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ELEMENTARY BOSON PHYSICAL SYSTEM DENSITY TEMP (K)

Bosonic Ultracold Atom 
(BEC) Trapped Atomic Gas 1013 – 1015 cm-3 10-7– 5×10-5

Fermionic Ultracold Atoms
(BCS) Trapped Atomic Gas 1012 – 1013 cm-3 10-7

Exciton–Polaritons Semiconductor 109 cm-2 ~ few 10 K

Magnon Magnetic Insulator 1018-1019 cm-3 Room Temp

Photon Light 1011 cm-2 Room Temp
4He Atom Liquid Helium 1022 cm-3 2

3He Atom Pairs Liquid Helium 1022 cm-3 2×10-3

Cooper Pair Superconductor 1023 cm-3 ~ 10 

Cooper Pair Exotic / High TC
Superconductor 1021 cm-3 1 – 160

Nucleon Pair ( nn / pp ) Atomic Nucleus 1038 cm-3 108 – 109

Nucleon Pair ( nn / pp ) Neutron Star 1039 cm-3 ~ few 108

Proukakis & Burnett in Quantum Gases: Finite Temperature & Non-Equilibrium Dynamics
[ Proukakis, Gardiner, Davis & Szymanska (Eds), Imperial College Press (2013) ]

‘Traditional’ Systems

Superfluidity interpreted as Bose-Einstein Condensation of Bosonic Atoms
( late 1930’s ! )

In General, one often also deals with
--Composite particles (of many bosons/fermions)

--Quasiparticles (Effective/Dressed particles)
 Condensation of Multi-particle ‘Entities’ (Atoms) incl. Fermionic Systems

BEC AT PLAY IN VASTLY DIFFERENT PHYSICAL SYSTEMS
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‘Traditional’ Systems

 All Different Manifestations of BEC + Intrinsic System Properties

BEC AT PLAY IN VASTLY DIFFERENT PHYSICAL SYSTEMS



ELEMENTARY BOSON PHYSICAL SYSTEM DENSITY TEMP (K)

Bosonic Ultracold Atom 
(BEC) Trapped Atomic Gas 1013 – 1015 cm-3 10-7– 5×10-5

Fermionic Ultracold Atom 
Pair (BCS) Trapped Atomic Gas 1012 – 1013 cm-3 10-7

Exciton–Polaritons Semiconductor 109 cm-2 ~ few 10 K

Magnon Magnetic Insulator 1018-1019 cm-3 Room Temp

Photon Light 1011 cm-2 Room Temp
4He Atom Liquid Helium 1022 cm-3 2

3He Atom Pairs Liquid Helium 1022 cm-3 2×10-3

Cooper Pair Superconductor 1023 cm-3 ~ 10 

Cooper Pair Exotic / High TC
Superconductor 1021 cm-3 1 – 160

Nucleon Pair ( nn / pp ) Atomic Nucleus 1038 cm-3 108 – 109

Nucleon Pair ( nn / pp ) Neutron Star 1039 cm-3 ~ few 108

Proukakis & Burnett in Quantum Gases: Finite Temperature & Non-Equilibrium Dynamics
[ Proukakis, Gardiner, Davis & Szymanska (Eds), Imperial College Press (2013) ]

Ultracold Atoms
(Dilute, Weakly-Interacting, Trapped)
( H, Li, Na, K, Rb, Cs, He*, Yb, Ca, Sr, Cr, Er, … )

TEMPERATURE
REDUCTION

Τ > ΤC

Τ < ΤC

Τ ~ 0

CLASSICAL
(THERMAL)

GAS

BOSE-EINSTEIN
CONDENSATE

Bose-Einstein Condensation
Physics Nobel 2001

Cornell, Ketterle, Wieman

BEC AT PLAY IN VASTLY DIFFERENT PHYSICAL SYSTEMS
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Optical & Magnetic Systems

Nature 468, 545 (2010)

Nature 443, 409 (2006)

BEC AT PLAY IN VASTLY DIFFERENT PHYSICAL SYSTEMS
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3He 4He

LIQUID 
HELIUM

&

(High-TC)
SUPER

CONDUCTORS

Τ > ΤC

Τ < ΤC

TRAPPED
ATOMIC
GASES

NEUTRON 
STARS

𝑛𝑛 [𝜆𝜆 𝑇𝑇,𝑚𝑚, 𝑣𝑣 ]𝑑𝑑 ~ 1

BEC AT PLAY IN VASTLY DIFFERENT PHYSICAL SYSTEMS

BEC Condition:

“Control Parameters”
* Density  𝑛𝑛

* Temperature  𝑇𝑇
* (Boson) Mass   𝑚𝑚

* Typical Velocity 𝑣𝑣



LABORATORY BECs   (Weakly-Interacting)
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TEMPERATURE
REDUCTION

Science 269, 198 (1995)

(Lifetime set by 3-Body Losses)
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TEMPERATURE
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Exciton-Polariton BECs
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Photon BECs
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Science 269, 198 (1995)

(Strong Light-Matter Coupling)
Driven—Dissipative System

Photon Gas Thermalisation
with Dye Solution

(Absorption  Re-emission)

Temperature
Density

Interaction Strength / Type
Trap Profile
Dispersion

Pumping
Density

Potential Energy Profile
Photon Fraction

Temperature
Density

Reservoir Size

(Lifetime set by 3-Body Losses)

LABORATORY BECs   (Weakly-Interacting)

“Real-Time” Control Parameters:



Ultracold Atomic BECs
( 3D / 2D / 1D )

[ “Equilibrium” State ]

TEMPERATURE
REDUCTION

Exciton-Polariton BECs
( 2D / 1D )

[ (Quasi-)Equilibrium ]

Photon BECs
( 2D )

[ Quasi-Equilibrium ]

All Above Systems can be Described by a Macroscopic Wavefunction / Field
obeying an (appropriate) Nonlinear Schroedinger (Gross-Pitaevskii) Equation

𝑖𝑖𝑖
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −

ℏ2

2𝑚𝑚∇2 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑟𝑟 + 𝑔𝑔 Ψ 2 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 Ψ + Coupling to
Non-BEC Modes
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including noise

LABORATORY BECs   (Weakly-Interacting)

All Above Systems can be Described by a Macroscopic Wavefunction / Field
obeying an (appropriate) Nonlinear Schroedinger (Gross-Pitaevskii) Equation

 Systems exhibit diverse features of quantum fluids/liquids, nonlinear optics, etc …



Ultracold Atomic BECs
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TEMPERATURE
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Exciton-Polariton BECs
( 2D / 1D )

[ (Quasi-)Equilibrium ]

Fuzzy Dark Matter
( Galactic-Size Condensation)

[ Hypothesized ! ]

−
ℏ2

2𝑚𝑚
∇2 + 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑟𝑟 + 𝑔𝑔 Ψ 2 Ψ

−𝑖𝑖𝑖𝑖Ψ
Coupling to Non-Condensate Bath

CONDENSATES CHARACTERISED IN THIS TALK

Classical Field obeys     appropriate (Nonlinear)    Schroedinger Equation

−
ℏ2

2𝑚𝑚
∇2 + 𝑉𝑉 𝑟𝑟 + 𝑔𝑔 Ψ 2 Ψ

+𝑖𝑖
1
2

𝑃𝑃
1 + Ψ 2/nS

− 𝛾𝛾 Ψ

−
ℏ2

2𝑚𝑚
∇2 + 𝑚𝑚𝑉𝑉𝐺𝐺 𝑟𝑟, 𝑡𝑡 + 𝑔𝑔 Ψ 2 Ψ

∇2𝑉𝑉𝐺𝐺 𝑟𝑟, 𝑡𝑡 = 4𝜋𝜋𝐺𝐺 Ψ r, t 2 − Ψ 2

𝑖𝑖𝑖
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =

Coupling to Gravitational Field
(Poisson Equation)

Pumping & Dissipation Baths
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Coupling to Gravitational Field
(Poisson Equation)

In Practice we often also add Stochastic Noise Terms
(related to bath couplings)

+𝑑𝑑𝑊𝑊𝛾𝛾 +𝑑𝑑𝑊𝑊P,𝛾𝛾

𝑖𝑖𝑖
𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 =
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QUESTION #1:
In the Laboratory Condensates

(which can be controlled / monitored)

How Does Coherence Grow 
from an Initially Incoherent State?

PRR 2, 033183 (2020)
Comms.Phys. (Nature) 1, 24 (2018) PRL 121, 095302 (2018)

PRL 125, 095301 (2020)
EPL 133, 17002 (2021)PRR 3, 013097 (2021)

PRR 3, 013212 (2021)
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CHARACTERIZING  A  CONDENSATE  STATE
(Dimensionless) 

Phase-Space Density

𝑛𝑛 𝜆𝜆 𝑑𝑑 ~ 1 ?

( A Necessary Condition )



CHARACTERIZING  A  CONDENSATE  STATE
(Dimensionless) 

Phase-Space Density

𝑛𝑛 𝜆𝜆 𝑑𝑑 ~ 1 ?

( A Necessary Condition )

r r′???

( )
r r
nm

′−

CT T>

CT T<

𝑔𝑔 1 (𝑟𝑟, 𝑟𝑟′) = 𝜌𝜌(𝑟𝑟,𝑟𝑟′)
𝑛𝑛(𝑟𝑟) 𝑛𝑛(𝑟𝑟′)

Off-Diagonal Long-Range Order (ODLRO)

𝜌𝜌 𝑟𝑟, 𝑟𝑟′ = Φ∗ r Φ(r′)
→ Constant

as  𝑟𝑟 − 𝑟𝑟′ → ∞
Normalizing:

( Definition: Relevant in 3D &`Thermodynamic Limit’ )
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as  𝑟𝑟 − 𝑟𝑟′ → ∞
Normalizing:

Note:
In 2D, there is no ODLRO

… but… Correlation Function decays slower (algebraically)

than corresponding (exponential) decay on incoherent side

( Definition: Relevant in 3D &`Thermodynamic Limit’ )
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𝑛𝑛 𝜆𝜆 𝑑𝑑 ~ 1 ?

( A Necessary Condition )

r r′???

( )
r r
nm

′−

CT T>

CT T<

𝑔𝑔 1 (𝑟𝑟, 𝑟𝑟′) = 𝜌𝜌(𝑟𝑟,𝑟𝑟′)
𝑛𝑛(𝑟𝑟) 𝑛𝑛(𝑟𝑟′)

Off-Diagonal Long-Range Order (ODLRO)

𝜌𝜌 𝑟𝑟, 𝑟𝑟′ = Φ∗ r Φ(r′)
→ Constant

as  𝑟𝑟 − 𝑟𝑟′ → ∞

( Definition: Relevant in 3D &`Thermodynamic Limit’ )

Normalizing:

Penrose-Onsager Condensate Mode
(Mode with Largest Eigenvalue)
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CONDENSATE FORMATION DYNAMICS

How Does Macroscopic Coherence Form 
from an Incoherent Initial State?

An Old Problem 
Studied Across Diverse Physical Systems

connecting 
AMO, Condensed-Matter, Quantum Fluids 

with Statistical Physics (& Early Cosmological) Studies

See e.g. review:
Davis, Wright, Gasenzer, Gardiner & Proukakis

“Formation of Bose-Einstein Condensate”
[ arXiv:1601.06197 ]

in

Universal Themes of Bose-Einstein Condensation
(Cambridge University Press, 2017)

Edited by 
NP Proukakis, DW Snoke & PB Littlewood
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CONDENSATE FORMATION DYNAMICS
How does System Choose Phase through a Symmetry-Breaking Mechanism ?

COSMOLOGY

Journal of Physics A: Mathematical and General 9, 1387 (1976)

Tom 
Kibble

CONDENSED MATTER

Wojciech 
Zurek Nature 317, 505  (1985)

“…initial formation of “protodomains” [e.g. strings] as the Universe cools …” 
(assuming a ‘Hot Big Bang’ Model)



CONDENSATE FORMATION DYNAMICS
How does System Choose Phase through a Symmetry-Breaking Mechanism ?

COSMOLOGY

Journal of Physics A: Mathematical and General 9, 1387 (1976)

Tom 
Kibble

CONDENSED MATTER

Wojciech 
Zurek Nature 317, 505  (1985)

 Kibble-Zurek Mechanism

Seminal Works:
COSMOLOGY Topology of cosmic domains and strings 

Journal of Physics A: Mathematical and General 9, 1387 (1976)(Tom Kibble)

(Wojciech Zurek)

Features Observed in Many Physical Systems:
Superfluid He3, He4, Superconducting Josephson Junctions, 

Liquid Crystals, Ions, Cold Atoms …

Review: del Campo & Zurek, Int J Mod Phys A 29, 1430018 (2014)
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(Whole) System cannot simultaneously follow external drive (e.g. cooling ramp)

“Local Coherent Patches” of constant phase Emerge,
whose size ( 𝜉𝜉 ) is determined by the equilibrium correlation length at the “freeze-out” time

As System enters Critical Region (from incoherent side)
it undergoes “critical slowing down” 
(due to diverging relaxation time)

Consider a Driven Phase Transition from the Incoherent Region 

𝑁𝑁 ~ 𝜏𝜏𝑄𝑄
−𝛼𝛼Number of 

Emerging Defects 

Obtain Characteristic Scaling Laws in terms of Quench Time 𝜏𝜏𝑄𝑄 and Critical Exponents  

𝑡̂𝑡 ~ 𝜏𝜏𝑄𝑄
𝑧𝑧𝑧𝑧/(1+𝑧𝑧𝑧𝑧)

‘Freeze-out’ Time

0

𝜉𝜉 ~ (𝜏𝜏𝑄𝑄/𝜏𝜏0)
𝜈𝜈/(1+𝑧𝑧𝑧𝑧)

‘Freeze-out’ Length



Nature 455, 948 (2008) PRL 113, 135302 (2014)Nat Phys 9, 656 (2013)

3D HARMONIC ELONGATED 3D

2D BOX TRAP3D BOX TRAP

RING TRAP

Science 347, 167 (2015)

FERMIONIC SUPERFLUID

Nat. Comms 6, 6162 (2015) Nat. Phys. 15, 1227 (2019)

CONTROLLED QUENCH EXPERIMENTS (COLD ATOMS)



CONTROLLED QUENCH EXPERIMENTS (COLD ATOMS)

Nature 455, 948 (2008) PRL 113, 135302 (2014)

3D HARMONIC

2D BOX TRAP3D BOX TRAP

RING TRAP

Science 347, 167 (2015)

FERMIONIC SUPERFLUID

Nat. Comms 6, 6162 (2015) Nat. Phys. 15, 1227 (2019)

Nat Phys 9, 656 (2013)
PRA 94,023628 (2016)

arXiv:2201.08569 (2022)

ELONGATED 3D

Model Trento Experiments:

to shed more light onto
early-time / microscopic

& universal
properties not easily

accessible experimentally

PRR 2, 033183 (2020)

Liu et al, 
Comms.Phys. (Nature) 1, 24 (2018)



DYNAMICAL VISUALIZATION
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Critical point
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Delay time ~ t̂

0.1% peak 
density

3% peak density

High Velocity field

Emerging Features of Quenched Growth

Liu, Donadello, Lamporesi, Ferrari, Gou, 
Dalfovo & Proukakis

Comms. Phys. (Nature) 1, 24 (2018)
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EFFECT OF VARIABLE QUENCH RATE

Liu, Donadello, Lamporesi, Ferrari, Gou, Dalfovo & Proukakis, Comms. Phys. (Nature) 1, 24 (2018)



KIBBLE-ZUREK ANALYSIS: Early Time Dynamics
Study Dynamics under Different Quench Ramp Durations

(same Initial & Final conditions)

RAW
(Unscaled)

Zero-Momentum Mode
Occupation

Coherence Length
(Condensate Mode)

Rapid
Quench

Slow
Quench

Slow
Quench

Rapid
Quench

Liu, Dziarmaga, Gou, Dalfovo & Proukakis, PRR 2, 033183 (2020)

Ψc∗ 𝐫𝐫, 𝑡𝑡 Ψc 𝐫𝐫′, 𝑡𝑡𝑓𝑓 𝐤𝐤, 𝑡𝑡Spectral 
Function

Correlation
Function

Fourier Transform

Pair

Rapid Quenches  Faster Growth of Measure of Coherence

Can we scale out dependence on cooling rate ?

Kibble-Zurek Hypothesis: 
All Physical Variables in Critical Region

are universal when scaled as

Time
Distance

Wavevector

r / 𝜉𝜉
t / 𝑡̂𝑡

k 𝜉𝜉
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Findings consistent with Kibble-Zurek Model

Liu, Dziarmaga, Gou, Dalfovo & Proukakis, PRR 2, 033183 (2020)



After Crossing Phase Transition 
Defect Number Continuously Decay, within a Growing Condensate Density

Late-Time Images after Density Saturation Reveal In-Trapped Defects
Consistent with Experimental Picture

Liu, Donadello, Lamporesi, Ferrari, Gou, Dalfovo & Proukakis, Comms. Phys. (Nature) 1, 24 (2018)

EXPERIMENT THEORY

KIBBLE-ZUREK ANALYSIS: Late Time Dynamics

EXPERIMENT THEORY

Harmonic / Anisotropic Nature of System
Makes it Hard to Quantitatively Characterize Predicted Phase-Ordering Scalings



2D HOMOGENEOUS PHASE TRANSITION PHYSICS
In 2d Equilibrium would Expect a Berezinskii-Kosterlitz-Thouless (BKT) Phase Transition

Below Threshold Above Threshold

Question:
Are Phase Transition, or Dynamical Crossing / Relaxation

Affected by Driving & Dissipation
(for exciton-polariton systems) ?

Much Easier to Characterize in a 2D Box (Homogeneous)



2D PHASE TRANSITION PHYSICS: Driven-Dissipative Case
In 2d Equilibrium would Expect a Berezinskii-Kosterlitz-Thouless (BKT) Phase Transition

Below Threshold Above Threshold

At Threshold, we Find
Sharp Vortex Number Decrease, and 
Coherence Length Increase 

(Parameters similar to Yamamoto’s Experiments)

Comaron, Carusotto, Szymanska and Proukakis, EPL 133, 17002 (2021)

Non-Equilibrium
BKT ?



In 2d Equilibrium would Expect a Berezinskii-Kosterlitz-Thouless (BKT) Phase Transition
Below Threshold Above Threshold

Perform Linear Quenches
Across the Phase Transition

We have Directly Confirmed
The Kibble-Zurek Prediction

in such Driven-Dissipative System
through

Direct Numerical Comparison
of  𝑡̂𝑡𝑛𝑛𝑛𝑛𝑛𝑛 vs.  𝑡̂𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

yielding Linear Relation

Zamora, Dagvadorj, Comaron, Carusotto, Proukakis and Szymanska, PRL 125, 095301 (2020)

2D PHASE TRANSITION PHYSICS: Driven-Dissipative Case



CONDENSATE FORMATION DYNAMICS

How Does Macroscopic Coherence Form 
from an Incoherent Initial State?

An Old Problem 
Studied Across Diverse Physical Systems

Phase Transition Schematic

Thermal Equil.
𝑇𝑇 ≫ 𝑇𝑇𝑐𝑐

Dynamical Perspective

Critical 
Point

(Region)

Time
Delay

𝑡̂𝑡

𝑡̂𝑡

𝑇𝑇 ≪ 𝑇𝑇𝑐𝑐

Kibble-Zurek Scaling (3D)

Phase-Ordering

(𝑇𝑇𝑐𝑐 - 𝑇𝑇)
Control Parameter

Phase-Ordering Scaling (2D)

𝑓𝑓 𝐤𝐤, 𝑡𝑡 = 𝑡̂𝑡𝐹𝐹 𝑡𝑡
𝑡̂𝑡

, 𝜉𝜉𝐤𝐤

Examples
Discussed 

Here:



PHASE-ORDERING KINETICS

If     L(t)  >> 
Microscopic

System
Lengthscales

Long-Stage System Morphology
is UNIVERSAL

(i.e. independent of microscopic details)

Bray, Adv. Phys. 43, 357 (1994)

This leads to Self-Similar Evolution characterised in terms of ( ))(tLr

Easier to Characterize Following Instantaneous Quench Across Phase Transition
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PHASE-ORDERING KINETICS

If     L(t)  >> 
Microscopic

System
Lengthscales

Long-Stage System Morphology
is UNIVERSAL

(i.e. independent of microscopic details)

Bray, Adv. Phys. 43, 357 (1994)

This leads to Self-Similar Evolution characterised in terms of ( ))(tLr

1st order (Phase) Correlation Function
should collapse onto a single function at sufficiently late-time window

Easier to Characterize Following Instantaneous Quench Across Phase Transition

Jelic & Cugliandolo, J. Stat. Mech. P02032 (2011)
Comaron, Larcher, Dalfovo & Proukakis, PRA 100, 033618 (2019)

Comaron, Dagvadorj, Zamora, Carusotto, Proukakis & Szymanska, PRL 121, 095302 (2018)
Groszek, Comaron,  Proukakis & Billam, PRR 3, 013212 (2021)

Verified in 2D Across Many Systems, including
2D XY Model, Ultracold Atoms, Closed/Open Systems, Exciton-Polariton Condensates



PHASE-ORDERING KINETICS: EXCITON-POLARITON CASE

( )

z

tt
ttL

1

0log
~)( 







 2≈zwith

as in 2D XY Model
Jelic & Cugliandolo, J. Stat. Mech. P02032 (2011)

Observe Clear Evidence 
of Logarithmic Corrections

confirming BKT nature of phase transition 
when crossed dynamically

Comaron, Dagvadorj, Zamora, Carusotto, Proukakis & Szymanska, PRL 121, 095302 (2018)



Ultracold Atomic BECs
( 3D / 2D / 1D )

[ “Equilibrium” State ]

TEMPERATURE
REDUCTION

Exciton-Polariton BECs
( 2D / 1D )

[ (Quasi-)Equilibrium ]

Fuzzy Dark Matter
( Galactic-Size Condensation)

[ Hypothesized ! ]

CONDENSATES CHARACTERISED IN THIS TALK

PRR 2, 033183 (2020)
Comms.Phys. (Nature) 1, 24 (2018) PRL 121, 095302 (2018)

PRL 125, 095301 (2020)
EPL 133, 17002 (2021)PRR 3, 013097 (2021)

PRR 3, 013212 (2021)

QUESTION #2:

What does Condensation
have to do with

Dark Matter Distribution
in the Universe ?

IK Liu, NP Proukakis, G Rigopoulos
arXiv preprint arXiv:2211.02565

QUESTION #1:
In the Laboratory Condensates

(which can be controlled / monitored)

How Does Coherence Grow 
from an Initially Incoherent State?



https://wwwmpa.mpa-garching.mpg.de/
galform/virgo/millennium/

MILLENIUM SIMULATION

large-scale light distribution in Universe

Corresponding dark matter distribution 

More than 10 billion particles 
Cubic region (2 billion light-years)

Millenium Simulations



https://wwwmpa.mpa-garching.mpg.de/
galform/virgo/millennium/

MILLENIUM SIMULATION

large-scale light distribution in Universe

Corresponding dark matter distribution 

More than 10 billion particles 
Cubic region (2 billion light-years)

CDM Model (N-Body Simulations)
Excellent Large-Scale Description

… but … 
some `small-scale’ issues identified

e.g. `Cusp-core problem’ 

as r  0

Millenium Simulations

Schive et al., 
Nat.Phys. 10, 496 (2014)

𝜌𝜌NFW 𝑟𝑟 ~𝑟𝑟−1

NFW: Navarro, Frenk & White, ApJ, 462, 563 (1996)
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𝑖𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕 Ψ

𝐫𝐫, 𝑡𝑡 = −
ℏ2∇2

2𝑚𝑚 + mΦ 𝐫𝐫, 𝑡𝑡 Ψ 𝐫𝐫, 𝑡𝑡

∇2Φ 𝐫𝐫, 𝑡𝑡 = 4𝜋𝜋𝜋𝜋 𝜌𝜌 𝐫𝐫, 𝑡𝑡 − 𝜌̅𝜌

Schrödinger-Poisson equations

𝜌𝜌 𝐫𝐫, 𝑡𝑡 = Ψ 𝐫𝐫, 𝑡𝑡 2

Hu et al., PRL 85, 1158 (2000)

Recent Reviews:
Marsh, Phys. Rep. 643, 1 (2016)

Hui, Astr. & Astroph. Review 59, 247 (2021)
Ferreira Astr. & Astroph. Review 29, 7 (2021)
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as r  0
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Galactic-Scale Condensation !

𝑖𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕 Ψ

𝐫𝐫, 𝑡𝑡 = −
ℏ2∇2

2𝑚𝑚 + mΦ 𝐫𝐫, 𝑡𝑡 + 𝑔𝑔 Ψ 2 Ψ 𝐫𝐫, 𝑡𝑡

∇2Φ 𝐫𝐫, 𝑡𝑡 = 4𝜋𝜋𝜋𝜋 𝜌𝜌 𝐫𝐫, 𝑡𝑡 − 𝜌̅𝜌

Schrödinger-Poisson equations

𝜌𝜌 𝐫𝐫, 𝑡𝑡 = Ψ 𝐫𝐫, 𝑡𝑡 2

Hu et al., PRL 85, 1158 (2000)

 Can also add self-interactions 
a la Gross-Pitaevskii Equation

COLD DARK MATTER vs. FUZZY DARK MATTER
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Hui, Astr. & Astroph. Review 59, 247 (2021)
Ferreira Astr. & Astroph. Review 29, 7 (2021)

FDM / ψDM  appears to solve
short-scale density divergence

COLD DARK MATTER vs. FUZZY DARK MATTER



CDM Model (N-Body Simulations)Fuzzy Dark Matter Model

Schive et al., Nat.Phys. 10, 496 (2014)

Fuzzy Dark Matter Effectively Reproduces CDM Large-Scale Predictions!

… and it offers an immediate `cure’ of the CDM short-scale `anomaly’ …

COLD DARK MATTER vs. FUZZY DARK MATTER



CDM Model (N-Body Simulations)Fuzzy Dark Matter Model

Schive et al., Nat.Phys. 10, 496 (2014)

Fuzzy Dark Matter Effectively Reproduces CDM Large-Scale Predictions!

… and it offers an immediate `cure’ of the CDM short-scale `anomaly’ …

Analogous to 
well-known discussions

(in cold quantum matter context)
about relation between

Kinetic / Boltzmann Equations
and 

Classical Field Description

COLD DARK MATTER vs. FUZZY DARK MATTER



Focus on Isolated Virialized Core + Halo
(Idealized Scenario)

Fuzzy Dark Matter Model

Schive et al., Nat.Phys. 10, 496 (2014)

Liu, Proukakis, Rigopoulos, 
arXiv:2211.02565

& Analyze its Coherence Properties

COLD DARK MATTER vs. FUZZY DARK MATTER



Soliton merger simulation

𝐸𝐸ref = ℏ 𝐺𝐺𝜌𝜌ref
𝜏𝜏ref = 𝐺𝐺𝜌𝜌ref −1/2

𝑙𝑙ref =
ℏ2

𝑚𝑚2𝐺𝐺𝜌𝜌ref

1/4

𝜌𝜌ref = 103𝑀𝑀⊙kpc−3
𝜏𝜏ref ≈ 14.91 Gyr
𝑙𝑙ref ≈ 10.81 kpc

𝑀𝑀ref ≈ 1.26 × 106𝑀𝑀⊙

𝑚𝑚ref = 2.5 × 10−23 eV

Primary sample  (𝑀𝑀 = 100𝑀𝑀ref)
Mocz et al., MNRAS 471, 4559 (2017)
Chan et al., arXiv:2110.11882

76

GENERATION OF ISOLATED VIRIALIZED FDM CORE + HALO



Bimodal Core-Halo Profile

𝜌𝜌cNFW 𝑟𝑟 =

𝜌𝜌soliton 𝑟𝑟 , 𝑟𝑟 ≤ 𝑟𝑟𝑡𝑡

𝜌𝜌NFW 𝑟𝑟 , 𝑟𝑟 > 𝑟𝑟𝑡𝑡

𝜌𝜌soliton 𝑟𝑟 = 𝜌𝜌𝑐𝑐 1 − 𝜆𝜆
𝑟𝑟
𝑟𝑟𝑐𝑐

2 −8

𝜌𝜌NFW 𝑟𝑟 = 𝜌𝜌ℎ
𝑟𝑟
𝑟𝑟ℎ

−1

1 +
𝑟𝑟
𝑟𝑟ℎ

−2

ANALYSIS OF ISOLATED VIRIALIZED FDM CORE + HALO

𝜌𝜌soliton 𝑟𝑟 Let us now
Analyze

the Coherence Properties
of this State



𝒟𝒟 𝑟𝑟 = 𝑛𝑛 𝜆𝜆dB
3 =

𝜌𝜌′ 𝑟𝑟
𝑣𝑣′ 𝑟𝑟 3 𝒟𝒟ref

𝒟𝒟ref =
ℏ3𝜌𝜌ref
𝑚𝑚4𝑣𝑣ref

3 ≈ 2.1 × 10106

ANALYSIS OF ISOLATED VIRIALIZED FDM CORE + HALO

Phase-Space Density

Significant Change over 0 < 𝑟𝑟 < 𝑟𝑟𝑡𝑡
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ANALYSIS OF ISOLATED VIRIALIZED FDM CORE + HALO

Phase-Space Density

Significant Change over 0 < 𝑟𝑟 < 𝑟𝑟𝑡𝑡

Condensate (Penrose-Onsager) Mode

Density Dominated by Condensate
over 0 < 𝑟𝑟 < 𝑟𝑟𝑡𝑡

Liu, Proukakis, Rigopoulos, 
arXiv:2211.02565

Condensate
Density Total Density
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Condensate
Density Total Density

𝑔𝑔 1 (𝑟𝑟, 𝑟𝑟′)= Φ∗ r Φ r′

Φ 𝑟𝑟 2 Φ 𝑟𝑟′ 2

𝑔𝑔 2 (𝑟𝑟)
(Local)

Density-Density 
Correlations

= |Φ r |4

|Φ r |2 2

(Non-Local)
Phase

Correlations

𝑔𝑔 1 𝑟𝑟 ≈ 𝑔𝑔 2 𝑟𝑟 ≈ 1 over 0 < 𝑟𝑟 < 𝑟𝑟𝑐𝑐
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i.e. 
Galaxy-Sized Profile

Consists of
Purely Coherent High-Density Core

(A Bose-Einstein Condensate)
surrounded by an

Incoherent Lower-Density Halo
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Φ 𝑟𝑟 2 Φ 𝑟𝑟′ 2
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Density-Density 
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Phase
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𝑔𝑔 1 𝑟𝑟 ≈ 𝑔𝑔 2 𝑟𝑟 ≈ 1 over 0 < 𝑟𝑟 < 𝑟𝑟𝑐𝑐

i.e. 
Galaxy-Sized Profile

Consists of
Purely Coherent High-Density Core

(A Bose-Einstein Condensate)
surrounded by an

Incoherent Lower-Density Halo
Filled with 

Tangled / Turbulent
Quantum Vortices

Separating Quasi-Coherent
`Density Granules’



Fuzzy Dark Matter
ANALYSIS OF ISOLATED VIRIALIZED FDM CORE + HALO

Condensate
Incoherent Component

Atomic
Condensate

Thermal Cloud

Total
Density

Ultracold Atomic Gas
Self-Trapping Provided

by Gravitational Potential
Self-Trapping Provided

By Harmonic Trap



SUMMARY 

Laboratory Quantum Gases 
(Ultracold Atoms / Exciton-Polariton Condensates)
are Ideal Systems for Universal Dynamical Studies

𝑇𝑇 ≫ 𝑇𝑇𝑐𝑐 𝑇𝑇 = 𝑇𝑇𝑐𝑐 𝑇𝑇 ≪ 𝑇𝑇𝑐𝑐
Phase-Ordering

(𝑇𝑇𝑐𝑐 - 𝑇𝑇)Control 
ParameterKibble-Zurek Self-Similarity

Universal
Dynamics

Bose-Einstein 
Condensation 
Arises Across 

Vastly Different 
Scales
𝑛𝑛𝜆𝜆3~1

Coherent
soliton

core
Incoherent NFW outer halo

Quasi-condensate & Turbulent State
Incoherent NFW outer halo

Fluctuating Phase & Density via Vortices

Fuzzy 
Dark Matter
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FURTHER READING

Universal Themes of 
Bose-Einstein Condensation

(Cambridge University Press, 2017)
BEC in different fields of physics

Edited by 
Proukakis, Snoke & Littlewood

Berloff, Brachet & Proukakis, PNAS 111 (Suppl. 1) 4675 (2014)
Blakie, Bradley, Davis, Ballagh & Gardiner, Adv. Phys. 57, 363 (2008)

Proukakis & Jackson, J Phys B 41, 203002 (2008)
MODELLING 

REVIEWS:

Quantum Gases:
Finite Temperature & 

Dynamics
(World Scientific, 2013)

A methodology book
Edited by 

Proukakis, Gardiner, 
Davis & Szymanska

Discussed Research Papers:

PRR 2, 033183 (2020)
Comms.Phys. (Nature) 1, 24 (2018)

PRL 121, 095302 (2018)
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