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Why extreme black holes?

Two reasons:

» They are observationally relevant:
Many accreting black holes are found to be spinning very rapidly
» They are theoretically manageable:

Near the horizon of (near-)extreme black holes spacetime is AdS-like



Rapidly spinning black holes

Many accreting black holes are found to be spinning very rapidly
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Abstract

‘The spin of a black hole is an important quantity to study, providing a
window into the processes by which a black hole was born and grew. Further-
more, spin can be a potent energy source for powering relativistic jets and
energetic particle acceleration. In this review, I describe the techniques cur-
rently used to detect and measure the spins of black holes. It is shown that:

m Two well-understood techniques, X-ray reflection spectroscopy and
thermal continuum fitting, can be used to measure the spins of black
holes that are accreting at moderate rates. There is a rich set of other
clectromagnetic techniques allowing us to extend spin measurements
to lower accretion rates.

® Many accreting supermassive_black_holes are_found to_be_rapidly
spinning, although a population of more slowly spinning black holes
emerges at masses above M > 3 x 10" My, as expected from recent
structure formation modcls.

m Many accreting stellar-mass black holes in X-ray binary systems are

rapidly spinning and must




Rapidly spinning black holes

Many accreting black holes are found to be spinning very rapidly
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Figure 6

SMBH spins as a function of mass for the 32 objects in Table 1 that have available mass estimators. All spin
measurements reported here are from the X-ray reflection method. Lower limits are reported in red, and
measurements that include a meaningful upper bound (distinct from @ = 1) are reported in blue. Following
the convention of the relevant primary literature, error bars in spin show the 90% confidence range. The
error bars in mass are the 1o errors from 'Table 1 or, where that is not available, we assume a 50% error.
Abbreviation: SMBH, supermassive black hole.



AdS> and near-extreme black holes

Near the horizon of (near-)extreme black holes spacetime is AdS.-like
Extreme Reissner-Nordstrom; Bertotti-Robinson: [Bertotti, Robinson (1959)]

2
dszzmz[_rzdt2+%+d92}, A = Mr

» Applies for a wide class of theories in any D [Kunduri, Lucietti, Reall (2007)]

® e.g. extreme Kerr in 4D pure Einstein GR [Bardeen, Horowitz (1999)]

» Near-horizon approximations and Exact solutions



1. Anabasis:

Backreaction that destroys the AdS, boundary and builds the
asymptotically flat region of (near-)extreme BHs.

2012.06562 [JHEP 2103] with S. Hadar, A. Lupsasca



“AdS» has no dynamics”

Anti-de Sitter fragmentation
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ABSTRACT: Low-energy, near-horizon scaling limits of black holes which lead to
string theory on AdS, x S? are described. Unlike the higher-dimensional cases,
in the simplest approach all finite-energy excitations of AdS, x S? are suppressed.
Surviving zero-energy configurations are described. These can include tree-like struc-
tures in which the AdS, x S? throat branches as the horizon is approached, as well
as disconnected AdS, x S? universes. In principle, the black hole entropy counts the
quantum ground states on the moduli space of such configurations. In a nonsuper-
symmetric context AdSp for general D can be unstable against instanton-mediated
fragmentation into disconnected universes. Several examples are given.

KEYWORDS: Black Holes in String Theory, Conformal Field Models in String
Theory, Supersymmetry and Duality.



“AdS, has no dynamics”
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Abstract

The spacetime AdS; x S? is well known to arise as the ‘near horizon’ geometry of the
extremal Reissner—Nordstrom solution, and for that reason it has been studied in connection
with the AdS/CFT correspondence. Here we consider asymptotically AdSy x S? spacetimes
that obey the null energy condition (or a certain averaged version thereof). Supporting a
conjectural viewpoint of Juan Maldacena, we show that any such spacetime must have a
special geometry similar in various respects to AdSy x S2, and under certain circumstances
must be isometric to AdS; x S2.



Wider picture on AdS, dynamics

» Backreaction in asymptotically AdS, spacetimes is problematic.

® Q: Starting with a linear solution for a scalar ¢ on AdS, x S2,
does it extend to a non-linear solution of Einstein-Maxwell-Scalar?

® A: Not if we insist on an asymptotically AdS, solution.
E.g. if we impose Dirichlet boundary conditions on the AdS, boundary
then backreaction of the scalar on the geometry destroys them.

» Backreaction in asymptotically flat spacetimes makes perfect sense.

® Q: Starting with a linear solution for a scalar ¢ ~ /e on ERN,
does it extend to a non-linear solution of Einstein-Maxwell-Scalar?

® A:Yes. Generically the fully backreacted nonlinear endpoint is a
near-extreme RN with Q = M\/1 — O(e). [Murata, Reall, Tanahashi (2013)]

The connection of AdS; with the asymptotically flat region of BHs allows for
consistent backreaction. How? What are the correct boundary conditions?



Perturbations of Bertotti-Robinson

> Backgound:

2
ds2:M2[—r2dr2+%+dQ2], A = Mr

> Spherically symmetric perturbations (h,., a,.) fully characterized by:
hgg = g + ar + brt + cr <t2 - 1/r2)

Comments:
> hge is gauge invariant under hy, — huy + LeGuo.
> 4-parameter (@, a, b, ¢) family of solutions.
> &, parameterizes overall rescaling M — M + éM with &y = 2M M.
> Focus on the remaining triplet:

® = ar+brt +or (- 1/r2)



SL(2) transformation properties

d>=ar+brt+cr<t2—1/r2>

»> The background is invariant under the SL(2) isometries of AdS;:

H: t—>t+a
D: t—t/8, r—pr
t—y(2—1/r?)
1—27t+72(1‘2—1/r2)

, r—>r[1 — 2yt + 12 (t2—1/r2)]

> & is SL(2)-breaking: (a, b, c) get rotated by the above transformations.

> However,
u=b?—4ac is  SL(2)-invariant

> Using SL(2) transformations one may set

b =2r, when p=0,sgn(a+c)=1
S =—\/urt, when p >0

» SL(2)-breaking solutions ® are not asymptotically AdS, x S?



Anabasis perturbations

Bertotti-Robinson arises from two physically distinct
near-horizon near-extremality scaling limits, A — 0, of Reissner-Nordstrom

> Limit #1: Begin with Q = M and put the BH horizonat r =0 (set M = 1):

r
14+ Ar

2 -2
r r
ds? = — dt? ( ) ar? + (1+xr)2dQ?, A=
(1+)\r> + 14+ Ar +(1 40 !
At O(1) we get Bertotti-Robinson in Poincare coordinates

2
ds? = —r2adt? + % +dQ2, A=t

At O(\) we get, by definition, a linear solution around the above.
hgg =2r

This is the SL(2)-breaking 1 = 0 solution ® = 2r —Poincare anabasis solution
Begins to build the asymptotically flat region of an extreme Reissner-Nordstrom

The nonlinear solution obtained from the ;. = 0 perturbation of AdS, x S2,
when backreaction is fully taken into account in the Einstein-Maxwell theory,
is the extreme Reissner-Nordstrom black hole.



Anabasis perturbations

> Limit #2: Begin with Q = M+/1 — A\2x2 and put the BH horizon at p = 0:

g2 = Plet2e+dmp) o (1)1 4+ 00)? 5
(1 + Ax)(1 + Ap)? plp+ 26 + Akp)

+ (1 + 2&)2(1 + Ap)2dQ?
PR PR AP
A 1T+ X1+ Xp

At O(1) we get Bertotti-Robinson in Rindler coordinates

d 2
ds? = —p(p+2r)dr2 + — P 1 d0%, A, =M(p+ k)
plp + 2k)

At O(X) we get, by definition, a linear solution around the above.

heo = 2(p + k)



Anabasis perturbations

» Rindler to Poincare transformation for the Bertotti-Robinson:

_ 1 2 2
‘r—fﬁln(t 71/r)
p=—r(1+rt)

1 P
A—>A+dN A= -1
AT 2np+2n

Transforms the Rindler anabasis solution to
hog = 2(p + k) = —2krt

This is the SL(2)-breaking /i = 2« solution & = —2krt.

Begins to build the asymptotically flat region of a near-extreme RN
In general, ® = ar + brt + cr(t? — 1/r?) with . > 0, leads to
Rindler anabasis with /o = \/b? — 4ac = 2k

The nonlinear solution obtained from the p > 0 perturbation of AdS, x s?,
when backreaction is fully taken into account in the Einstein-Maxwell theory,
is the near-extreme Reissner-Nordstrém black hole with Q = My/1 — 1 /4.




Summary

Anabasis: Backreaction that destroys the AdS, boundary and builds the
asymptotically flat region of (near-)extreme BHs.

Remarks

»> Q: What is the dual of anabasis in AdAS/CFT?
A: Following an inverse RG, from IR to UV, along an irrelevant deformation of the
boundary field theory that does not respect AdS boundary conditions (e.g. the
single-trace TT deformation of CFT, studied by [Giveon, ltzhaki, Kutasov, et al 2017-1)
»> Q: What about JT gravity?
A: & = o7 solves the JT eom V,, V., &7 — g V2O 1 + g ®yr = 0 0n AdS,.
1 = ADM mass of the 2D black holes in JT gravity.
Connected AdS; is a “nearly-AdS,” with SL(2) broken to maintain
connection.



2. Accidental Symmetry:

Coordinate transformation that acts on the perturbative
solutions of Einstein equation near extreme black hole horizon

2112.13853 [JHEP 2203] with G. Remmen



The linearized Einstein equation

Schematic notation:
> Background geometry g —the Bertotti-Robinson spacetime
» Metric perturbation h  —the & solution
> The linearized Einstein equation as a linear differential operator

£(g,h) =0
Consider a finite diffeomorphism
(t.1) = (60 + 2 (€160, €7 )

which transforms both g — g(X) and h — h(X).

By general covariance, for arbitrary A and £#, we have:
£(9(A),h(N)) =0

Expanding in A, we have

£(9(0), h(0)) + /\%5(50\), h(0)) + /\%5(57(0), h(A)) +O(>3?) =0



Accidental symmetry: definition

Starting with a solution to the linearized Einstein equations around the original
background, £(g(0), h(0)) = 0, we have

lim [OAE(G(N). h(0)) + DrE(E(0), ()] = O 1)

> 13t term: hold perturbation fixed, act with a linearized diffeo on the background
» 2" term: on fixed background, transform perturbation using linearized diffeo

Equation (1) is valid for any diffeo, i.e. for any &.

What if we impose the strong requirement that each term in (1) vanishes individually?

Anjoakg(g(O),h(A)) =0 (2)

» Trivial solutions: Isometries of the background g(\) = g(0)
» Other solution: accidental symmetry —transforms solns h among themselves



Accidental symmetry: electrovacuum case

£ : linearized Einstein-Maxwell equations (electrovacuum)
9(0) : Bertotti-Robinson
h(0) : & = ar (u = 0 solution)

the solution of limy_,0 9x£(9(0), h(\)) = 0 is given by

e——lan+ 20 4 tem(t)} & + {re’(t) - e”’(t)i| o,

2r2 re 2r
where €(t) is an arbitrary cubic polynomial in t,
e(t) = ey + et + ext? + e3t’.

> £p,1,2: SL(2) Killing vectors of AdS,

1
60:7(170)7 51:7(1‘77”)7 62:7(t2+r*2:72rt)

> £3: non-trivial accidental symmetry

&=— (t3+%,%—3rt2)



Accidental symmetry: electrovacuum equations

Question: What does &3 do?

Answer: Relates = 0to 1 # 0. Indeed, we have

Ap

—4alc = —12\e3d”

Accidental symmetries enlarge the possible mappings among solutions to
include those beyond the SL(2) isometries, thereby allowing to move from
one p orbit to another.

In spherical symmetry the electrovacuum solutions are constrained by Birkhoff’s
theorem to the non-propagating degrees of freedom that we have discussed so far.

Can accidental symmetries also turn on propagating d.o.f.?



Accidental symmetry: adding matter

lim AE(@(0),h(\) = T @

Source T must satisfy equations of motion. We consider Klein-Gordon scalar Cl¢p = 0
s.t. the most general spherically symmetric solutionis (u=t—1/r,v=t+1/r)

6 =1.(v) +1-(v)

Can get solution to (3) from the electrovacuum ¢ = r using the transformation

é- 2iF Ff,(u)] S [FU) — F ()

A [ ]
3//1‘f (t+1 (77)??

g =r[Fi(v) = FL(u)] = [F{(v) + FZ(u)],

where F"’(v) = [, (v)]? and F""(u) = [f"_(u)]?.



Summary

Accidental Symmetry. Coordinate transformation that acts on the
perturbative solutions of Einstein equation near extreme black hole horizon
and maps them among themselves.

> Electrovacuum egs: turn on deviation from extremality

> Adding KG matter: turn on arbitrary KG source

Remark
Accidental symmetries are “on-shell large diffeomorphisms of AdS,”
This is made precise in JT gravity below

Note:
® |In AdS/CFT one rarely puts large diffeos on-shell.

® For good reason: main attraction of AdS/CFT is that the gravitational
theory in the bulk may be defined from an independent prescription of
observables on the boundary.



Summary
Putting on-shell the large diffeomorphisms of AdS; in JT gravity
> The large diffeomorphisms of AdS,, in FG gauge, are given by

217 (1) (1)? 4r2f(1)2 — 1/(t)?

t s 1(t) + — WIO"
IOt mree— e T T ame

Sch(f, t)
2

2 2
dr v(t
dsz — —r? (1 + ) d? + —  and & — Go(t)r + ()

r2 r
with ¢o(t) = [a+ bf(t) + cf(t)2]/f (t) and v(t) = —[¢} (t) + Sch(f, )po(1)]/2.
> For arbitrary f, this source satisfies the Schwarzian equation of motion

1/ (Foo) \'T
[7 (( o) ) ] —0
f! f!
> If one imposes that ¢ (t) = constant, before as well as after acting with the large
diffeo, then for infinitesimal diffeo f(t) = t + €(t), the Schwarzian eom reduces to

EHN(t) — O

with its cubic solution e(t) = eg + et + eyt + e3ts.
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