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Why extreme black holes?

Two reasons:

▶ They are observationally relevant:

Many accreting black holes are found to be spinning very rapidly

▶ They are theoretically manageable:

Near the horizon of (near-)extreme black holes spacetime is AdS-like
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AdS2 and near-extreme black holes

Near the horizon of (near-)extreme black holes spacetime is AdS2-like

Extreme Reissner-Nordstrom; Bertotti-Robinson: [Bertotti, Robinson (1959)]

ds2 = M2
[
− r 2dt2 +

dr 2

r 2 + dΩ2
]
, At = Mr

▶ Applies for a wide class of theories in any D [Kunduri, Lucietti, Reall (2007)]

• e.g. extreme Kerr in 4D pure Einstein GR [Bardeen, Horowitz (1999)]

▶ Near-horizon approximations and Exact solutions



1. Anabasis:

Backreaction that destroys the AdS2 boundary and builds the
asymptotically flat region of (near-)extreme BHs.

2012.06562 [JHEP 2103] with S. Hadar, A. Lupsasca



“AdS2 has no dynamics”
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Wider picture on AdS2 dynamics

▶ Backreaction in asymptotically AdS2 spacetimes is problematic.
• Q: Starting with a linear solution for a scalar ϕ on AdS2 × S2,

does it extend to a non-linear solution of Einstein-Maxwell-Scalar?
• A: Not if we insist on an asymptotically AdS2 solution.

E.g. if we impose Dirichlet boundary conditions on the AdS2 boundary
then backreaction of the scalar on the geometry destroys them.

▶ Backreaction in asymptotically flat spacetimes makes perfect sense.
• Q: Starting with a linear solution for a scalar ϕ ∼

√
ϵ on ERN,

does it extend to a non-linear solution of Einstein-Maxwell-Scalar?
• A: Yes. Generically the fully backreacted nonlinear endpoint is a

near-extreme RN with Q = M
√

1 −O(ϵ). [Murata, Reall, Tanahashi (2013)]

The connection of AdS2 with the asymptotically flat region of BHs allows for
consistent backreaction. How? What are the correct boundary conditions?



Perturbations of Bertotti-Robinson

▶ Backgound:

ds2 = M2
[
− r2dt2 +

dr2

r2
+ dΩ2

]
, At = Mr

▶ Spherically symmetric perturbations (hµν , aµ) fully characterized by:

hθθ = Φ0 + ar + brt + cr
(

t2 − 1/r2
)

Comments:
▶ hθθ is gauge invariant under hµν → hµν + Lξgµν .
▶ 4-parameter (Φ0, a, b, c) family of solutions.
▶ Φ0 parameterizes overall rescaling M → M + δM with Φ0 = 2M δM.
▶ Focus on the remaining triplet:

Φ = ar + brt + cr
(

t2 − 1/r2
)



SL(2) transformation properties

Φ = ar + brt + cr
(

t2 − 1/r2
)

▶ The background is invariant under the SL(2) isometries of AdS2:

H : t → t + α

D : t → t/β , r → βr

K : t →
t − γ

(
t2 − 1/r2)

1 − 2γt + γ2
(
t2 − 1/r2

) , r → r
[
1 − 2γt + γ2

(
t2 − 1/r2

)]
▶ Φ is SL(2)-breaking: (a, b, c) get rotated by the above transformations.
▶ However,

µ = b2 − 4ac is SL(2)-invariant

▶ Using SL(2) transformations one may set

Φ = 2r , when µ = 0 , sgn(a + c) = 1
Φ = −√

µ rt , when µ > 0

▶ SL(2)-breaking solutions Φ are not asymptotically AdS2 × S2



Anabasis perturbations
Bertotti-Robinson arises from two physically distinct
near-horizon near-extremality scaling limits, λ → 0, of Reissner-Nordstrom

▶ Limit #1: Begin with Q = M and put the BH horizon at r = 0 (set M = 1):

ds2 = −
(

r
1 + λr

)2
dt2 +

(
r

1 + λr

)−2
dr2 + (1 + λr)2 dΩ2 , At =

r
1 + λr

At O(1) we get Bertotti-Robinson in Poincare coordinates

ds2 = −r2dt2 +
dr2

r2
+ dΩ2 , At = r

At O(λ) we get, by definition, a linear solution around the above.

hθθ = 2r

This is the SL(2)-breaking µ = 0 solution Φ = 2r —Poincare anabasis solution

Begins to build the asymptotically flat region of an extreme Reissner-Nordstrom

The nonlinear solution obtained from the µ = 0 perturbation of AdS2 × S2,
when backreaction is fully taken into account in the Einstein-Maxwell theory,
is the extreme Reissner-Nordström black hole.



Anabasis perturbations

▶ Limit #2: Begin with Q = M
√

1 − λ2κ2 and put the BH horizon at ρ = 0:

ds2 =−
ρ(ρ+ 2κ+ λκρ)

(1 + λκ)(1 + λρ)2
dτ2 +

(1 + λκ)3(1 + λρ)2

ρ(ρ+ 2κ+ λκρ)
dρ2

+ (1 + λκ)2(1 + λρ)2dΩ2

Aτ =
1
λ

1 −

√
1 − λκ

1 + λκ

1
1 + λρ


At O(1) we get Bertotti-Robinson in Rindler coordinates

ds2 = −ρ(ρ+ 2κ)dτ2 +
dρ2

ρ(ρ+ 2κ)
+ dΩ2 , Aτ = M(ρ+ κ)

At O(λ) we get, by definition, a linear solution around the above.

hθθ = 2(ρ+ κ)



Anabasis perturbations
▶ Rindler to Poincare transformation for the Bertotti-Robinson:

τ = −
1

2κ
ln
(

t2 − 1/r2
)

ρ = −κ(1 + rt)

A → A + dΛ ,Λ =
1
2
ln

ρ

ρ+ 2κ

Transforms the Rindler anabasis solution to

hθθ = 2(ρ+ κ) = −2κrt

This is the SL(2)-breaking
√
µ = 2κ solution Φ = −2κrt .

Begins to build the asymptotically flat region of a near-extreme RN

In general, Φ = ar + brt + cr(t2 − 1/r2) with µ > 0, leads to
Rindler anabasis with

√
µ =

√
b2 − 4ac = 2κ

t = 0

r =
0

r
=

0

r
=

∞

ρ
=

0

ρ
=

0

ρ
=

∞

The nonlinear solution obtained from the µ > 0 perturbation of AdS2 × S2,
when backreaction is fully taken into account in the Einstein-Maxwell theory,
is the near-extreme Reissner-Nordström black hole with Q = M

√
1 − µ/4.



Summary

Anabasis: Backreaction that destroys the AdS2 boundary and builds the
asymptotically flat region of (near-)extreme BHs.

Remarks
▶ Q: What is the dual of anabasis in AdS/CFT?

A: Following an inverse RG, from IR to UV, along an irrelevant deformation of the
boundary field theory that does not respect AdS boundary conditions (e.g. the
single-trace TT deformation of CFT2 studied by [Giveon, Itzhaki, Kutasov, et al 2017– ])

▶ Q: What about JT gravity?
A: Φ = ΦJT solves the JT eom ∇µ∇νΦJT − gµν∇2ΦJT + gµνΦJT = 0 on AdS2.

µ = ADM mass of the 2D black holes in JT gravity.
Connected AdS2 is a “nearly-AdS2” with SL(2) broken to maintain

connection.



2. Accidental Symmetry:

Coordinate transformation that acts on the perturbative
solutions of Einstein equation near extreme black hole horizon

2112.13853 [JHEP 2203] with G. Remmen



The linearized Einstein equation
Schematic notation:

▶ Background geometry ḡ —the Bertotti-Robinson spacetime
▶ Metric perturbation h —the Φ solution
▶ The linearized Einstein equation as a linear differential operator

E(ḡ, h) = 0

Consider a finite diffeomorphism

(t , r) → (t , r) + λ
(
ξt (t , r), ξr (t , r)

)
which transforms both ḡ → ḡ(λ) and h → h(λ).

By general covariance, for arbitrary λ and ξµ, we have:

E(ḡ(λ), h(λ)) = 0

Expanding in λ, we have

E(ḡ(0), h(0)) + λ
δ

δλ
E(ḡ(λ), h(0)) + λ

δ

δλ
E(ḡ(0), h(λ)) +O(λ2) = 0



Accidental symmetry: definition

Starting with a solution to the linearized Einstein equations around the original
background, E(ḡ(0), h(0)) = 0, we have

lim
λ→0

[∂λE(ḡ(λ), h(0)) + ∂λE(ḡ(0), h(λ))] = 0 (1)

▶ 1st term: hold perturbation fixed, act with a linearized diffeo on the background
▶ 2nd term: on fixed background, transform perturbation using linearized diffeo

Equation (1) is valid for any diffeo, i.e. for any ξµ.

What if we impose the strong requirement that each term in (1) vanishes individually?

lim
λ→0

∂λE(ḡ(0), h(λ)) = 0 (2)

▶ Trivial solutions: Isometries of the background ḡ(λ) = ḡ(0)
▶ Other solution: accidental symmetry —transforms solns h among themselves



Accidental symmetry: electrovacuum case

E : linearized Einstein-Maxwell equations (electrovacuum)
ḡ(0) : Bertotti-Robinson
h(0) : Φ = ar (µ = 0 solution)

the solution of limλ→0 ∂λE(ḡ(0), h(λ)) = 0 is given by

ξ = −
[
ϵ(t) +

ϵ′′(t)
2r2

+
tϵ′′′(t)

r2

]
∂t +

[
rϵ′(t)−

ϵ′′′(t)
2r

]
∂r ,

where ϵ(t) is an arbitrary cubic polynomial in t ,

ϵ(t) = e0 + e1t + e2t2 + e3t3.

▶ ξ0,1,2: SL(2) Killing vectors of AdS2

ξ0 = −(1, 0) , ξ1 = −(t ,−r) , ξ2 = −
(

t2 +
1
r2

,−2rt
)

▶ ξ3: non-trivial accidental symmetry

ξ3 = −
(

t3 +
9t
r2

,
3
r
− 3rt2

)



Accidental symmetry: electrovacuum equations

Question: What does ξ3 do?

Answer: Relates µ = 0 to µ ̸= 0. Indeed, we have

∆µ = −4a∆c = −12λe3a2

Accidental symmetries enlarge the possible mappings among solutions to
include those beyond the SL(2) isometries, thereby allowing to move from
one µ orbit to another.

In spherical symmetry the electrovacuum solutions are constrained by Birkhoff’s
theorem to the non-propagating degrees of freedom that we have discussed so far.

Can accidental symmetries also turn on propagating d.o.f.?



Accidental symmetry: adding matter

lim
λ→0

∂λE(ḡ(0), h(λ)) = T (3)

Source T must satisfy equations of motion. We consider Klein-Gordon scalar □ϕ = 0
s.t. the most general spherically symmetric solution is (u = t − 1/r , v = t + 1/r )

ϕ = f+(v) + f−(u)

Can get solution to (3) from the electrovacuum Φ = r using the transformation

ξt =
3
2r

[F ′
+(v) + F ′

−(u)]−
3

2r2
[F ′′

+(v)− F ′′
−(u)]

+
3
r3

[∫ v F+(t0)
(t − t0)4

dt0 +

∫ u F−(t0)
(t − t0)4

dt0

]

−
1
r3

∫ r ∫ t f ′+
(

t̂ + 1
r̂

)
f ′−

(
t̂ − 1

r̂

)
r̂

d̂t dr̂

ξr = r [F ′
+(v)− F ′

−(u)]− [F ′′
+(v) + F ′′

−(u)],

where F ′′′′
+ (v) = [f ′+(v)]

2 and F ′′′′
− (u) = [f ′−(u)]2.



Summary

Accidental Symmetry: Coordinate transformation that acts on the
perturbative solutions of Einstein equation near extreme black hole horizon
and maps them among themselves.

▶ Electrovacuum eqs: turn on deviation from extremality

▶ Adding KG matter: turn on arbitrary KG source

Remark

Accidental symmetries are “on-shell large diffeomorphisms of AdS2”

This is made precise in JT gravity below

Note:
• In AdS/CFT one rarely puts large diffeos on-shell.
• For good reason: main attraction of AdS/CFT is that the gravitational

theory in the bulk may be defined from an independent prescription of
observables on the boundary.



Summary
Putting on-shell the large diffeomorphisms of AdS2 in JT gravity

▶ The large diffeomorphisms of AdS2, in FG gauge, are given by

t → f (t) +
2f ′′(t)f ′(t)2

4r2f ′(t)2 − f ′′(t)2
, r →

4r2f ′(t)2 − f ′′(t)2

4rf ′(t)3

ds2
2 → −r2

(
1 +

Sch(f , t)
2r2

)2
dt2 +

dr2

r2
and Φ → ϕ0(t)r +

v(t)
r

,

with ϕ0(t) = [a + bf (t) + cf (t)2]/f ′(t) and v(t) = −[ϕ′′
0 (t) + Sch(f , t)ϕ0(t)]/2.

▶ For arbitrary f , this source satisfies the Schwarzian equation of motion

[
1
f ′

(
(f ′ϕ0)

′

f ′

)′]′
= 0

▶ If one imposes that ϕ0(t) = constant, before as well as after acting with the large
diffeo, then for infinitesimal diffeo f (t) = t + ϵ(t), the Schwarzian eom reduces to

ϵ′′′′(t) = 0

with its cubic solution ϵ(t) = e0 + e1t + e2t2 + e3t3. ✓
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Thank you


