Partonic Structure from LQCD

Kostas Orginos

William \& Mary / JLab

Xmas Theoretical Physics Workshop @ Athens 2022, 22-23 Dember, 2022

X. Ji, D. Muller, A. Radyushkin (1994-1997)

Factorization \longrightarrow non-perturbative structure

Elastic scattering: Form factor

DIS: Parton distributions

DVCS or DVMP: Generalized Parton distributions

Determination of Parton distribution functions from Experiment

Fits to experimental cross section data

Determination of Parton distribution functions from Experiment

Fits to experimental cross section data

Determination of Parton distribution functions from Experiment

Parton distributions and lattice QCD calculations: a community white paper

JLab 12 GeV

Generalized Parton Distributions

The Electron-Ion Collider

A machine that will unlock the secrets of the strongest force in Nature

The computers and smartphones we use every day depend on what we learned about the atom in the last century. All information technology=and much of our economy todayrelies on understanding the electromagnetic force between the atomic nucleus and the electrons that orbit it. The science of that force is well understood but we still know litie about the microcosm within the protons and neutrons that make up the atomic nucleus. That's why Brookhaven Lab is building a new machine-an Electron-Ion Collider, or EIC-to look inside the nucleus and its protons and neutrons.

The EIC will be a particle accelerator that collides electrons with protons and nuclei to produce snapshots of those particles' internal structure-like a CT scanner for atoms. The electron beam will reveal the arrangement of the quarks and gluons that make up the protons and neutrons of nuclei. The force that holds quarks together, carried by the gluons, is the strongest force in Nature. The ElC will allow us to study this "strong nuclear force" and the role of gluons in the matter within and all around us. What we learn from the EIC could power the technologies of tomorrow.

DVCS factorization

III-defined inverse problem —-> Lattice QCD computations are essential

Generalized Parton Distributions

$\mathcal{O}_{\Gamma}(x)=\int \frac{d \lambda}{4 \pi} e^{i \lambda x} \bar{q}\left(\frac{-\lambda n}{2}\right) \boldsymbol{\Gamma} \mathcal{P} e^{-i g \int_{-\lambda / 2}^{\lambda / 2} d \alpha n \cdot A(\alpha n)} q\left(\frac{\lambda n}{2}\right)$
$\Gamma=\nprec$ or $\Gamma=\nprec \gamma_{5}$ or $\Gamma=n_{\mu} \sigma^{\mu \nu} \gamma_{5}$
$\Delta=P^{\prime}-P \quad \xi=-n \cdot \Delta / 2 \quad t=\Delta^{2}$

Vector:

$$
\langle P, s| \mathcal{O}_{\not x}(x)\left|P^{\prime}, s^{\prime}\right\rangle=\bar{u}(p, s)\left[\npreceq H(x, \xi, t)+\frac{n_{\mu} \Delta_{\nu}}{2 m} i \sigma^{\mu \nu} E(x, \xi, t)\right] u\left(p^{\prime}, s^{\prime}\right)
$$

Axial Vector:

$$
\langle P, s| \mathcal{O}_{\not p \gamma_{5}}(x)\left|P^{\prime}, s^{\prime}\right\rangle=\bar{u}(p, s)\left[h \gamma_{5} \tilde{H}(x, \xi, t)+\frac{n \cdot \Delta}{2 m} \gamma_{5} \tilde{E}(x, \xi, t)\right] u\left(p^{\prime}, s^{\prime}\right)
$$

Tensor:

$$
\begin{aligned}
\langle P, s| \mathcal{O}_{5 T}(x)\left|P^{\prime}, s^{\prime}\right\rangle & =\bar{u}(p, s)\left[n_{\mu} \sigma^{\mu k} \gamma_{5}\left(H_{T}(x, \xi, t)-\frac{t}{2 m^{2}} \tilde{H}_{T}\right)+\frac{\epsilon^{\mu \nu \alpha \beta} \Delta_{\alpha} \gamma_{\beta}}{2 m}\left(E_{T}(x, \xi, t)+2 \tilde{H}_{T}(x, \xi, t)\right)\right. \\
& \left.+\quad \frac{n_{\mu} \Delta^{[\mu} \sigma^{\nu] \alpha} \gamma_{5} \Delta_{\alpha}}{2 m^{2}} \tilde{H}_{T}(x, \xi, t)+\frac{\epsilon^{\mu \nu \alpha \beta} P_{\alpha} \gamma_{\beta}}{m} \tilde{E}_{T}(x, \xi, t)\right] u\left(p^{\prime}, s^{\prime}\right)
\end{aligned}
$$

Generalized Parton Distributions

Generalized Parton Distributions

Unified Hadronic structure

Forward limit: $\mathrm{t}=0$

Local limit

$$
\begin{aligned}
& H(x, 0,0)=q(x) \\
& \tilde{H}(x, 0,0)=\Delta q(x) \\
& H_{T}(x, 0,0)=\delta q(x)
\end{aligned}
$$

Vector $\quad \int d x H(x, \xi, t)=F_{1}(t) \quad \int d x E(x, \xi, t)=F_{2}(t)$
Axial Vector $\int d x \tilde{H}(x, \xi, t)=g_{A}(t) \quad \int d x \tilde{E}(x, \xi, t)=g_{P}(t)$
Tensor

$$
\int d x H_{T}(x, \xi, t)=g_{T}(t)
$$

Moments of GPDs

Operator Product Expansion

Off forward Matrix elements of local operators
 $$
\langle P, S| \mathcal{O}\left|P^{\prime}, S^{\prime}\right\rangle
$$

Unpolarized	$\mathcal{O}_{\left\{\mu_{1} \mu_{2} \cdots \mu_{n}\right\}}^{q}=\bar{q}\left[\left(\frac{i}{2}\right)^{n-1} \gamma_{\mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \overleftrightarrow{\leftrightarrow}_{\mu_{n}}-\right.$ trace $] q$
Polarized	$\mathcal{O}_{\left\{\mu_{1} \mu_{2} \cdots \mu_{n}\right\}}^{5 q}=\bar{q}\left[\left(\frac{i}{2}\right)^{n-1} \gamma_{5} \gamma_{\mu_{1}} \stackrel{\leftrightarrow}{D}_{\mu_{2}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}}-\right.$ trace $] q$
Transversity	$\mathcal{O}_{\rho \nu \mu_{1} \mu_{2} \cdots \mu_{n}}^{\sigma q}=\bar{q}\left[\left(\frac{i}{2}\right)^{n} \gamma_{5} \sigma_{\rho \nu} \stackrel{\leftrightarrow}{D}_{\mu_{1}} \cdots \stackrel{\leftrightarrow}{D}_{\mu_{n}}-\right.$ traces $] q$

- Generalized form factors: $A_{n k}(t) B_{n k}(t) C_{n k}(t)$
- Moments of GPDs are polynomials in ξ with coefficients the generalized form factors.
- Breaking of rotational symmetry: Mixing with lower dimensional operators
- Only first few moments can be computed on the lattice
- Perturbative renormalization has been used extensively
- Non-perturbative (ex. Rome-Southampton RI-MOM)

Lattice QCD

Defined on a Euclidean Lattice

- Lattice QCD: QCD on discrete Euclidean space time
- The lattice regulates UV divergences
- QCD: the continuum limit of Lattice QCD

- Provides a numerical, non-perturbative method for computing correlation functions : Monte Carlo evaluation of integrals

$$
\begin{gathered}
\mathcal{Z}=\int \mathcal{D}[U] \mathcal{D}[\bar{\psi}] \mathcal{D}[\psi] e^{-\bar{\psi} D(U) \psi-S_{g}(U)} \\
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int \mathcal{D}[U] \mathcal{D}[\bar{\psi}] \mathcal{D}[\psi] \mathcal{O}(\bar{\psi}, \psi, U) e^{-\bar{\psi} D(U) \psi-S_{g}(U)}
\end{gathered}
$$

Computation of equal time matrix elements LQCD

At sufficiently large T and t we get

$$
C_{2 p t}=\langle N(p, s, T) \bar{N}(p, s, 0)\rangle=\langle 0 \mid N, p, s\rangle \frac{e^{-E_{p} T}}{2 E_{p}}\langle N, p, s, \mid 0\rangle
$$

Computation of ground state energy and overlap factors

$$
C_{3 p t}=\langle 0 \mid N, p, s\rangle \frac{e^{-E_{p}(T-t)}}{2 E_{p}}\langle N, p, s| \mathcal{O}\left|N, p^{\prime}, s^{\prime}\right\rangle \frac{e^{-E_{p}^{\prime} t}}{2 E_{p}^{\prime}}\left\langle N, p^{\prime}, s^{\prime}, \mid 0\right\rangle
$$

Computation of ground state matrix elements
In practice we need to account for contributions from excited states

Moments of Generalized Parton Distributions

- Slope at small t decreases as we go to higher moments
- Higher moments dominated by higher x

Lattice computations of moments of GPDs

Unpolarized

- Green band is a phenomenological parameterization using Form factor data, CTEQ patron distributions, and Regge Anzatz as input
[Deihl et.al. hep-ph / 048173]
- As pion mass becomes smaller agreement is better.

LHPC: Phys. Rev. D 77, 094502 (2008)
hep-lat/ 0705.4295

Lattice computations of moments of GPDs

Polarized

- Green band is a phenomenological parameterization using Form factor data, CTEQ patron distributions, and Regge Anzatz as input
[Deihl et.al. hep-ph/048173]
- As pion mass becomes smaller agreement is better.

LHPC: Phys. Rev. D 77, 094502 (2008) hep-lat/ 0705.4295

The Proton Momentum

sum rule

MSbar 2 GeV

$$
A_{20}(0)=\langle x\rangle
$$

2013 revolution

Go beyond moments

- Goal: Compute full x-dependence (generalized) parton distribution functions (GPDFs)
- Operator product: Mellin moments are local matrix elements that can be computed in Lattice QCD
- Power divergent mixing limits us to few moments
X. Ji, Phys.Rev.Lett. 110, (2013)
- X. Ji suggested an approach for obtaining PDFs from Lattice QCD
Y.-Q. Ma J.-W. Qiu (2014) 1404.6860
- First calculations quickly became available
- Older approaches based on the hadronic tensor
H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys.Rev. D91, 054510 (2015)
C. Alexandrou, et al, Phys. Rev. D92, 014502 (2015)

X. Ji's Basic idea

- Lattice QCD computes equal time matrix elements
- Displace quarks in space-like interval
- Boost states to infinite momentum
- On the frame of the proton displacement becomes lightlike
- Infinite momentum not possible on the lattice

- Perurbative matching from finite momentum
- LaMET

Renormalization of UV divergences is required

Good Lattice Cross sections

Current-Current Correlators

4-quark bi-local matrix elements:

$$
\sigma_{n}\left(v, z^{2}\right)=\langle P| T\left\{O_{n}(z)\right\}|P\rangle
$$

Ex.

$$
\begin{aligned}
O_{S}(z) & =\left(z^{2}\right)^{2} Z_{S}^{2}\left[\bar{\psi}_{q} \psi_{q}\right](z)\left[\bar{\psi}_{q} \psi\right](0) \\
O_{V^{\prime}}(z) & =z^{2} Z_{V^{\prime}}^{2}\left[\bar{\psi}_{q}(z \cdot \gamma) \psi_{q^{\prime}}\right](z)\left[\bar{\psi}_{q^{\prime}} z \cdot \gamma \psi\right](0),
\end{aligned}
$$

equal time matrix element
Short distance factorization:

$$
\sigma_{n}\left(v, z^{2}\right)=\sum_{a} \int_{-1}^{1} \frac{d x}{x} f_{a}\left(x, \mu^{2}\right) K_{n}^{a}\left(x v, z^{2} \mu^{2}\right)+O\left(z^{2} \Lambda_{\mathrm{QCD}}^{2}\right), \quad \text { PDFs can be obtained }
$$

Pion PDF from current-current correlators

- R. Sufian et al , e-Print: 2001.04960 [hep-lat]

3 pion masses, 2 lattice spacings, 2 volumes

Pseudo-PDFs

An alternative point of view

Unpolarized PDFs proton:

$$
\begin{aligned}
& \mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle \\
& \hat{E}(0, z ; A)=\mathcal{P} \exp \left[-i g \int_{0}^{z} \mathrm{~d} z_{\mu}^{\prime} A_{\alpha}^{\mu}\left(z^{\prime}\right) T_{\alpha}\right]
\end{aligned}
$$

space-like separation of quarks

Lorentz decomposition:

$$
\mathcal{M}^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right)+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right)
$$

Pseudo-PDFs

Connection to light cone PDFs

$$
\begin{gathered}
\qquad \mathcal{M}^{\alpha}(z, p)=2 p^{\alpha} \mathcal{M}_{p}\left(-(z p),-z^{2}\right)+z^{\alpha} \mathcal{M}_{z}\left(-(z p),-z^{2}\right) \\
\quad z=\left(0, z_{-}, 0\right) \\
\text { Collinear PDFs: Choose } \quad p=\left(p_{+}, 0,0\right)
\end{gathered} \quad \mathcal{M}^{+}(z, p)=2 p^{+} \mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)
$$

$$
\gamma^{+}
$$

Definition of PDF:

$$
\mathcal{M}_{p}\left(-p_{+} z_{-}, 0\right)=\int_{-1}^{1} d x f(x) e^{-i x p_{+} z_{-}}
$$

Lorentz invariance allows for the computation of invariant form factors in any frame Use equal time kinematics for LQCD

Lattice QCD calculation:

$$
\mathcal{M}^{\alpha}(z, p) \equiv\langle p| \bar{\psi}(0) \gamma^{\alpha} \hat{E}(0, z ; A) \psi(z)|p\rangle
$$

Choose

$$
\begin{aligned}
& p=\left(p_{0}, 0,0, p_{3}\right) \\
& z=\left(0,0,0, z_{3}\right) \quad \gamma^{0}
\end{aligned}
$$

On shell equal time matrix element computable in Euclidean space

Obtaining only the relevant

$$
\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)=\frac{1}{2 p_{0}} \mathcal{M}^{0}\left(z_{3}, p_{3}\right)
$$

$$
\mathcal{P}\left(x,-z^{2}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu \mathcal{M}_{p}\left(\nu,-z^{2}\right) e^{-i x \nu}
$$

Chosing γ^{0} was also suggested also by M. Constantinou at GHP2017 based on an operator mixing argument for the renormalized matrix element

$$
Q\left(y, p_{3}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \nu \mathcal{M}_{p}\left(\nu, \nu^{2} / p_{3}^{2}\right) e^{-i y \nu} \quad \text { Ji's quasi-PDF }
$$

Large values of $z_{3}=\nu / p_{3}$ are problematic
Alternative approach to the light-cone:

PDFs can be recovered $-z^{2} \rightarrow 0$
Note that $\quad x \in[-1,1]$

Collinear singularity at $\quad-z^{2} \rightarrow 0$

Factorization of collinear divergence at

$$
\mathcal{M}_{p}\left(\nu, z^{2}\right)=\int_{0}^{1} d \alpha \mathcal{C}\left(\alpha, z^{2} \mu^{2}, \alpha_{s}(\mu)\right) \mathcal{Q}(\alpha \nu, \mu)+\mathcal{O}\left(z^{2} \Lambda_{q c d}^{2}\right)
$$

$\mathcal{Q}(\nu, \mu) \quad$ is called the loffe time PDF

$$
\mathcal{Q}(\nu, \mu)=\int_{-1}^{1} d x e^{-i x \nu} f(x, \mu)
$$

$\overline{M S}$ Calculation of the Kernel

Statistical noise

Nucleon with momentum P two-point function:

$$
C_{2 p}(P, t)=\left\langle O_{N}(P, t) O_{N}^{\dagger}(P, 0)\right\rangle \sim \mathcal{Z} e^{-E(P) t}
$$

Variance of nucleon two-point function:

$$
\operatorname{var}\left[C_{2 p}(P, t)\right]=\left\langle O_{N}(P, t) O_{N}(P, t)^{\dagger} O_{N}(P, 0) O_{N}^{\dagger}(P, 0)\right\rangle \sim \mathcal{Z}_{3 \pi} e^{-3 m_{\pi} t}
$$

Variance is independent of the momentum

$$
\frac{\operatorname{var}\left[C_{2 p}(P, t)\right]^{1 / 2}}{C_{a p}(P, t)} \sim \frac{\mathcal{Z}}{\mathcal{Z}}_{3 \pi} e^{\left[E(P)-3 / 2 m_{\pi}\right] t}
$$

Statistical accuracy drops exponentially with the increasing momentum limiting the maximum achievable momentum.

Lattice QCD requirements

$$
a P_{\max }=\frac{2 \pi}{4} \sim \mathcal{O}(1)
$$

$$
\begin{array}{rlr}
a & \sim 0.1 \mathrm{fm} \rightarrow P_{\max }=10 \Lambda & \Lambda \sim 300 \mathrm{MeV} \\
a & \sim 0.05 \mathrm{fm} \rightarrow P_{\max }=20 \Lambda &
\end{array}
$$

For practical calculations large momentum is needed *Higher twist effect suppression (qpdfs) *Wide coverage of loffe time v
$P=3 \mathrm{GeV}$ is already demanding due to statistical noise achievable with easily accessible lattice spacings
$P=6 \mathrm{GeV}$ exponentially harder maybe intractable without new ideas

One loop calculation of the UV divergences results in

$$
\mathcal{M}^{0}(z, P, a) \sim e^{-m|z| / a}\left(\frac{a^{2}}{z^{2}}\right)^{2 \gamma_{e n d}}
$$

after re-summation of one loop result resulting exponentiation

- J.G.M.Gatheral,Phys.Lett.133B,90(1983)
- J.Frenkel, J.C.Taylor,Nucl.Phys.B246,231(1984),
- G.P.Korchemsky, A.V.Radyushkin,Nucl.Phys.B283,342(1987).

UV divergences appear multiplicatively

Cusp indicates "linear" divergence of Wilson line

Consider the ratio

$$
\mathfrak{M}\left(\nu, z_{3}^{2}\right) \equiv \frac{\mathcal{M}_{p}\left(\nu, z_{3}^{2}\right)}{\mathcal{M}_{p}\left(0, z_{3}^{2}\right)}
$$

UV divergences will cancel in this ratio resulting a renormalization group invariant (RGI) function

The collinear divergences at $z_{3}^{2}=0$ limit only appear in the numerator

The lattice regulator can now be removed

$$
\mathfrak{M}^{\text {cont }}\left(\nu, z_{3}^{2}\right) \quad \text { Universal independent of the lattice }
$$

Its Fourier transformation with respect to v is a particular definition of a PDF

$$
\mathcal{M}_{p}(0,0)=1 \quad \text { Isovector matrix element }
$$

Continuum limit matching to $\overline{M S}$ computed at 1-loop

Radyushkin Phys.Rev. D98 (2018) no.1, 014019
Zhang et al. Phys.Rev. D97 (2018) no.7, 074508

$$
\begin{aligned}
\mathfrak{M}\left(\nu, z^{2}\right) & =\int_{0}^{1} d x q_{v}(x, \mu) \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k} . \\
\mathcal{K}\left(x \nu, z^{2} \mu^{2}\right) & =\cos (x \nu)-\frac{\alpha_{s}}{2 \pi} C_{F}\left[\ln \left(e^{2 \gamma_{E}+1} z^{2} \mu^{2} / 4\right) \tilde{B}(x \nu)+\tilde{D}(x \nu)\right]
\end{aligned}
$$

$$
\begin{aligned}
\tilde{B}(x) & =\frac{1-\cos (x)}{x^{2}}+2 \sin (x) \frac{x \operatorname{Si}(x)-1}{x}+\frac{3-4 \gamma_{E}}{2} \cos (x)+2 \cos (x)[\operatorname{Ci}(x)-\ln (x)] \\
\tilde{D}(x) & =x \operatorname{Im}\left[e^{i x}{ }_{3} F_{3}(111 ; 222 ;-i x)\right]-\frac{2-\left(2+x^{2}\right) \cos (x)}{x^{2}}
\end{aligned}
$$

Polynomial corrections to the loffe time PDF may be suppressed

$$
\begin{aligned}
& \text { B. U. Musch, et al Phys. Rev. D 83, } 094507 \text { (2011) } \\
& \text { M. Anselmino et al. 10.1007/JHEP04(2014)005 } \\
& \text { A. Radyushkin Phys.Lett. B767 (2017) }
\end{aligned}
$$

$$
\mu^{2} \frac{d}{d \mu^{2}} \mathcal{Q}\left(\nu, \mu^{2}\right)=-\frac{2}{3} \frac{\alpha_{s}}{2 \pi} \int_{0}^{1} d u B(u) \mathcal{Q}\left(u \nu, \mu^{2}\right)
$$

$$
B(u)=\left[\frac{1+u^{2}}{1-u}\right]_{+} \quad \text { DGLAP kernel in position space }
$$

V. Braun, et. al Phys. Rev. D 51, 6036 (1995)

At 1-loop

$$
\mathcal{Q}\left(\nu, \mu^{\prime 2}\right)=\mathcal{Q}\left(\nu, \mu^{2}\right)-\frac{2}{3} \frac{\alpha_{s}}{2 \pi} \ln \left(\mu^{\prime 2} / \mu^{2}\right) \int_{0}^{1} d u B(u) \mathcal{Q}\left(u \nu, \mu^{2}\right)
$$

Which implies (ignoring higher twist)

$$
\mathfrak{M}\left(\nu, z^{\prime 2}\right)=\mathfrak{M}\left(\nu, z^{2}\right)-\frac{2}{3} \frac{\alpha_{s}\left(z^{2}\right)}{\pi} \ln \left(z^{\prime 2} / z^{2}\right) \int_{0}^{1} d u B(u)\left[\mathfrak{M}\left(u \nu, z^{2}\right)\right.
$$

Quenched QCD

Data corresponding to $z / a=1,2,3,4$

Quenched QCD

Evolved to 1 GeV

Quenched QCD

Data corresponding to $z / a=1,2,3,4$

Quenched QCD

Evolved to 1 GeV

The Moments

Karpie et al. arXiv:1807.10933

Using OPE:

$$
\mathfrak{M}\left(\nu, z^{2}\right)=1+\frac{1}{2 p^{0}} \sum_{k=1}^{\infty} i^{k} \frac{1}{k!} z_{\alpha_{1}} \cdots z_{\alpha_{k}} c_{k}\left(z^{2} \mu^{2}\right)\langle p| \mathcal{O}_{(k)}^{0 \alpha_{1} \cdots \alpha_{k}}|p\rangle_{\mu}+\mathcal{O}\left(z^{2}\right)
$$

$\langle p| \mathcal{O}_{(k)}^{0 \alpha_{1} \cdots \alpha_{k}}|p\rangle_{\mu}=2\left[p^{0} p^{\alpha_{1}} \cdots p^{\alpha_{k}}-\operatorname{traces}\right]_{\mathrm{sym}} a_{k+1}(\mu)$,

Where

$$
a_{n}(\mu)=\int_{-1}^{1} d x x^{n-1} q(x, \mu),
$$

are the moments of the PDFs

The Moments

Karpie et al. arXiv:1807.10933

As a consequence:

$$
\left.(-i)^{n} \frac{\partial^{n} \mathfrak{M}\left(\nu, z^{2}\right)}{\partial \nu^{n}}\right|_{\nu=0}=c_{n}\left(z^{2} \mu^{2}\right) a_{n+1}(\mu)+\mathcal{O}\left(z^{2}\right) .
$$

Where the Wilson coefficients are

$$
c_{n}\left(z^{2} \mu^{2}\right)=\int_{0}^{1} d \alpha \mathcal{C}\left(\alpha, z^{2} \mu^{2}, \alpha_{s}(\mu)\right) \alpha^{n} .
$$

Quenched QCD: moments

QCDSF: Phys.Rev. D53 (1996) 2317-2325 — shown as shaded patches at $\mu=2 \mathrm{GeV}$

$$
\overline{M S} \quad \mu^{2}=\left(2 e^{-\gamma_{E}} / z_{3}\right)^{2}
$$

$$
\begin{aligned}
& \mathfrak{M}(p, z, a)=\mathfrak{M}_{\text {cont }}\left(\nu, z^{2}\right)+\sum_{n=1}\left(\frac{a}{|z|}\right)^{n} P_{n}(\nu)+\left(a \Lambda_{\mathrm{QCD}}\right)^{n} R_{n}(\nu) \\
& \mathfrak{M}\left(\nu, z^{2}\right)=\int_{0}^{1} d x q_{v}(x, \mu) \mathcal{K}\left(x \nu, z^{2} \mu^{2}\right)+\sum_{k=1}^{\infty} \mathcal{B}_{k}(\nu)\left(z^{2}\right)^{k} . \\
& \text { loffe time }-z \cdot p=\nu
\end{aligned}
$$

- All coefficient functions respect continuum symmetries
- Lattice spacing corrections to higher twist effects are ignored
- On dimensional ground a / z terms must exist
- Additional O(a) effects (last term)

The inverse problem to solve: Obtain $q(x, \mu)$ from the lattice matrix elements

Our inverse problem

$$
\mathfrak{M}(p, z, a)=\mathfrak{M}_{\text {cont }}\left(\nu, z^{2}\right)+\sum_{n=1}\left(\frac{a}{|z|}\right)^{n} P_{n}(\nu)+\left(a \Lambda_{\mathrm{QCD}}\right)^{n} R_{n}(\nu) .
$$

- Obtain the PDF from a limited set of matrix elements obtained from lattice QCD
- z^{2} is a physical length scale sampled on discrete values
- z^{2} needs to be sufficiently small so that higher twist effects are under control
- v is dimensionless also sampled in discrete values
- the range of v is dictated by the range of z and the range of momenta available and is typically limited
- Parametrization of unknown functions

Sample data

arXiv:2105.13313 [hep-lat] J. Karpie et.al.

ID	$a(\mathrm{fm})$	$M_{\pi}(\mathrm{MeV})$	β	$c_{\text {SW }}$	κ	$L^{3} \times T$	$N_{\text {cfg }}$
$\widetilde{A} 5$	$0.0749(8)$	$446(1)$	5.2	2.01715	0.13585	$32^{3} \times 64$	1904
E5	$0.0652(6)$	$440(5)$	5.3	1.90952	0.13625	$32^{3} \times 64$	999
N5	$0.0483(4)$	$443(4)$	5.5	1.75150	0.13660	$48^{3} \times 96$	477

$$
a=0.075 f \mathrm{~m}
$$

$a=0.065 f m$

$$
a=0.048 \mathrm{fm}
$$

Nucleon Momentum scan

Energy vs momentum

Maximum attainable momentum in lattice units can be up to $O(1)$
Smaller lattice spacing allows for physically larger momentum

Jacobi Polynomials

Inverse problem

PDF parametrization

$$
q_{+}(x)=q(x)+\bar{q}(x)
$$

$$
q_{ \pm}(x)=x^{\alpha}(1-x)^{\beta} \sum_{n=0}^{\infty} \pm d_{n}^{(\alpha, \beta)} J_{n}^{(\alpha, \beta)}(x)
$$

$J_{n}^{(\alpha, \beta)}(x)$ Jacobi Polynomials: Orthogonal and complete in the interval [0,1]

$$
\int_{0}^{1} d x x^{\alpha}(1-x)^{\beta} J_{n}^{(\alpha, \beta)}(x) J_{m}^{(\alpha, \beta)}(x)=N_{n}^{(\alpha, \beta)} \delta_{n, m}
$$

Complete basis of functions in the interval $[0,1]$ for any α and β

Bayesian Inference

Optimize model parameters

- Fix the expansion order in the Jacobi polynomial expansion
- Optimize a, β and the expantion of coefficients by maximizing the posterior probability
- Average over models using AICc
- Note that one could fix a, β at a reasonable value and the vary the order of trancation in the Jacobi polynomial expansion

$$
P\left[\theta \mid \mathfrak{M}^{L}, I\right]=\frac{P\left[\mathfrak{M}^{L} \mid \theta\right] P[\theta \mid I]}{P\left[\mathfrak{M}^{L} \mid I\right]}
$$

Isovector quark and anti-quark distributions

Comparison with phenomenology

2 flavor QCD in the continuum limit with 450 MeV pions
arXiv:2105.13313 [hep-lat] J. Karpie et.al.

Unpolarized Isovector PDF

2+1 flavors single lattice spacing 350 MeV pion

arXiv:2107.05199 [hep-lat] C. Egerer et.al.

Helicity Isovector PDF

2+1 flavors single lattice spacing 350 MeV pion

Transversity Isovector PDF

2+1 flavors single lattice spacing $\mathbf{3 5 0} \mathbf{~ M e V}$ pion

arXiv:2111.01808 [hep-lat] C. Egerer et.al.

Conclusions

Outlook

- The understanding hadronic structure is a major goal in nuclear physics
- Large experimental effort: JLab 12 GeV and future EIC
- Lattice QCD calculations can in principle compute (Generalized) Parton distribution functions from first principles
- Controlling all systematics of the calculation is important and that complicates the solution of the inverse problem at hand
- Both lattice spacing and higher twist effects need to be controlled
- New ideas are needed for pushing to higher momentum and improved sampling of the loffe time
- The range of loffe time is essential for obtaining the x-dependence of distribution functions
- The synergy between lattice and experiment may be proven essential in providing precision estimates of (Generalized) Parton distribution functions

