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Frontiers in particle dark matter searches
(very simplistic summary)

Most research focused on 

m
DM

 ~ 100 GeV ~ m
W,Z

 

(e.g. prototypical 
WIMP scenario)

Heavy dark matter

m
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 ≳ TeV 

Not constrained by colliders.

→Experimentally probed by 
existing / upcoming telescopes

e.g. HESS, IceCube, CTA, Antares 

Light dark matter

m
DM

 ≲ few GeV 

Not constrained by older direct 
detection experiments

→ Development of new generation 
of direct detection experiments

Past decades

Current frontiers
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Heavy (m
DM

  ≳ TeV) dark matter

How does the phenomenology of dark matter look like?

(in popular scenarios, e.g. thermal-relic DM)

New type of dynamics emerges:

Long-range interactions

Does this occur in models we care about?

● WIMPs with m > few TeV

● WIMPs with m < TeV co-annihilating with 
coloured/charged particles

● Self-interacting DM not so heavy DM!

What changes 

when the interactions are long-ranged?
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e.g. annihilation, elastic scattering
● Production in early universe, e.g. freeze-out 

⇒ changes correlation of parameters  (mass – couplings)
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Unstable bound states (positronium-like)
 ⇒ extra annihilation channel
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Sommerfeld
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Density too small, annihilations stall 
 ⇒ Freeze-out!
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Dark matter production via 
thermal freeze-out

time

1 pb ~ σWeak 
WIMP miracle!
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Long-range interactions and freeze-out:
A dark U(1) sector
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Dark U(1) model: Dirac DM X,X coupled to γ
D
 

                  von Harling, KP: 1407.7874
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     von Harling, KP: 1407.7874

Baldes, KP: 1703.00478

Important because it 
determines DM interactions today

(direct, indirect detection)

Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to γ

D
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     von Harling, KP: 1407.7874

Baldes, KP: 1703.00478

Important because it 
determines DM interactions today

(direct, indirect detection)

Long-range effects indeed 
become at m

DM
 ≳ few TeV.

Verifies expectation from
unitarity arguments!

Dominant annihilation 
mode: s-wave.

Dominant BSF 
mode: p-wave

Same order! 

Higher partial waves 
Important / dominant 
in multi-TeV regime.

DM may be even heavier!

Thermal freeze-out with long-range interactions
Dark U(1) model: Dirac DM X,X coupled to γ

D
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The origin of non-perturbative effects 
at perturbative coupling
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Making sense of the ladder diagrams
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What just happened?
Making sense of the ladder diagrams

1/α scaling 
responsible for

non-perturbative 
effects

(not largeness 
of coupling)

All this breaks down if 
m

γ
 > μα 

→ contact-type interaction
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What just happened?
Making sense of the ladder diagrams
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Unitarity and long-range interactions



23

Partial-wave unitarity limit
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Implies upper bound on the mass of thermal-relic DM   
Griest, Kamionkowski (1990)

Partial-wave unitarity limit
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Implies upper bound on the mass of thermal-relic DM   
Griest, Kamionkowski (1990)

Partial-wave unitarity limit

What are the underlying dynamics 
of heavy thermal-relic DM?

What interactions can approach / attain the unitarity limit?

What are the implications for experiments?
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1) Velocity dependence of σuni 

Assuming σvv
rel

 = constant, setting it to maximal (inevitably for a fixed v
rel

) 
and thermal averaging is formally incorrect! 

 ⇒ Unitarity violation at larger v
rel

, non-maximal cross-section at smaller v
rel

. 

Sommerfeld-enhanced inelastic processes exhibit exactly this velocity 
dependence at large couplings / small velocities, e.g. in QED 

 ⇒ Velocity dependence of σ
uni

 definitely  not  unphysical!

Baldes, KP: 1703.00478

Partial-wave unitarity limit
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Parametric
What can we learn?
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1) Velocity dependence of σuni 

Proper thermal average and taking into account delayed chemical decoupling  
    

Partial-wave unitarity limit

Baldes, KP: 1703.00478
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Partial-wave unitarity limit

2) Higher partial waves

In direct annihilation processes, s-wave dominates. 

Baldes, KP: 1703.00478
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Partial-wave unitarity limit

2) Higher partial waves

In direct annihilation processes, s-wave dominates. 

However, DM may annihilate via formation and decay of bound states.

Bound-state ladder reduces
the order of the diagrams! 

Higher partial waves important for DM destruction in early universe
⇒ higher M

DM
   AND   no general M

uni
 on thermal-relic DM !

same order!

Baldes, KP: 1703.00478
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Partial-wave unitarity limit

Can be approached or attained only by long-range interactions

Generic conclusion:

In viable thermal-relic DM scenarios, 
expect long-range behaviour 

at m
DM

  ≳  few TeV!

● Freeze-out
Sommerfeld & BSF alter predicted mass – coupling relation. 
Important for all experimental probes.

● Indirect detection
Sommerfeld & BSF must be considered in computing signals.
Novel lower energy signals produced in BSF.

Baldes, KP: 1703.00478
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Neutralino-squark co-annihilation scenarios
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Squark-neutralino co-annihilation scenarios

● Degenerate spectrum → soft jets → evade LHC constraints

● Large stop-Higgs coupling reproduces measured Higgs mass 
and brings the lightest stop close in mass with the LSP 

 ⇒ DM density determined by “effective” Boltzmann equation

Scenario probed in colliders.
Important to compute DM density accurately!

→  QCD corrections
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Sommerfeld effect

broadly, the most important

Gluon emissionQCD loop corrections

QCD corrections to stop annihilation
[Klasen+ (since 2014), DM@NLO]



38

Sommerfeld effect

broadly, the most important

Gluon emissionQCD loop corrections

QCD corrections to stop annihilation
[Klasen+ (since 2014), DM@NLO]

Strong coupling (αs~0.1), 
massless mediators

 ⇒ BSF important!
Stoponium formation
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DM coannihilation with scalar colour triplet
MSSM-inspired toy model
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Bound-state formation and decay

DM coannihilation with scalar colour triplet
MSSM-inspired toy model
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Bound-state formation   vs   Annihilation

BSF can exceed Annihilation
by more than 

an order of magnitude!

strong coupling   α
s
 ~ 0.1

σ
0
 = 14π α

s
2 / (27Μ2)

α
s
 / v

rel 

σ
 v

re
l  

/  
σ

0

Harz, KP: 1805.01200

DM coannihilation with scalar colour triplet
MSSM-inspired toy model
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Indirect
detection

Why is this 
important?

Effect on relic density:
much much larger than 
obs uncertainty in Ω

DM
 

DM coannihilation with scalar colour triplet
MSSM-inspired toy model

Not the 
final picture!
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The Higgs as a light force mediator
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● Degenerate spectrum → soft jets → evade LHC constraints

● Large stop-Higgs coupling reproduces measured Higgs mass 
and brings the lightest stop close in mass with the LSP 

 ⇒ DM density determined by “effective” Boltzmann equation

Scenario probed in colliders.
Important to compute DM density accurately!

→  QCD corrections

Squark-neutralino co-annihilation scenarios
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Harz and KP: 1711.03552, 1901.10030
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Squark-antisquark-Higgs coupling

Large αh  
● reproduces measured Higgs mass
● brings lightest stop close in mass with LSP 

DM coannihilation with scalar colour triplet
MSSM-inspired toy model

The effect of the Higgs-mediated potential

Not the 
final picture!
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● Formation of bound states via Higgs (doublet) emission ?

Capture via emission of neutral scalar suppressed,
due to selection rules: quadruple transitions

Capture via emission of charged scalar [or its Goldstone mode] 
very very rapid: monopole transitions !  

Sudden change in effective Hamiltonian precipitates transitions.
Akin to atomic transitions precipitated by β decay of nucleus.

● Sommerfeld enhancement of direct annihilation
● Binding of bound states

The Higgs as a light mediator

Ko,Matsui,Tang: 1910:04311
Oncala, KP: 1911.02605
Oncala, KP: 2101.08666
Oncala, KP: 2101.08667

Harz, KP: 1711.03552 

 
Harz, KP: 1901.10030

March-Russel, West 0812.0559
KP, Postma, Wiechers: 1505.00109
An, Wise, Zhang: 1606.02305
KP, Postma, de Vries: 1611.01394
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Renormalisable Higgs-portal WIMP models

Tree-level annihilation

Annihilation with 

Sommerfeld

Bound-state formation via B,W,H emission;
dominated by Higgs doublet emission

M
DM

 = 20 TeV,   α
H
 = y2 / (4π) =0.2

Oncala, KP: 2101.08666/7

time  

Singlet-Doublet coupled to the Higgs:  L ⊃ - y D H S

m
D
 ≃ m

S
 → D and S co-annihilate. 

Freeze-out begins before the EWPT if m
DM

 > 5TeV
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Renormalisable Higgs-portal WIMP models

D
M

 c
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lin
g
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o
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e 
H

ig
g

s
α

H
 =

 y
2
 / 

(4
π

)

Huge effect!

~ 102 in relic density!

Impels reconsideration 
of Higgs-portal models
(incl. neutralino-squark 

coann scenarios)

Singlet-Doublet coupled to the Higgs:  L ⊃ - y D H S

m
D
 ≃ m

S
 → D and S co-annihilate. 

Freeze-out begins before the EWPT if m
DM

 > 5TeV
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Conclusions

● Bound states impel complete reconsideration of thermal decoupling at 
/ above the TeV scale: emergence of a new type of inelasticity

Unitarity limit can be approached / attained only by long-range interactions   
   ⇒ bound states play very important role!          Baldes, KP: 1703.00478

There is no unitarity limit on the mass of thermal relic DM!

● Experimental implications:

– DM heavier than anticipated: multi-TeV probes very important 

  ⇒ build the 100 TeV collider :)

– Indirect detection:

Enhanced rates due to BSF
Novel signals: low-energy radiation emitted in BSF
Indirect detection of asymmetric DM 

– Colliders: improved detection prospects due increased mass gap in 
coannihilation scenarios

● Effects not limited freeze-out scenario:
freeze-in, asymmetric DM, self-interacting DM, stable bound states
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Extra slides
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Thermal freeze-out with bound states
Boltzmann equations
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Thermal freeze-out with bound states
Boltzmann equations

Complete treatement: 
Binder, Filimonova, Petraki, White  2112.00042
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Thermal freeze-out with bound states
Boltzmann equations and effective cross-section

Binder, Filimonova, Petraki, White  
2112.00042

Attractor solution is
the equilibrium density



54

Thermal freeze-out with bound states
Effective cross-section
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Effective cross-section in dark U(1) model

Cross-sections Thermally averaged cross-sections

binding energy / temperature

time
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Thermal freeze-out with bound states
Boltzmann equations and effective cross-section

Bound-to-bound transitions
only enhance the total effective cross-section!

Binder, Filimonova, Petraki, White  
2112.00042

Attractor solution is
the equilibrium density

! !
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A corollary 

Saha equilibrium for metastable bound states

Binder, Filimonova, Petraki, White  2112.00042

Standard Saha equilibrium Particles with decay rate > Hubble
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