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Introduction
Conformal Field Theories (CFTs)

I QFTs with conformal symmetry. Fixed points of RG flow.
Universality for different systems at criticality. Quantum
gravity in AdS, ...

(from Wikipedia)

I Two dimensions are special! Infinite number of conserved
charges. Ubiquitous in both physics and math: from 2d
condensed matter systems and worldsheet string theory, to
number theory, random matrix theory, quantum groups, · · ·



Introduction
Conformal Bootstrap Philosophy

We will be interested in Euclidean correlation functions of local
(primary) operators on Riemann surfaces:

Using the power of the Operator Product Expansion (OPE), the
basic 2d CFT data at central charge c consist of:
I Dynamic: List of primary operators Oi , along with scaling

dimensions ∆i = hi + hi and spins li = |hi − hi |, and their
OPE coefficients Cijk .

I Kinematic: Conformal blocks.

Question: How are these CFT data constrained from consistency
conditions (e.g. associativity of OPE)? Are there any universal
features that we can derive analytically?



Goal 1/2 of this talk

I Understand an important kinematic tool in 2d CFTs – the

crossing kernels K(c)
P′P – that implement change of basis

transformations:

F (frame–1)
P =

∫
C
dP ′ K(c)

P′P F
(frame–2)
P′ ,

as functions of the central charge c ∈ C.

I For c ∈ C\(−∞, 1], K(c)
P′P provided by [B.Ponsot, J.Teschner ’00].

For c ∈ (−∞, 1] ,we’ll show:

K(c)
P′P = (meromorphic function)×K(26−c)

iP′,iP .

[S.Ribault, I.T., to appear]

This includes and generalizes the already known expressions for
e.g. Minimal Models.
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Goal 2/2 of this talk

Apply these formulas to:

I Analytically prove crossing symmetry for time-like Liouville
theory, given that space-like Liouville theory is crossing
symmetric.

I In general, provide universal bootstrap connections in
universal kinematic regimes for c ≤ 1 theories, given the
analogous expressions for c ≥ 25 theories.
(in the spirit of [S. Collier, A. Maloney, H. Maxfield, I.T., ’19])

I Glimpse into the structure of conformal blocks, connection
between large positive/negative central charge, · · ·



Outline

• 2D CFT primer

• Crossing Symmetry and Modular Covariance in 2d

• Crossing Kernels

• (Goal 1) Analyticity and Crossing Kernels for c ≤ 1

• (Goal 2) Conformal bootstrap applications

• Summary & Future Directions
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2D CFT primer
General

I Contrary to d > 2, there is an infinite dimensional algebra of
symmetries.

I Two copies of Virasoro algebra:

[Lm, Ln] = (m − n)Ln+m +
c

12
(n3 − n)δn+m,01,

(same for Ln → Ln),

[Ln, Lm] = 0 m, n ∈ Z

c : central charge.



2D CFT primer
General

I Irreps characterized by the conformal dimensions (h, h) and
associated highest weight/primary state |h〉

L0 |h〉 = h |h〉 , L0 |h〉 = h̄ |h〉
Ln(Ln) |h〉 = 0 , for n ∈ Z>0

I Heighest weight module Vh
L|N| |h〉 ≡ L−nk ..L−n2L−n1 |h〉 , n1, n2, .., nk ∈ Z>0 , N ≡

∑
i

ni

L0L|N| |h〉 = (h + N)L|N| |h〉 ,
complete (albeit non-orthogonal) basis.

I Scaling dimension/Energy, Spin, Twist:

∆ = h + h̄ , l = |h − h̄| , τ = ∆− l = 2min(h, h̄).

I Hilbert space of states:

H = ⊕h,h̄Vh ⊗ Vh.



2D CFT primer
General

I State-Operator Correspondence:

primary state |i〉 on S1 ↔ primary operator Oi (z , z̄)

I Algebraic product structure (OPE):

Oi (z)Oj(0) =
∑
k

C k
ij z

hk−hi−hj
∑
N

BN(hi , hj ; hk |z)L|N|︸ ︷︷ ︸
descendants of Ok ,kinematic

Ok(0)

C k
ij : OPE coefficients, dynamic data.
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2D CFT primer
Correlation Functions on S2

I Two-point function:

〈Oi (z1)Oj(z2)〉S2 =
δij

z2hi
12

, zij ≡ zi − zj

I Three-point function:

〈Oi (z1)Oj(z2)Ok(z3)〉S2 =
Cijk

z
hi+hj−hk
12 z

hi+hk−hj
13 z

hj+hk−hi
23

,

with Cijk = C k
ij .

I Any higher point function can be readily constructed by
successively using the OPE structure of operators!



Crossing Symmetry and
Modular Covariance in 2d



Crossing Symmetry and Modular Covariance in 2d
Notation

We will be interested in kinematic quantities as functions of c ∈ C.
This includes both unitary (c > 0) and non-unitary (c < 0)
theories .
”Natural” parametrization:

c = 1 + 6Q2 = 1 + 6(b + b−1)2

I For b ∈ C with Reb > 0 ⇒ c ∈ C\(−∞, 1],
I For b ∈ iR ⇒ c ∈ (−∞, 1].

(b = −iβ, β ∈ R and hence c = 1− 6(β − β−1)2)

Conformal dimensions:

h = α(Q − α) =
Q2

4
+ P2 , P ∈ C

(h̄ = ᾱ(Q − ᾱ) =
Q2

4
+ P̄2)
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Crossing Symmetry and Modular Covariance in 2d
Euclidean correlation functions out of elementary ”legos”

Consider a general correlation function

Gg ,nb = 〈O1(z1) · · · Onb(znb)〉Σg .

After successively using the OPE between operators, the amplitude
is reduced to a product of elementary ”legos” made out of the
three-point structure constant C k

ij :

e.g.

or
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Crossing Symmetry and Modular Covariance in 2d
Conformal Bootstrap

”Sewing” the surface in different ways leads to equivalent
descriptions of a correlation function. Manifestation of locality.

Two canonical examples:
I Crossing symmetry of 4-pt functions on S2〈

O1(0)O2(x , x̄)︸ ︷︷ ︸
OPE

O1(1)O′2(∞)︸ ︷︷ ︸
OPE

〉
=
∑
αs

C 2
O1O2Os

F(αs |x)F(αs |x)

〈
O1(0)O1(1)︸ ︷︷ ︸

OPE

O2(x , x̄)O′2(∞)︸ ︷︷ ︸
OPE

〉
=

∑
αt

CO1O1OtCO2O2OtF(αt |1− x)F(αt |1− x)
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Crossing Symmetry and Modular Covariance in 2d
Conformal Bootstrap

I Modular covariance of 1-pt functions on T 2

〈O0〉T 2 =
∑
αO

COOO0FO0(αO|q)FO0(αO|q)

Under S : τ → − 1
τ the primary operator transforms

non-trivially by definition.

〈O0〉T 2 (−1/τ,−1/τ) = τα0(Q−α0)τ̄ ᾱ0(Q−ᾱ0) 〈O0〉T 2 (τ, τ̄)

⇒ In the case O0 = 1 (α0 = 0,COO1 = 1),∑
α,α

dα,αχα(τ)χα(τ) =
∑
α,α

dα,αχα(−1/τ)χα(−1/τ)

Modular Invariance of the Partition Function.
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Crossing Symmetry and Modular Covariance in 2d
Conformal Bootstrap

I Modular covariance of 1-pt functions on T 2

〈O0〉T 2 =
∑
αO

COOO0FO0(αO|q)FO0(αO|q)

Under S : τ → − 1
τ the primary operator transforms

non-trivially by definition.

〈O0〉T 2 (−1/τ,−1/τ) = τα0(Q−α0)τ̄ ᾱ0(Q−ᾱ0) 〈O0〉T 2 (τ, τ̄)

� Powerful result [G.W. Moore, N. Seiberg, ’88]: (i) Crossing
symmetry of 4-pt functions + (ii) Modular covariance of torus
1-pt functions are sufficient to imply higher point crossing
symmetry and higher genus modular covariance.



Crossing Kernels



Kernel as Fundamental

I We saw the statement of crossing symmetry:∑
αs

C 2
O1O2Os

F(αs |x)F(αs |x) =

=
∑
αt

CO1O1OtCO2O2OtF(αt |1− x)F(αt |1− x).

I Trivial fact of life[Exercise in Moore-Seiberg;’89]:
If {fi}, {gi}, {hi}, {ki} sets of linearly independent analytic
functions s.t.

N∑
i=1

fig
∗
i =

M∑
i=1

hik
∗
i

Then, N = M, ~f = A~h, ~g = (A−1)†~k for some invertible
matrix A.

⇒ The blocks F(αs |x),F(αt |1− x) should be related linearly on
their common domain of analyticity via a crossing kernel!



Kernel as Fundamental
Schematically,

=
∑

i Ci × (Conformal Blocks)si

=
∑

i C̃i × (Conformal Blocks)ti

(Conformal Blocks)ti =
∑

j Fij × (Conformal Blocks)sj

Lesson[Friedan,Shenker;’87,Moore-Seiberg;’88]:

I Conformal block expansion in a specific channel ⇒ expansion
in a specific basis. Different basis should be related linearly.

I Sum over a complete set of states ⇒ ”sewing” pair of pants
and hence, consistency conditions ⇒ equivalence of different
independent ways to ”sew” the same Riemann surface.



The Elementary Crossing Kernels
I What are those kernels in 2d CFTs?

I Amazingly, for c ∈ C\(−∞, 1] there is a closed-form
expression for the torus one-point kernel S and the sphere
four-point kernel F due to [B.Ponsot, J.Teschner,’99,’01,B.Ponsot;03’].

I Torus 1-point kernel Sαα′ :

G1,1(τ, τ̄) ≡ 〈O0(0)〉T 2 =
∑
α

COOO0FO0(α|τ)FO0(α|τ)

τhO0FO0(α′| − 1/τ) =

∫
CS

dα

2i
Sαα′ [O0] FO0(α|τ)

I Sphere 4-point kernel Fαα′ :

G0,4(z , z̄) ≡
∑
α

C12OCO34FS(α|z)FS(ᾱ|z̄)

FT (α′|1− z) =

∫
CF

dα

2i
Fαα′

[
α2 α1

α3 α4

]
FS(α|z)
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The Elementary Crossing kernels
Torus 1-point kernel Sαα′

Sαα′ [µ] =

√
2Sb(2α)

Sb(2α− Q)Sb(µ)

Γb(2α′)Γb(2α− µ)(×reflections)

Γb(2α)Γb(2α′ − µ)

×
∫
C′S

dξ

i
e4πi(Q

2
−α′)ξ Sb(α− Q−µ

2 + ξ)Sb(α− Q−µ
2 − ξ)

Sb(α + Q−µ
2 + ξ)Sb(α + Q−µ

2 − ξ)

[B.Ponsot;03’]

where

Sb(x) =
Γb(x)

Γb(Q − x)

Γb(x): b-defomred Γ function.
Can be thought of as a generalization of the usual Γ function with
simple poles at x = −mb − nb−1, n,m ∈ Z≥0 and no zeroes.



The Elementary Crossing kernels
Sphere 4-point kernel Fαα′

Fαα′
[
α2 α1

α3 α4

]
= Pb(αi ;α, α

′)

∫
C′F

ds

i

4∏
k=1

Sb(s + Uk(αi ))

Sb(s + Vk(αi ))

[B.Ponsot, J.Teschner;’99,’01]

where Pb is again made out of Γb functions.

I It is remarkable that these expressions are known explicitly for
c ∈ C\(−∞, 1], whereas Virasoro conformal blocks are not!

I Once S, F are known, all higher genus + higher point kernels
are appropriate convolutions of these two kernels.

I In great generality, these kernels satisfy fundamental
consistency conditions known as e.g. ”pentagon identities”.



The Elementary Crossing kernels
Pentagon identities

1

2 3 4

5p q

1

2

3

4

5q

r

1

2

3 4

5

r
s

F

1

2

3

4

5

s

t

1

2

3

4

5p

t

F

F

F

F

I This leads to∑
r

Frp

[
1 q
2 3

]
Fsq

[
1 5
r 4

]
Ftr

[
2 s
3 4

]
= Ftq

[
p 5
3 4

]
Fsp

[
1 5
2 t

]
I Similarly, from the torus two-point function one gets

FO1
[
t t
t t

]
Sst [O] = Ss1[1]

∑
u

e2πi(hs+ht−hu−hO/2)Fu1
[
s t
s t

]
FOu

[
t t
s s

]
.



Analyticity and Crossing
Kernels for c ≤ 1



Analyticity and Crossing Kernels for c ≤ 1
The problem of analyticity

I What about c ∈ (−∞, 1]? Could we analytically continue the
Ponsot-Teschner expressions to that regime?

No! The function Γb diverges for b = −iβ, β ∈ R.

I On the other hand, there are Minimal Models (MM) in that
regime. For particular values of β = β(MM) we know some of
these kernels: they are finite dimensional matrices [yellow book]

I But the ”pentagon identities” – once specified into degenerate
conformal dimensions – provide difference equations for the
kernels that are analytic for any b ∈ C. The Ponsot-Teschner
expressions are just a special class of solutions of those
equations.
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Analyticity and Crossing Kernels for c ≤ 1
Solutions of the pentagon identities

In [S.Ribault, I.T., to appear], we solve explicitly the pentagon
identities in the regime b ∈ iR!

We find the unique∗ solutions:

�P′P [P0] =

[
P

P ′
BtL(P)CtDOZZ (P0,P

′,P ′)

BtL(P ′)CtDOZZ (P0,P,P)

]
× S(ib)

iP′,iP [iP0],

�P′P

[
P2 P1

P3 P4

]
=

[
P

P ′
BtL(P)CtDOZZ (P1,P2,P

′)CtDOZZ (P3,P4,P
′)

BtL(P ′)CtDOZZ (P1,P2,P)CtDOZZ (P3,P4,P)

]
× F(ib)

iP′,iP

[
iP2 iP1

iP3 iP4

]
, b = −iβ, β ∈ R.

where BtL,CtDOZZ are repsectively the two and three-point
structure constants of ”time-like” Liouville theory.
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In [S.Ribault, I.T., to appear], we solve explicitly the pentagon
identities in the regime b ∈ iR!
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Some comments:

I These kernels reproduce all the known MM expressions +
provide the natural analytic continuation for any
c ∈ (−∞, 1]!

I Note that b → ib means c → 26− c . These formulas seem to
realize an explicit large/small central charge connection in 2d
CFTs at the level of kinematic quantities.

I The appearance of the time-like Liouville theory quantities is
not an accident...
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Conformal Bootstrap applications
Proof of crossing symmetry for time-like Liouville theory

For a theory with only scalar primaries, the modular covariance
equation for the torus 1-pt function can be recast as:

CP,P,P0

B(P)
SPP′ [P0] =

CP,′P′,P0

B(P ′)
S−1
P′P [P0] (∗)

I For space-like Liouville theory (formally defined for c ∈ C\(−∞, 1])

⇒ CP,P,P0 ≡ CDOZZ (P,P,P0) and B(P) ≡ BL(P). Equation
(∗) is satisfied non-trivially as a particular instance of the
pentagon identity.

I What about ”time-like” Liouville theory? Defined for
c ≤ 1.If we substitute CP,P,P0 ≡ CtDOZZ (P,P,P0),
B(P) ≡ BtL(P), and also use our kernel �, is the equation:

CtDOZZ (P,P,P0)

BtL(P)
�PP′ [P0] =

CtDOZZ (P ′,P ′,P0)

BtL(P ′)
�−1
P′P [P0]

true?!



Conformal Bootstrap applications
Proof of crossing symmetry for time-like Liouville theory

For a theory with only scalar primaries, the modular covariance
equation for the torus 1-pt function can be recast as:

CP,P,P0

B(P)
SPP′ [P0] =

CP,′P′,P0

B(P ′)
S−1
P′P [P0] (∗)

I For space-like Liouville theory (formally defined for c ∈ C\(−∞, 1])

⇒ CP,P,P0 ≡ CDOZZ (P,P,P0) and B(P) ≡ BL(P). Equation
(∗) is satisfied non-trivially as a particular instance of the
pentagon identity.

I What about ”time-like” Liouville theory?

Defined for
c ≤ 1.If we substitute CP,P,P0 ≡ CtDOZZ (P,P,P0),
B(P) ≡ BtL(P), and also use our kernel �, is the equation:

CtDOZZ (P,P,P0)

BtL(P)
�PP′ [P0] =

CtDOZZ (P ′,P ′,P0)

BtL(P ′)
�−1
P′P [P0]

true?!



Conformal Bootstrap applications
Proof of crossing symmetry for time-like Liouville theory

For a theory with only scalar primaries, the modular covariance
equation for the torus 1-pt function can be recast as:

CP,P,P0

B(P)
SPP′ [P0] =

CP,′P′,P0

B(P ′)
S−1
P′P [P0] (∗)

I For space-like Liouville theory (formally defined for c ∈ C\(−∞, 1])

⇒ CP,P,P0 ≡ CDOZZ (P,P,P0) and B(P) ≡ BL(P). Equation
(∗) is satisfied non-trivially as a particular instance of the
pentagon identity.

I What about ”time-like” Liouville theory? Defined for
c ≤ 1.

If we substitute CP,P,P0 ≡ CtDOZZ (P,P,P0),
B(P) ≡ BtL(P), and also use our kernel �, is the equation:

CtDOZZ (P,P,P0)

BtL(P)
�PP′ [P0] =

CtDOZZ (P ′,P ′,P0)

BtL(P ′)
�−1
P′P [P0]

true?!



Conformal Bootstrap applications
Proof of crossing symmetry for time-like Liouville theory

For a theory with only scalar primaries, the modular covariance
equation for the torus 1-pt function can be recast as:

CP,P,P0

B(P)
SPP′ [P0] =

CP,′P′,P0

B(P ′)
S−1
P′P [P0] (∗)

I For space-like Liouville theory (formally defined for c ∈ C\(−∞, 1])

⇒ CP,P,P0 ≡ CDOZZ (P,P,P0) and B(P) ≡ BL(P). Equation
(∗) is satisfied non-trivially as a particular instance of the
pentagon identity.

I What about ”time-like” Liouville theory? Defined for
c ≤ 1.If we substitute CP,P,P0 ≡ CtDOZZ (P,P,P0),
B(P) ≡ BtL(P), and also use our kernel �, is the equation:

CtDOZZ (P,P,P0)

BtL(P)
�PP′ [P0] =

CtDOZZ (P ′,P ′,P0)

BtL(P ′)
�−1
P′P [P0]

true?!



Conformal Bootstrap applications
Proof of crossing symmetry for time-like Liouville theory
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BtL(P)
�PP′ [P0] =

CtDOZZ (P ′,P ′,P0)

BtL(P ′)
�−1
P′P [P0]

Yes! [S.Ribault, I.T., to appear]

I The proof starts from modular covariance of the space-like
theory, and uses the explicit relation between the kernels S
and �, as well as the non-trivial relations between the
structure constants of the two theories:

BtL(P) = − 1

4P2

1

B
(ib)
L (iP)

, CtDOZZ (P1,P2,P3) =
1

C
(ib)
DOZZ (iP1, iP2, iP3)

.

I Similarly, we prove crossing symmetry of the four-point
functions on the sphere by using the relations between the
kernels F and �.
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Summary & Future Directions
• We studied the crossing kernels for torus 1-pt functions and

sphere 4-pt functions in 2d CFTs. We completed the study of
[Ponsot,Teschner] by providing solutions in the ’missing’ regime
c ∈ (−∞, 1]:

�P′P [P0] =

[
P

P′
BtL(P)CtDOZZ (P0, P

′, P′)

BtL(P′)CtDOZZ (P0, P, P)

]
× S(ib)

iP′,iP [iP0],

�P′P

[
P2 P1
P3 P4

]
=

[
P

P′
BtL(P)CtDOZZ (P1, P2, P

′)CtDOZZ (P3, P4, P
′)

BtL(P′)CtDOZZ (P1, P2, P)CtDOZZ (P3, P4, P)

]
× F(ib)

iP′,iP

[
iP2 iP1
iP3 iP4

]
, b ∈ iR.

[S.Ribault, I.T., to appear]

• Novel application is an analytic proof of crossing symmetry
for time-like Liouville theory, which was so far elusive.
• Intricate relation between c ↔ 26− c (or b ↔ ib). Rigid

structure of Analytic Conformal Bootstrap as a function of the
central charge. Could we explore this further in some universal
kinematic regimes of the bootstrap (e.g. lightcone bootstrap)?
• Reverse logic: could the existence of Minimal Models for
c ≤ 1 teach us something about ’irrational’ c ≥ 25 CFTs?
Correspondence between large positive/large negative c?

Thank you!



Summary & Future Directions
• We studied the crossing kernels for torus 1-pt functions and

sphere 4-pt functions in 2d CFTs. We completed the study of
[Ponsot,Teschner] by providing solutions in the ’missing’ regime
c ∈ (−∞, 1]:

�P′P [P0] =

[
P

P′
BtL(P)CtDOZZ (P0, P

′, P′)

BtL(P′)CtDOZZ (P0, P, P)

]
× S(ib)

iP′,iP [iP0],

�P′P

[
P2 P1
P3 P4

]
=

[
P

P′
BtL(P)CtDOZZ (P1, P2, P

′)CtDOZZ (P3, P4, P
′)

BtL(P′)CtDOZZ (P1, P2, P)CtDOZZ (P3, P4, P)

]
× F(ib)

iP′,iP

[
iP2 iP1
iP3 iP4

]
, b ∈ iR.

[S.Ribault, I.T., to appear]

• Novel application is an analytic proof of crossing symmetry
for time-like Liouville theory, which was so far elusive.
• Intricate relation between c ↔ 26− c (or b ↔ ib). Rigid

structure of Analytic Conformal Bootstrap as a function of the
central charge. Could we explore this further in some universal
kinematic regimes of the bootstrap (e.g. lightcone bootstrap)?
• Reverse logic: could the existence of Minimal Models for
c ≤ 1 teach us something about ’irrational’ c ≥ 25 CFTs?
Correspondence between large positive/large negative c?
Thank you!


