (AIC) [211]. For any given model function Fi, the AIC prescription assigns a factor
ai = 2L2

i + 2pi, where L2
i is the negative logarithm of the posterior distribution of the model Fi with pi 2 Z

+

parameters. The factor ai, or AIC (Fi), is then used to assign a weight, or probability, to Fi among the space of all
models. In scenarios for which the number of data points ni fit by a model Fi becomes small or pi approaches ni, the
AIC prescription is known to be biased in its estimate. To account for these scenarios, the corrected AIC [212], or

AICc for short, is implemented where ai 7! Ai = ai + 2pi(pi+1)
ni�pi�1 . Using the AICc prescription, which we implement in

this work, a model-averaged FAIC is obtained through a weighted sum of each model in consideration:

FAIC =
X

i

wiFi, with wi =
e�Ai/2

⇣PN
i=1 e�Ai/2

⌘. (62)

To account for the variation in model choices as well as the variance of a chosen model, the variance of the AICc
average is expressed as the weighted sum of the variance of a particular model, var (Fi), plus its squared di↵erence
from the AICc model average FAIC:

var (FAIC) =
X

i

wi

h
var (Fi) +

�
Fi � FAIC

�2
i
. (63)

Since the AICc weights wi depend on the exponential of the AICc value Ai, it follows models with the smallest
L2 values, that do not over-fit the data, are favored. Although we will consider applying the AICc prescription
only to PDFs modeled with Jacobi polynomials, a more robust implementation would consider additional functional
forms on the interval x 2 [0, 1], including those common from global analyses [204–207] or even neural network
parameterizations [213, 214]. This possibility is reserved for a future work.

Within the platt = [1, 6] and z/a 2 [2, 8] data cuts, to construct an AICc model average estimate for both gq�/N (x)
and gq+/N (x) we consider the following variations in the orders of truncation for the Jacobi polynomials: Nlt 2 [1, 5],
Naz 2 [0, 2], Nt4 2 [0, 2], and Nt6 2 [0, 1]. The resulting AICc model averaged leading-twist gq�/N (x) and gq+/N (x)
PDFs are shown in the left-hand panels of Fig. 11 and Fig. 12, respectively, while the right-hand panels depict the
histogram of weights determined from the AICc procedure. We observe that only a handful of models contribute
appreciably to the AICc averages, while most have negligible impact. In fact, for both gAIC

q�/N (x) and gAIC
q+/N (x) the

(Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1) model was found to dominate the AICc average - hence why this model was presented
in Fig. 5 and Fig. 8. When comparing the AICc model average gAIC

q�/N (x) in Fig. 11 with the selected gq�/N (x) fit
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FIG. 5. Fit to the real component of the reduced pseudo-ITD Y
�
⌫, z2

�
obtained from summed ratio fits over the time series

T/a 2 [6, 14] (dark error bars), and where the T/a 2 [4, 14] summed ratio fits provide a systematic error estimate (lightened
error bars). The leading-twist, discretization, twist-4, and twist-6 corrections have been expanded in Jacobi polynomials up to
orders (Nlt, Naz, Nt4, Nt6) = (3, 2, 2, 1). The data has been cut on platt 2 [1, 6] and z/a 2 [2, 8], with data excluded from the fit
presented in gray.

be a strong anti-correlation between the Caz
�,n parameters. This feature may imply a cancellation occurring between

the two terms leading to the cumulative small e↵ect seen in Fig. 7.

Using the fitted values of ↵, � and each expansion coe�cient C⇤ (↵,�)
�,n , we utilize Eq. 45 to map the leading-twist

valence quark helicity PDF gq�/N (x) and the parameterized x-space systematic contaminations in the right panel of
Fig. 6. The parameterized gq�/N (x) exhibits broad statistical consistency with the three global analysis results we
consider: NNPDFpol1.1 [10], JAM17 [17], and JAM22 [21], while for x ! 1 the soft approach of the PDF appears to
favor the NNPDFpol1.1 and JAM22 results. This result, however, represents only one possible solution for gq�/N (x)
within the space of viable solutions, and thus exhibits an uncertainty that belies the true uncertainty of the PDF. We
address this quantitatively in Sec. V A in the context of a model averaging prescription.

Indeed the x-space systematic contaminations illustrated in the right panel of Fig. 6 appear quite small. However,
it is more instructive to view the parameterized discretization and higher-twist e↵ects as a function of the two Lorentz
invariants of the setup - ⌫ and z2. In the upper left and upper right panels of Fig. 7, respectively, we visualize

↵ � Clt
0 Clt

1 Clt
2 Caz

0 Caz
1 Caz

2 Ct4
0 Ct4

1 Ct4
2 Ct6

0 Ct6
1

q� �0.500(11) 1.892(70) 0.918(24) �0.547(51) �0.902(78) � 0.037(20) �0.015(5) � �0.055(22) �0.030(11) � 0.027(14)

q+ �0.547(11) 1.501(63) 0.747(32) �0.305(47) �0.762(96) 0.188(5) �0.094(6) � 0.014(13) 0.024(11) � 0.019(9) �

TABLE III. Fit parameters associated with the representative fits to Re Y
�
⌫, z2

�
and Im Y

�
⌫, z2

�
shown in Fig. 5 and Fig. 8,

respectively. The figures of merit for the fit to Re Y
�
⌫, z2

�
are L2/d.o.f. = 0.265(131) and �2/d.o.f = 0.280(126), while

L2/d.o.f. = 0.756(241) and �2/d.o.f = 0.659(233) for Im Y
�
⌫, z2

�
.
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FIG. 8. Reconstruction of transversity PDF based on the PDF ansatz in Eq. (30). The top-left and top-right panels show the
real and imaginary parts of M as a function of ⌫. The two panels show the best fit bands resulting from an analysis assuming
the PDF ansatz. The fits shown in the figure incorporated the data points at all momenta with z3 2 [2a, 8a]. The color of the
bands and the data points distinguish the fixed value of momenta P3 = 0.41n3 GeV used. The bottom-left and bottom-right
panels show the resultant transversity PDFs, h�(x) and h+(x) respectively.

section, whereas for z3 ⇠ O(1) fm, we naively expect higher-twist e↵ects and higher-order perturbative terms could
become important. For this, we skipped z3 = 0, a from our analysis and used only ranges with zmin

3 = 2a, 3a. To see
the variations due to the choice of zmax

3 , we used zmax
3 = 8a, 10a = 0.75, 0.94 fm. We used the fixed order expressions

for the Wilson coe�cients in Eq. (16) at a factorization scale of µ =
p
2 GeV in our PDF analysis, that is comparable

to 1/z3 that enters our computation.
In the first step of the PDF reconstruction, we assumed a functional form that is known to work well in the global

fits to the PDFs from experimental cross-sections data, namely,

h±(x)

gT
= N±x

↵±(1� x)�±
�
1 + �±

p
x+ �±x

�
, (30)

with (↵±,�±, �±, �±) as independent fit parameters. The parameterN± is the normalizing constant. We will simply re-

fer this method as PDF ansatz fits. For the valence case,
R 1
0 dxh�(x)

gT
= 1, which thereby fixesN� = N�(↵�,��, ��, ��)

as a function of the other independent parameters. On the other hand, for N+ there is no such condition and therefore,
we keep it as an additional fit parameter in h+/gT . We used the above functional form in Eq. (27) and Eq. (28) to
fit our transversity pseudo-ITD data. We evaluated the convolution integral for the leading-twist matching using the
Taylor series in ⌫ (see Eq. (27) and Eq. (28)) using an expansion up to order Nmax = 40. This truncation achieves a
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FIG. 13. Our lattice determination of the valence transversity distribution hv(x, µ)/gT (µ) using the pseudo-distribution
approach is shown on the top panel, and the non-singlet antiquark transversity distribution hū�d̄(x, µ)/gT (µ) is shown on

the bottom panel. The factorization scale used is µ =
p
2 GeV for both the cases. In the two panels, the inner red band

includes only the statistical error and the outer red band includes statistical and systematical errors in the PDF reconstruction.
For the valence distribution, comparison is made with the previous phenomenological determinations using SIDIS and lattice
gT (JAM18) [72], shown using a patterned band, and with the recently updated global fit analysis (JAM20) [21] of the
single transverse spin asymmetry data (but, without including lattice gT ), shown as a green band. The non-singlet antiquark
distribution is consistent with an isospin symmetric intrinsic sea at all x.

develops slight wiggles when ↵s is randomly varied, and such variations are masked at the level of precision we are
working at. This leads us to think that the perturbative uncertainty of our determination could be mild, and ignore
such uncertainties in our final estimate.

In Fig. 13, we present our final estimates of the MS transversity PDFs at µ =
p
2 GeV including the statistical and

systematic uncertainties. Our transversity PDF determination is normalized with respect to gT (µ) at µ =
p
2 GeV,

as in the rest of the paper. In the top panel, we show the valence transversity PDF, hv(x) = h�(x) normalized by
gT (µ). In the bottom panel, we show the non-singlet antiquark distribution given by, hū�d̄(x) = [h+(x)� h�(x)] /2
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Conclusions
Outlook

• The understanding hadronic structure  is a major goal in nuclear physics


• Large experimental effort: JLab 12 GeV  and future EIC


• Lattice QCD calculations can in principle compute  (Generalized) Parton distribution functions from first 
principles


• Controlling all systematics of the calculation is important and that complicates the solution of the inverse 
problem at hand


• Both lattice spacing and higher twist effects need to be controlled  


• New ideas are needed for pushing to higher momentum and improved sampling of the Ioffe time


• The range of Ioffe time is essential for obtaining the x-dependence of distribution functions


• The synergy between lattice and experiment may be proven essential in providing precision estimates of 
(Generalized) Parton distribution functions 


