Extreme Black Holes:
 Anabasis and Accidental Symmetry

Achilleas P. Porfyriadis

University of Crete

Xmas Theoretical Physics Workshop @Athens, December 2022

Why extreme black holes?

Two reasons:

- They are observationally relevant:

Many accreting black holes are found to be spinning very rapidly

- They are theoretically manageable:

Near the horizon of (near-)extreme black holes spacetime is $A d S$-like

Rapidly spinning black holes

Many accreting black holes are found to be spinning very rapidly

Annual Review of Astronomy and Astrophysics
 Observational Constraints on Black Hole Spin

Christopher S. Reynolds ${ }^{1}$

${ }^{1}$ Institute of Astronomy, University of Cambridge, Cambridge, CB3 OHA, United Kingdom; email: csr12@ast.cam.ac.uk

Annu. Rev. Astron. Astrophys. 2021. 59:117-54
The Annual Review of Astronomy and Astrophysics is online at astro.annualreviews.org
https://doi.org/10.1146/annurev-astro-112420035022

Copyright © 2021 by Annual Reviews.
All rights reserved

Keywords

active galactic nuclei, accretion disks, general relativity, gravitational waves, jets

Abstract

The spin of a black hole is an important quantity to study, providing a window into the processes by which a black hole was born and grew. Furthermore, spin can be a potent energy source for powering relativistic jets and energetic particle acceleration. In this review, I describe the techniques currently used to detect and measure the spins of black holes. It is shown that:

- Two well-understood techniques, X-ray reflection spectroscopy and thermal continuum fitting, can be used to measure the spins of black holes that are accreting at moderate rates. There is a rich set of other electromagnetic techniques allowing us to extend spin measurements to lower accretion rates.
- Many accreting supermassive black holes are found to be rapidly spinning, although a population of more slowly spinning black holes emerges at masses above $M>3 \times 10^{7} \mathrm{M}_{\odot}$ as expected from recent structure formation models.
- Many accreting stellar-mass black holes in X-ray binary systems are rapidly spinning and must have been born in this state.

Rapidly spinning black holes

Many accreting black holes are found to be spinning very rapidly

Figure 6
SMBH spins as a function of mass for the 32 objects in Table 1 that have available mass estimators. All spin measurements reported here are from the X -ray reflection method. Lower limits are reported in red, and measurements that include a meaningful upper bound (distinct from $a=1$) are reported in blue. Following the convention of the relevant primary literature, error bars in spin show the 90% confidence range. The error bars in mass are the 1σ errors from Table 1 or, where that is not available, we assume a $\pm 50 \%$ error. Abbreviation: SMBH, supermassive black hole.

$A d S_{2}$ and near-extreme black holes

Near the horizon of (near-)extreme black holes spacetime is $A d S_{2}$-like
Extreme Reissner-Nordstrom; Bertotti-Robinson:

$$
d s^{2}=M^{2}\left[-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}+d \Omega^{2}\right], \quad A_{t}=M r
$$

- Applies for a wide class of theories in any D
- e.g. extreme Kerr in 4D pure Einstein GR
[Kunduri, Lucietti, Reall (2007)]
[Bardeen, Horowitz (1999)]
- Near-horizon approximations and Exact solutions

1. Anabasis:

Backreaction that destroys the $A d S_{2}$ boundary and builds the asymptotically flat region of (near-)extreme BHs.
2012.06562 [JHEP 2103] with S. Hadar, A. Lupsasca

"AdS 2 has no dynamics"

Anti-de Sitter fragmentation

Juan Maldacena, Jeremy Michelson*and Andrew Strominger
Department of Physics, Harvard University
Cambridge, MA 02138
E-mail: malda@bose.harvard.edu, jeremy@bohr.harvard.edu, andy@planck.harvard.edu

Abstract: Low-energy, near-horizon scaling limits of black holes which lead to string theory on $A d S_{2} \times S^{2}$ are described. Unlike the higher-dimensional cases, in the simplest approach all finite-energy excitations of $A d S_{2} \times S^{2}$ are suppressed. Surviving zero-energy configurations are described. These can include tree-like structures in which the $A d S_{2} \times S^{2}$ throat branches as the horizon is approached, as well as disconnected $A d S_{2} \times S^{2}$ universes. In principle, the black hole entropy counts the quantum ground states on the moduli space of such configurations. In a nonsupersymmetric context $A d S_{D}$ for general D can be unstable against instanton-mediated fragmentation into disconnected universes. Several examples are given.

Keywords: Black Holes in String Theory, Conformal Field Models in String Theory, Supersymmetry and Duality.

"AdS 2 has no dynamics"

and scientific journals and books

Home
Journals
Journal
Content
Online
Books
Information
\& Ordering
Company Contacts

Join Our Mailing Lists

Advances in Theoretical and Mathematical Physics
Volume 23 (2019)
Number 2
Rigidity of asymptotically $A d S_{2} \times S^{2}$ spacetimes
Pages: 403-435
DOI: https://dx.doi.org/10.4310/ATMP.2019.v23.n2.a3

Authors

Gregory J. Galloway (Department of Mathematics, University of Miami, Coral Gables, Florida, U.S.A.)

Melanie Graf (Faculty of Mathematics, University of Vienna, Austria)

Abstract

The spacetime $A d S_{2} \times S^{2}$ is well known to arise as the 'near horizon' geometry of the extremal Reissner-Nordstrom solution, and for that reason it has been studied in connection with the $\mathrm{AdS} / \mathrm{CFT}$ correspondence. Here we consider asymptotically $A d S_{2} \times S^{2}$ spacetimes that obey the null energy condition (or a certain averaged version thereof). Supporting a conjectural viewpoint of Juan Maldacena, we show that any such spacetime must have a special geometry similar in various respects to $A d S_{2} \times S^{2}$, and under certain circumstances must be isometric to $A d S_{2} \times S^{2}$.

Wider picture on $A d S_{2}$ dynamics

- Backreaction in asymptotically AdS_{2} spacetimes is problematic.
- Q: Starting with a linear solution for a scalar ϕ on $A d S_{2} \times S^{2}$, does it extend to a non-linear solution of Einstein-Maxwell-Scalar?
- A: Not if we insist on an asymptotically $A d S_{2}$ solution.
E.g. if we impose Dirichlet boundary conditions on the AdS_{2} boundary then backreaction of the scalar on the geometry destroys them.
- Backreaction in asymptotically flat spacetimes makes perfect sense.
- Q: Starting with a linear solution for a scalar $\phi \sim \sqrt{\epsilon}$ on ERN, does it extend to a non-linear solution of Einstein-Maxwell-Scalar?
- A: Yes. Generically the fully backreacted nonlinear endpoint is a near-extreme RN with $Q=M \sqrt{1-\mathcal{O}(\epsilon)}$.
[Murata, Reall, Tanahashi (2013)]
The connection of $A d S_{2}$ with the asymptotically flat region of BHs allows for consistent backreaction. How? What are the correct boundary conditions?

Perturbations of Bertotti-Robinson

- Backgound:

$$
d s^{2}=M^{2}\left[-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}+d \Omega^{2}\right], \quad A_{t}=M r
$$

- Spherically symmetric perturbations $\left(h_{\mu \nu}, a_{\mu}\right)$ fully characterized by:

$$
h_{\theta \theta}=\Phi_{0}+a r+b r t+c r\left(t^{2}-1 / r^{2}\right)
$$

Comments:

- $h_{\theta \theta}$ is gauge invariant under $h_{\mu \nu} \rightarrow h_{\mu \nu}+\mathcal{L}_{\xi} g_{\mu \nu}$.
- 4-parameter (Φ_{0}, a, b, c) family of solutions.
- Φ_{0} parameterizes overall rescaling $M \rightarrow M+\delta M$ with $\Phi_{0}=2 M \delta M$.
- Focus on the remaining triplet:

$$
\Phi=a r+b r t+c r\left(t^{2}-1 / r^{2}\right)
$$

$S L(2)$ transformation properties

$$
\Phi=a r+b r t+c r\left(t^{2}-1 / r^{2}\right)
$$

- The background is invariant under the $S L(2)$ isometries of $A d S_{2}$:

$$
\begin{array}{ll}
H: & t \rightarrow t+\alpha \\
D: & t \rightarrow t / \beta, \quad r \rightarrow \beta r \\
K: & t \rightarrow \frac{t-\gamma\left(t^{2}-1 / r^{2}\right)}{1-2 \gamma t+\gamma^{2}\left(t^{2}-1 / r^{2}\right)}, \quad r \rightarrow r\left[1-2 \gamma t+\gamma^{2}\left(t^{2}-1 / r^{2}\right)\right]
\end{array}
$$

- Φ is $S L(2)$-breaking: (a, b, c) get rotated by the above transformations.
- However,

$$
\mu=b^{2}-4 a c \quad \text { is } \quad S L(2) \text {-invariant }
$$

- Using SL(2) transformations one may set

$$
\begin{array}{ll}
\Phi=2 r, & \text { when } \quad \mu=0, \operatorname{sgn}(a+c)=1 \\
\Phi=-\sqrt{\mu} r t, & \text { when } \quad \mu>0
\end{array}
$$

- $S L(2)$-breaking solutions Φ are not asymptotically $A d S_{2} \times S^{2}$

Anabasis perturbations

Bertotti-Robinson arises from two physically distinct near-horizon near-extremality scaling limits, $\lambda \rightarrow 0$, of Reissner-Nordstrom

Limit \#1: Begin with $Q=M$ and put the BH horizon at $r=0($ set $M=1)$:

$$
d s^{2}=-\left(\frac{r}{1+\lambda r}\right)^{2} d t^{2}+\left(\frac{r}{1+\lambda r}\right)^{-2} d r^{2}+(1+\lambda r)^{2} d \Omega^{2}, \quad A_{t}=\frac{r}{1+\lambda r}
$$

At $\mathcal{O}(1)$ we get Bertotti-Robinson in Poincare coordinates

$$
d s^{2}=-r^{2} d t^{2}+\frac{d r^{2}}{r^{2}}+d \Omega^{2}, \quad A_{t}=r
$$

At $\mathcal{O}(\lambda)$ we get, by definition, a linear solution around the above.

$$
h_{\theta \theta}=2 r
$$

This is the $S L(2)$-breaking $\mu=0$ solution $\Phi=2 r$ —Poincare anabasis solution
Begins to build the asymptotically flat region of an extreme Reissner-Nordstrom The nonlinear solution obtained from the $\mu=0$ perturbation of $A d S_{2} \times S^{2}$, when backreaction is fully taken into account in the Einstein-Maxwell theory, is the extreme Reissner-Nordström black hole.

Anabasis perturbations

- Limit \#2: Begin with $Q=M \sqrt{1-\lambda^{2} \kappa^{2}}$ and put the BH horizon at $\rho=0$:

$$
\begin{aligned}
d s^{2}= & -\frac{\rho(\rho+2 \kappa+\lambda \kappa \rho)}{(1+\lambda \kappa)(1+\lambda \rho)^{2}} d \tau^{2}+\frac{(1+\lambda \kappa)^{3}(1+\lambda \rho)^{2}}{\rho(\rho+2 \kappa+\lambda \kappa \rho)} d \rho^{2} \\
& +(1+\lambda \kappa)^{2}(1+\lambda \rho)^{2} d \Omega^{2} \\
A_{\tau}= & \frac{1}{\lambda}\left(1-\sqrt{\frac{1-\lambda \kappa}{1+\lambda \kappa}} \frac{1}{1+\lambda \rho}\right)
\end{aligned}
$$

At $\mathcal{O}(1)$ we get Bertotti-Robinson in Rindler coordinates

$$
d s^{2}=-\rho(\rho+2 \kappa) d \tau^{2}+\frac{d \rho^{2}}{\rho(\rho+2 \kappa)}+d \Omega^{2}, \quad A_{\tau}=M(\rho+\kappa)
$$

At $\mathcal{O}(\lambda)$ we get, by definition, a linear solution around the above.

$$
h_{\theta \theta}=2(\rho+\kappa)
$$

Anabasis perturbations

- Rindler to Poincare transformation for the Bertotti-Robinson:

$$
\begin{aligned}
& \tau=-\frac{1}{2 \kappa} \ln \left(t^{2}-1 / r^{2}\right) \\
& \rho=-\kappa(1+r t) \\
& A \rightarrow A+d \Lambda, \Lambda=\frac{1}{2} \ln \frac{\rho}{\rho+2 \kappa}
\end{aligned}
$$

Transforms the Rindler anabasis solution to

$$
h_{\theta \theta}=2(\rho+\kappa)=-2 \kappa r t
$$

This is the $S L(2)$-breaking $\sqrt{\mu}=2 \kappa$ solution $\Phi=-2 \kappa r t$.
Begins to build the asymptotically flat region of a near-extreme RN In general, $\Phi=a r+b r t+c r\left(t^{2}-1 / r^{2}\right)$ with $\mu>0$, leads to
 Rindler anabasis with $\sqrt{\mu}=\sqrt{b^{2}-4 a c}=2 \kappa$

The nonlinear solution obtained from the $\mu>0$ perturbation of $A d S_{2} \times S^{2}$, when backreaction is fully taken into account in the Einstein-Maxwell theory, is the near-extreme Reissner-Nordström black hole with $Q=M \sqrt{1-\mu / 4}$.

Summary

Anabasis: Backreaction that destroys the $A d S_{2}$ boundary and builds the asymptotically flat region of (near-)extreme BHs.

Remarks

- Q: What is the dual of anabasis in AdS/CFT?

A: Following an inverse RG, from IR to UV, along an irrelevant deformation of the boundary field theory that does not respect AdS boundary conditions (e.g. the single-trace $T \bar{T}$ deformation of CFT_{2} studied by [Giveon, Itzhaki, Kutasov, et al 2017-])

- Q: What about JT gravity?

A: $\Phi=\Phi_{J T}$ solves the JT eom $\nabla_{\mu} \nabla_{\nu} \Phi_{J T}-g_{\mu \nu} \nabla^{2} \Phi_{J T}+g_{\mu \nu} \Phi_{J T}=0$ on $A d S_{2}$.
$\mu=$ ADM mass of the 2D black holes in JT gravity.
Connected $A d S_{2}$ is a "nearly- $A d S_{2}$ " with $S L(2)$ broken to maintain connection.
2. Accidental Symmetry:

Coordinate transformation that acts on the perturbative solutions of Einstein equation near extreme black hole horizon

2112.13853 [JHEP 2203] with G. Remmen

The linearized Einstein equation

Schematic notation:

- Background geometry \bar{g}-the Bertotti-Robinson spacetime
- Metric perturbation h-the Φ solution
- The linearized Einstein equation as a linear differential operator

$$
\mathcal{E}(\bar{g}, h)=0
$$

Consider a finite diffeomorphism

$$
(t, r) \rightarrow(t, r)+\lambda\left(\xi^{t}(t, r), \xi^{r}(t, r)\right)
$$

which transforms both $\bar{g} \rightarrow \bar{g}(\lambda)$ and $h \rightarrow h(\lambda)$.
By general covariance, for arbitrary λ and ξ^{μ}, we have:

$$
\mathcal{E}(\bar{g}(\lambda), h(\lambda))=0
$$

Expanding in λ, we have

$$
\mathcal{E}(\bar{g}(0), h(0))+\lambda \frac{\delta}{\delta \lambda} \mathcal{E}(\bar{g}(\lambda), h(0))+\lambda \frac{\delta}{\delta \lambda} \mathcal{E}(\bar{g}(0), h(\lambda))+\mathcal{O}\left(\lambda^{2}\right)=0
$$

Accidental symmetry: definition

Starting with a solution to the linearized Einstein equations around the original background, $\mathcal{E}(\bar{g}(0), h(0))=0$, we have

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0}\left[\partial_{\lambda} \mathcal{E}(\bar{g}(\lambda), h(0))+\partial_{\lambda} \mathcal{E}(\bar{g}(0), h(\lambda))\right]=0 \tag{1}
\end{equation*}
$$

- $1^{\text {st }}$ term: hold perturbation fixed, act with a linearized diffeo on the background
- $2^{\text {nd }}$ term: on fixed background, transform perturbation using linearized diffeo

Equation (1) is valid for any diffeo, i.e. for any ξ^{μ}.
What if we impose the strong requirement that each term in (1) vanishes individually?

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \partial_{\lambda} \mathcal{E}(\bar{g}(0), h(\lambda))=0 \tag{2}
\end{equation*}
$$

- Trivial solutions: Isometries of the background $\bar{g}(\lambda)=\bar{g}(0)$
- Other solution: accidental symmetry -transforms solns h among themselves

Accidental symmetry: electrovacuum case

$$
\begin{aligned}
& \mathcal{E}: \text { linearized Einstein-Maxwell equations (electrovacuum) } \\
& \bar{g}(0): \text { Bertotti-Robinson } \\
& h(0): \Phi=a r \quad(\mu=0 \text { solution })
\end{aligned}
$$

the solution of $\lim _{\lambda \rightarrow 0} \partial_{\lambda} \mathcal{E}(\bar{g}(0), h(\lambda))=0$ is given by

$$
\xi=-\left[\epsilon(t)+\frac{\epsilon^{\prime \prime}(t)}{2 r^{2}}+\frac{t \epsilon^{\prime \prime \prime}(t)}{r^{2}}\right] \partial_{t}+\left[r \epsilon^{\prime}(t)-\frac{\epsilon^{\prime \prime \prime}(t)}{2 r}\right] \partial_{r},
$$

where $\epsilon(t)$ is an arbitrary cubic polynomial in t,

$$
\epsilon(t)=e_{0}+e_{1} t+e_{2} t^{2}+e_{3} t^{3}
$$

- $\xi_{0,1,2}$: SL(2) Killing vectors of $A d S_{2}$

$$
\xi_{0}=-(1,0), \quad \xi_{1}=-(t,-r), \quad \xi_{2}=-\left(t^{2}+\frac{1}{r^{2}},-2 r t\right)
$$

- ξ_{3} : non-trivial accidental symmetry

$$
\xi_{3}=-\left(t^{3}+\frac{9 t}{r^{2}}, \frac{3}{r}-3 r t^{2}\right)
$$

Accidental symmetry: electrovacuum equations

Question: What does ξ_{3} do?
Answer: Relates $\mu=0$ to $\mu \neq 0$. Indeed, we have

$$
\Delta \mu=-4 a \Delta c=-12 \lambda e_{3} a^{2}
$$

Accidental symmetries enlarge the possible mappings among solutions to include those beyond the $\mathrm{SL}(2)$ isometries, thereby allowing to move from one μ orbit to another.

In spherical symmetry the electrovacuum solutions are constrained by Birkhoff's theorem to the non-propagating degrees of freedom that we have discussed so far.

Can accidental symmetries also turn on propagating d.o.f.?

Accidental symmetry: adding matter

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \partial_{\lambda} \mathcal{E}(\bar{g}(0), h(\lambda))=T \tag{3}
\end{equation*}
$$

Source T must satisfy equations of motion. We consider Klein-Gordon scalar $\square \phi=0$ s.t. the most general spherically symmetric solution is ($u=t-1 / r, v=t+1 / r$)

$$
\phi=f_{+}(v)+f_{-}(u)
$$

Can get solution to (3) from the electrovacuum $\Phi=r$ using the transformation

$$
\begin{aligned}
\xi^{t}= & \frac{3}{2 r}\left[F_{+}^{\prime}(v)+F_{-}^{\prime}(u)\right]-\frac{3}{2 r^{2}}\left[F_{+}^{\prime \prime}(v)-F_{-}^{\prime \prime}(u)\right] \\
& +\frac{3}{r^{3}}\left[\int^{v} \frac{F_{+}\left(t_{0}\right)}{\left(t-t_{0}\right)^{4}} \mathrm{~d} t_{0}+\int^{u} \frac{F_{-}\left(t_{0}\right)}{\left(t-t_{0}\right)^{4}} \mathrm{~d} t_{0}\right] \\
& -\frac{1}{r^{3}} \int^{r} \int^{t} \frac{f_{+}^{\prime}\left(\hat{t}+\frac{1}{\hat{r}}\right) f_{-}^{\prime}\left(\hat{t}-\frac{1}{\hat{r}}\right)}{\hat{r}} \mathrm{~d} \hat{t} \mathrm{~d} \hat{r} \\
\xi^{r}= & r\left[F_{+}^{\prime}(v)-F_{-}^{\prime}(u)\right]-\left[F_{+}^{\prime \prime}(v)+F_{-}^{\prime \prime}(u)\right]
\end{aligned}
$$

where $F_{+}^{\prime \prime \prime \prime}(v)=\left[f_{+}^{\prime}(v)\right]^{2}$ and $F_{-}^{\prime \prime \prime \prime}(u)=\left[f_{-}^{\prime}(u)\right]^{2}$.

Summary

Accidental Symmetry: Coordinate transformation that acts on the perturbative solutions of Einstein equation near extreme black hole horizon and maps them among themselves.

- Electrovacuum eqs: turn on deviation from extremality
- Adding KG matter: turn on arbitrary KG source

Remark

Accidental symmetries are "on-shell large diffeomorphisms of AdS_{2} "
This is made precise in JT gravity below
Note:

- In AdS/CFT one rarely puts large diffeos on-shell.
- For good reason: main attraction of AdS/CFT is that the gravitational theory in the bulk may be defined from an independent prescription of observables on the boundary.

Summary

Putting on-shell the large diffeomorphisms of $A d S_{2}$ in JT gravity

- The large diffeomorphisms of AdS_{2}, in FG gauge, are given by

$$
\begin{gathered}
t \rightarrow f(t)+\frac{2 f^{\prime \prime}(t) f^{\prime}(t)^{2}}{4 r^{2} f^{\prime}(t)^{2}-f^{\prime \prime}(t)^{2}}, \quad r \rightarrow \frac{4 r^{2} f^{\prime}(t)^{2}-f^{\prime \prime}(t)^{2}}{4 r f^{\prime}(t)^{3}} \\
\mathrm{~d} s_{2}^{2} \rightarrow-r^{2}\left(1+\frac{\operatorname{Sch}(f, t)}{2 r^{2}}\right)^{2} \mathrm{~d} t^{2}+\frac{\mathrm{d} r^{2}}{r^{2}} \quad \text { and } \quad \Phi \rightarrow \phi_{0}(t) r+\frac{v(t)}{r} \\
\text { with } \phi_{0}(t)=\left[a+b f(t)+c f(t)^{2}\right] / f^{\prime}(t) \text { and } v(t)=-\left[\phi_{0}^{\prime \prime}(t)+\operatorname{Sch}(f, t) \phi_{0}(t)\right] / 2
\end{gathered}
$$

- For arbitrary f, this source satisfies the Schwarzian equation of motion

$$
\left[\frac{1}{f^{\prime}}\left(\frac{\left(f^{\prime} \phi_{0}\right)^{\prime}}{f^{\prime}}\right)^{\prime}\right]^{\prime}=0
$$

- If one imposes that $\phi_{0}(t)=$ constant, before as well as after acting with the large diffeo, then for infinitesimal diffeo $f(t)=t+\epsilon(t)$, the Schwarzian eom reduces to

$$
\epsilon^{\prime \prime \prime \prime}(t)=0
$$

with its cubic solution $\epsilon(t)=e_{0}+e_{1} t+e_{2} t^{2}+e_{3} t^{3}$.

Summary

Putting on-shell the large diffeomorphisms of $A d S_{2}$ in JT gravity

- The large diffeomorphisms of AdS_{2}, in FG gauge, are given by

$$
\begin{gathered}
t \rightarrow f(t)+\frac{2 f^{\prime \prime}(t)^{\prime}(t)^{2}}{4 r^{2} f^{\prime}(t)^{2}-f^{\prime \prime}(t)^{2}}, \quad r \rightarrow \frac{4 r^{2} f^{\prime}(t)^{2}-f^{\prime \prime}(t)^{2}}{4 r f^{\prime}(t)^{3}} \\
\mathrm{~d} s_{2}^{2} \rightarrow-r^{2}\left(1+\frac{\operatorname{Sch}(f, t)}{2 r^{2}}\right)^{2} \mathrm{~d} t^{2}+\frac{\mathrm{d} r^{2}}{r^{2}} \quad \text { and } \quad \Phi \rightarrow \phi_{0}(t) r+\frac{v(t)}{r} \\
\text { with } \phi_{0}(t)=\left[a+b f(t)+c f(t)^{2}\right] / f^{\prime}(t) \text { and } v(t)=-\left[\phi_{0}^{\prime \prime}(t)+\operatorname{Sch}(f, t) \phi_{0}(t)\right] / 2 .
\end{gathered}
$$

- For arbitrary f, this source satisfies the Schwarzian equation of motion

$$
\left[\frac{1}{f^{\prime}}\left(\frac{\left(f^{\prime} \phi_{0}\right)^{\prime}}{f^{\prime}}\right)^{\prime}\right]^{\prime}=0
$$

- If one imposes that $\phi_{0}(t)=$ constant, before as well as after acting with the large diffeo, then for infinitesimal diffeo $f(t)=t+\epsilon(t)$, the Schwarzian eom reduces to

$$
\epsilon^{\prime \prime \prime \prime}(t)=0
$$

with its cubic solution $\epsilon(t)=e_{0}+e_{1} t+e_{2} t^{2}+e_{3} t^{3}$.

Thank you

