Extreme Black Holes: Anabasis and Accidental Symmetry

Achilleas P. Porfyriadis

University of Crete

Xmas Theoretical Physics Workshop @Athens, December 2022

Why extreme black holes?

Two reasons:

 They are observationally relevant: Many accreting black holes are found to be spinning very rapidly

They are theoretically manageable:

Near the horizon of (near-)extreme black holes spacetime is AdS-like

Rapidly spinning black holes

Many accreting black holes are found to be spinning very rapidly

Annual Review of Astronomy and Astrophysics Observational Constraints on Black Hole Spin

Christopher S. Reynolds1

¹Institute of Astronomy, University of Cambridge, Cambridge, CB3 OHA, United Kingdom; email: csr12@ast.cam.ac.uk

Annu. Rev. Astron. Astrophys. 2021. 59:117-54

The Annual Review of Astronomy and Astrophysics is online at astro.annualreviews.org

https://doi.org/10.1146/annurev-astro-112420-035022

Copyright © 2021 by Annual Reviews. All rights reserved

Keywords

active galactic nuclei, accretion disks, general relativity, gravitational waves, jets

Abstract

The spin of a black hole is an important quantity to study, providing a window into the processes by which a black hole was born and grew. Furthermore, spin can be a potent energy source for powering relativistic jets and energetic particle acceleration. In this review, I describe the techniques currently used to detect and measure the spins of black holes. It is shown that:

- Two well-understood techniques, X-ray reflection spectroscopy and thermal continuum fitting, can be used to measure the spins of black holes that are accreting at moderate rates. There is a rich set of other electromagnetic techniques allowing us to extend spin measurements to lower accretion rates.
- Many accreting supermassive black holes are found to be rapidly spinning, although a population of more slowly spinning black holes emerges at masses above M > 3 × 10⁷ M_☉ as expected from recent structure formation models.
- Many accreting stellar-mass black holes in X-ray binary systems are rapidly spinning and must have been born in this state.

Rapidly spinning black holes

Many accreting black holes are found to be spinning very rapidly

Figure 6

SMBH spins as a function of mass for the 32 objects in **Table 1** that have available mass estimators. All spin measurements reported here are from the X-ray reflection method. Lower limits are reported in red, and measurements that include a meaningful upper bound (distinct from a = 1) are reported in blue. Following the convention of the relevant primary literature, error bars in spin show the 90% confidence range. The error bars in mass are the lo errors from **Table 1** or, where that is not available, we assume a $\pm 50\%$ error. Abbreviation: SMBH, supermassive black hole.

AdS₂ and near-extreme black holes

Near the horizon of (near-)extreme black holes spacetime is AdS₂-like

Extreme Reissner-Nordstrom; Bertotti-Robinson: [Bertotti, Robinson (1959)]

$$ds^2 = M^2 \Big[-r^2 dt^2 + rac{dr^2}{r^2} + d\Omega^2 \Big], \qquad A_t = Mr$$

► Applies for a wide class of theories in any D [Kunduri, Lucietti, Reall (2007)]

e.g. extreme Kerr in 4D pure Einstein GR

[Bardeen, Horowitz (1999)]

Near-horizon approximations and Exact solutions

1. Anabasis:

Backreaction that destroys the AdS_2 boundary and builds the asymptotically flat region of (near-)extreme BHs.

2012.06562 [JHEP 2103] with S. Hadar, A. Lupsasca

"AdS₂ has no dynamics"

Anti-de Sitter fragmentation

Juan Maldacena, Jeremy Michelson*and Andrew Strominger

Department of Physics, Harvard University Cambridge, MA 02138 E-mail: malda@bose.harvard.edu, jeremy@bohr.harvard.edu, andy@planck.harvard.edu

ABSTRACT: Low-energy, near-horizon scaling limits of black holes which lead to string theory on $AdS_2 \times S^2$ are described. Unlike the higher-dimensional cases, in the simplest approach all finite-energy excitations of $AdS_2 \times S^2$ are suppressed. Surviving zero-energy configurations are described. These can include tree-like structures in which the $AdS_2 \times S^2$ throat branches as the horizon is approached, as well as disconnected $AdS_2 \times S^2$ universes. In principle, the black hole entropy counts the quantum ground states on the moduli space of such configurations. In a nonsupersymmetric context AdS_D for general D can be unstable against instanton-mediated fragmentation into disconnected universes. Several examples are given.

KEYWORDS: Black Holes in String Theory, Conformal Field Models in String Theory, Supersymmetry and Duality.

"AdS₂ has no dynamics"

International Press

publishers of scholarly mathematical and scientific journals and books

Home

Journals

Journal Content Online

Books

Information & Ordering

Company Contacts

Advances in Theoretical and Mathematical Physics Volume 23 (2019) Number 2

Rigidity of asymptotically $AdS_2 \times S^2$ spacetimes Pages: 403 – 435 DOI: https://dx.doi.org/10.4310/ATMP.2019.v23.n2.a3

Authors

Gregory J. Galloway (Department of Mathematics, University of Miami, Coral Gables, Florida, U.S.A.)
Melanie Graf (Faculty of Mathematics, University of Vienna, Austria)

Abstract

The spacetime $AdS_2 \times S^2$ is well known to arise as the 'near horizon' geometry of the extremal Reissner–Nordstrom solution, and for that reason it has been studied in connection with the AdS/CFT correspondence. Here we consider asymptotically $AdS_2 \times S^2$ spacetimes that obey the null energy condition (or a certain averaged version thereof). Supporting a conjectural viewpoint of Juan Maldacena, we show that any such spacetime must have a special geometry similar in various respects to $AdS_2 \times S^2$, and under certain circumstances must be isometric to $AdS_2 \times S^2$.

Wider picture on AdS₂ dynamics

▶ Backreaction in *asymptotically AdS*₂ *spacetimes* is problematic.

- Q: Starting with a linear solution for a scalar φ on AdS₂ × S², does it extend to a non-linear solution of Einstein-Maxwell-Scalar?
- A: Not if we insist on an asymptotically AdS₂ solution.
 E.g. if we impose Dirichlet boundary conditions on the AdS₂ boundary then backreaction of the scalar on the geometry destroys them.

Backreaction in asymptotically flat spacetimes makes perfect sense.

- Q: Starting with a linear solution for a scalar φ ~ √ε on ERN, does it extend to a non-linear solution of Einstein-Maxwell-Scalar?
- A: Yes. Generically the fully backreacted nonlinear endpoint is a near-extreme RN with $Q = M\sqrt{1 O(\epsilon)}$. [Murata, Reall, Tanahashi (2013)]

The connection of AdS_2 with the asymptotically flat region of BHs allows for consistent backreaction. How? What are the correct boundary conditions?

Perturbations of Bertotti-Robinson

Backgound:

$$ds^2 = M^2 \left[-r^2 dt^2 + rac{dr^2}{r^2} + d\Omega^2
ight], \qquad A_t = Mr$$

Spherically symmetric perturbations $(h_{\mu\nu}, a_{\mu})$ fully characterized by:

$$h_{\theta\theta} = \Phi_0 + ar + brt + cr\left(t^2 - 1/r^2\right)$$

Comments:

- ▶ $h_{\theta\theta}$ is gauge invariant under $h_{\mu\nu} \rightarrow h_{\mu\nu} + \mathcal{L}_{\xi}g_{\mu\nu}$.
- 4-parameter (Φ_0, a, b, c) family of solutions.
- Φ_0 parameterizes overall rescaling $M \to M + \delta M$ with $\Phi_0 = 2M \delta M$.
- Focus on the remaining triplet:

$$\Phi = ar + brt + cr\left(t^2 - 1/r^2\right)$$

SL(2) transformation properties

$$\Phi = ar + brt + cr\left(t^2 - 1/r^2\right)$$

The background is invariant under the SL(2) isometries of AdS₂:

$$\begin{aligned} H : & t \to t + \alpha \\ D : & t \to t/\beta \,, \quad r \to \beta r \\ \mathcal{K} : & t \to \frac{t - \gamma \left(t^2 - 1/r^2\right)}{1 - 2\gamma t + \gamma^2 \left(t^2 - 1/r^2\right)} \,, \quad r \to r \left[1 - 2\gamma t + \gamma^2 \left(t^2 - 1/r^2\right)\right] \end{aligned}$$

- Φ is SL(2)-breaking: (a, b, c) get rotated by the above transformations.
- However,

 $\mu = b^2 - 4ac$ is SL(2)-invariant

Using SL(2) transformations one may set

$$\begin{split} \Phi &= 2r \,, & \text{when} \quad \mu &= 0 \,, \, \text{sgn}(a+c) = 1 \\ \Phi &= -\sqrt{\mu} \, rt \,, & \text{when} \quad \mu &> 0 \end{split}$$

SL(2)-breaking solutions Φ are *not* asymptotically $AdS_2 \times S^2$

Anabasis perturbations

Bertotti-Robinson arises from two physically distinct near-horizon near-extremality scaling limits, $\lambda \rightarrow 0$, of Reissner-Nordstrom

Limit #1: Begin with Q = M and put the BH horizon at r = 0 (set M = 1):

$$ds^{2} = -\left(\frac{r}{1+\lambda r}\right)^{2} dt^{2} + \left(\frac{r}{1+\lambda r}\right)^{-2} dr^{2} + (1+\lambda r)^{2} d\Omega^{2}, \quad A_{t} = \frac{r}{1+\lambda r}$$

At $\mathcal{O}(1)$ we get Bertotti-Robinson in Poincare coordinates

$$ds^2 = -r^2 dt^2 + rac{dr^2}{r^2} + d\Omega^2$$
, $A_t = r$

At $\mathcal{O}(\lambda)$ we get, by definition, a linear solution around the above.

$$h_{\theta\theta} = 2r$$

This is the *SL*(2)-breaking $\mu = 0$ solution $\Phi = 2r$ —Poincare *anabasis solution*

Begins to build the asymptotically flat region of an extreme Reissner-Nordstrom

The nonlinear solution obtained from the $\mu = 0$ perturbation of $AdS_2 \times S^2$, when backreaction is fully taken into account in the Einstein-Maxwell theory, is the extreme Reissner-Nordström black hole.

Anabasis perturbations

• Limit #2: Begin with $Q = M\sqrt{1 - \lambda^2 \kappa^2}$ and put the BH horizon at $\rho = 0$:

$$ds^{2} = -\frac{\rho(\rho + 2\kappa + \lambda\kappa\rho)}{(1 + \lambda\kappa)(1 + \lambda\rho)^{2}}d\tau^{2} + \frac{(1 + \lambda\kappa)^{3}(1 + \lambda\rho)^{2}}{\rho(\rho + 2\kappa + \lambda\kappa\rho)}d\rho^{2} + (1 + \lambda\kappa)^{2}(1 + \lambda\rho)^{2}d\Omega^{2}$$
$$A_{\tau} = \frac{1}{\lambda}\left(1 - \sqrt{\frac{1 - \lambda\kappa}{1 + \lambda\kappa}}\frac{1}{1 + \lambda\rho}\right)$$

At $\mathcal{O}(1)$ we get Bertotti-Robinson in Rindler coordinates

$$ds^2 = -
ho(
ho+2\kappa)d au^2 + rac{d
ho^2}{
ho(
ho+2\kappa)} + d\Omega^2\,, \quad A_ au = M(
ho+\kappa)$$

At $\mathcal{O}(\lambda)$ we get, by definition, a linear solution around the above.

$$h_{\theta\theta} = 2(\rho + \kappa)$$

Anabasis perturbations

Rindler to Poincare transformation for the Bertotti-Robinson:

$$\begin{aligned} \tau &= -\frac{1}{2\kappa} \ln\left(t^2 - 1/r^2\right) \\ \rho &= -\kappa (1 + rt) \\ A &\to A + d\Lambda, \Lambda = \frac{1}{2} \ln\frac{\rho}{\rho + 2\kappa} \end{aligned}$$

Transforms the Rindler anabasis solution to

$$h_{\theta\theta} = 2(\rho + \kappa) = -2\kappa rt$$

This is the *SL*(2)-breaking $\sqrt{\mu} = 2\kappa$ solution $\Phi = -2\kappa rt$. Begins to build the asymptotically flat region of a near-extreme RN In general, $\Phi = ar + brt + cr(t^2 - 1/r^2)$ with $\mu > 0$, leads to Rindler anabasis with $\sqrt{\mu} = \sqrt{b^2 - 4ac} = 2\kappa$

The nonlinear solution obtained from the $\mu > 0$ perturbation of $AdS_2 \times S^2$, when backreaction is fully taken into account in the Einstein-Maxwell theory, is the near-extreme Reissner-Nordström black hole with $Q = M\sqrt{1 - \mu/4}$.

Anabasis: Backreaction that destroys the AdS_2 boundary and builds the asymptotically flat region of (near-)extreme BHs.

Remarks

Q: What is the dual of anabasis in AdS/CFT?

A: Following an inverse RG, from IR to UV, along an irrelevant deformation of the boundary field theory that does *not* respect AdS boundary conditions (e.g. the single-trace $T\overline{T}$ deformation of CFT₂ studied by [Giveon, Itzhaki, Kutasov, et al 2017–])

Q: What about JT gravity?

A: $\Phi = \Phi_{JT}$ solves the JT eom $\nabla_{\mu}\nabla_{\nu}\Phi_{JT} - g_{\mu\nu}\nabla^{2}\Phi_{JT} + g_{\mu\nu}\Phi_{JT} = 0$ on AdS_{2} .

 $\mu = {\rm ADM}$ mass of the 2D black holes in JT gravity.

Connected AdS_2 is a "nearly- AdS_2 " with SL(2) broken to maintain connection.

2. Accidental Symmetry:

Coordinate transformation that acts on the perturbative solutions of Einstein equation near extreme black hole horizon

2112.13853 [JHEP 2203] with G. Remmen

The linearized Einstein equation

Schematic notation:

- Background geometry \bar{g} —the Bertotti-Robinson spacetime
- Metric perturbation h —the Φ solution
- > The linearized Einstein equation as a linear differential operator

$$\mathcal{E}(\bar{g},h)=0$$

Consider a finite diffeomorphism

$$(t,r) \rightarrow (t,r) + \lambda \left(\xi^t(t,r), \xi^r(t,r) \right)$$

which transforms both $\bar{g} \to \bar{g}(\lambda)$ and $h \to h(\lambda)$.

By general covariance, for *arbitrary* λ and ξ^{μ} , we have:

$$\mathcal{E}(\bar{g}(\lambda), h(\lambda)) = 0$$

Expanding in λ , we have

$$\mathcal{E}(\bar{g}(0), h(0)) + \lambda \frac{\delta}{\delta \lambda} \mathcal{E}(\bar{g}(\lambda), h(0)) + \lambda \frac{\delta}{\delta \lambda} \mathcal{E}(\bar{g}(0), h(\lambda)) + \mathcal{O}(\lambda^2) = 0$$

Accidental symmetry: definition

Starting with a solution to the linearized Einstein equations around the original background, $\mathcal{E}(\bar{g}(0), h(0)) = 0$, we have

$$\lim_{\lambda \to 0} \left[\partial_{\lambda} \mathcal{E}(\bar{g}(\lambda), h(0)) + \partial_{\lambda} \mathcal{E}(\bar{g}(0), h(\lambda)) \right] = 0$$
(1)

1st term: hold perturbation fixed, act with a linearized diffeo on the background

2nd term: on fixed background, transform perturbation using linearized diffeo

Equation (1) is valid for any diffeo, i.e. for any ξ^{μ} .

What if we impose the strong requirement that each term in (1) vanishes individually?

$$\lim_{\lambda \to 0} \partial_{\lambda} \mathcal{E}(\bar{g}(0), h(\lambda)) = 0$$
⁽²⁾

- Trivial solutions: Isometries of the background $\bar{g}(\lambda) = \bar{g}(0)$
- Other solution: accidental symmetry —transforms solns h among themselves

Accidental symmetry: electrovacuum case

 \mathcal{E} : linearized Einstein-Maxwell equations (electrovacuum)

- $\bar{g}(0)$: Bertotti-Robinson
- $h(0): \Phi = ar \ (\mu = 0 \text{ solution})$

the solution of $\lim_{\lambda\to 0} \partial_{\lambda} \mathcal{E}(\bar{g}(0), h(\lambda)) = 0$ is given by

$$\xi = -\left[\epsilon(t) + \frac{\epsilon''(t)}{2r^2} + \frac{t\epsilon'''(t)}{r^2}\right]\partial_t + \left[r\epsilon'(t) - \frac{\epsilon'''(t)}{2r}\right]\partial_r,$$

where $\epsilon(t)$ is an arbitrary cubic polynomial in t,

$$\epsilon(t) = e_0 + e_1 t + e_2 t^2 + e_3 t^3.$$

ξ_{0,1,2}: SL(2) Killing vectors of AdS₂

$$\xi_0 = -(1,0), \quad \xi_1 = -(t,-r), \quad \xi_2 = -\left(t^2 + \frac{1}{r^2}, -2rt\right)$$

 ξ_3 : non-trivial accidental symmetry

$$\xi_3 = -\left(t^3 + \frac{9t}{r^2}, \frac{3}{r} - 3rt^2\right)$$

Accidental symmetry: electrovacuum equations

Question: What does ξ_3 do?

Answer: Relates $\mu = 0$ to $\mu \neq 0$. Indeed, we have

$$\Delta \mu = -4a\Delta c = -12\lambda e_3 a^2$$

Accidental symmetries enlarge the possible mappings among solutions to include those beyond the SL(2) isometries, thereby allowing to move from one μ orbit to another.

In spherical symmetry the electrovacuum solutions are constrained by Birkhoff's theorem to the non-propagating degrees of freedom that we have discussed so far.

Can accidental symmetries also turn on propagating d.o.f.?

Accidental symmetry: adding matter

$$\lim_{\lambda \to 0} \partial_{\lambda} \mathcal{E}(\bar{g}(0), h(\lambda)) = T$$
(3)

Source *T* must satisfy equations of motion. We consider Klein-Gordon scalar $\Box \phi = 0$ s.t. the most general spherically symmetric solution is (u = t - 1/r, v = t + 1/r)

$$\phi = f_+(v) + f_-(u)$$

Can get solution to (3) from the electrovacuum $\Phi = r$ using the transformation

$$\begin{split} \xi^{t} &= \frac{3}{2r} [F'_{+}(v) + F'_{-}(u)] - \frac{3}{2r^{2}} [F''_{+}(v) - F''_{-}(u) \\ &+ \frac{3}{r^{3}} \left[\int^{v} \frac{F_{+}(t_{0})}{(t-t_{0})^{4}} dt_{0} + \int^{u} \frac{F_{-}(t_{0})}{(t-t_{0})^{4}} dt_{0} \right] \\ &- \frac{1}{r^{3}} \int^{r} \int^{t} \frac{f'_{+}\left(\hat{t} + \frac{1}{\hat{r}}\right) f'_{-}\left(\hat{t} - \frac{1}{\hat{r}}\right)}{\hat{r}} d\hat{t} d\hat{r} \end{split}$$

$$\xi^{r} = r[F_{+}'(v) - F_{-}'(u)] - [F_{+}''(v) + F_{-}''(u)],$$

where $F_{+}^{''''}(v) = [f_{+}'(v)]^2$ and $F_{-}^{''''}(u) = [f_{-}'(u)]^2$.

Accidental Symmetry: Coordinate transformation that acts on the perturbative solutions of Einstein equation near extreme black hole horizon and maps them among themselves.

- Electrovacuum eqs: turn on deviation from extremality
- Adding KG matter: turn on arbitrary KG source

Remark

Accidental symmetries are "on-shell large diffeomorphisms of AdS2"

This is made precise in JT gravity below

Note:

- In AdS/CFT one rarely puts large diffeos on-shell.
- For good reason: main attraction of AdS/CFT is that the gravitational theory in the bulk may be defined from an *independent* prescription of observables on the boundary.

Putting on-shell the large diffeomorphisms of AdS₂ in JT gravity

▶ The large diffeomorphisms of AdS₂, in FG gauge, are given by

$$t \to f(t) + \frac{2f''(t)f'(t)^2}{4r^2f'(t)^2 - f''(t)^2}, \qquad r \to \frac{4r^2f'(t)^2 - f''(t)^2}{4rf'(t)^3}$$

$$\mathrm{d} s_2^2 \to -r^2 \left(1 + \frac{\mathrm{Sch}(f,t)}{2r^2}\right)^2 \mathrm{d} t^2 + \frac{\mathrm{d} r^2}{r^2} \qquad \mathrm{and} \qquad \Phi \to \phi_0(t)r + \frac{v(t)}{r},$$

with $\phi_0(t) = [a + bf(t) + cf(t)^2]/f'(t)$ and $v(t) = -[\phi_0''(t) + \operatorname{Sch}(f, t)\phi_0(t)]/2$.

For arbitrary f, this source satisfies the Schwarzian equation of motion

$$\left[\frac{1}{f'}\left(\frac{(f'\phi_0)'}{f'}\right)'\right]' = 0$$

If one imposes that φ₀(t) = constant, before as well as after acting with the large diffeo, then for infinitesimal diffeo f(t) = t + ϵ(t), the Schwarzian eom reduces to

$$\epsilon^{\prime\prime\prime\prime}(t)=0$$

with its cubic solution $\epsilon(t) = e_0 + e_1 t + e_2 t^2 + e_3 t^3$.

Putting on-shell the large diffeomorphisms of AdS₂ in JT gravity

▶ The large diffeomorphisms of AdS₂, in FG gauge, are given by

$$t \to f(t) + \frac{2f''(t)f'(t)^2}{4r^2f'(t)^2 - f''(t)^2}, \qquad r \to \frac{4r^2f'(t)^2 - f''(t)^2}{4rf'(t)^3}$$

$$\mathrm{d} s_2^2 \to -r^2 \left(1 + \frac{\mathrm{Sch}(f,t)}{2r^2}\right)^2 \mathrm{d} t^2 + \frac{\mathrm{d} r^2}{r^2} \qquad \mathrm{and} \qquad \Phi \to \phi_0(t)r + \frac{v(t)}{r},$$

with $\phi_0(t) = [a + bf(t) + cf(t)^2]/f'(t)$ and $v(t) = -[\phi_0''(t) + \operatorname{Sch}(f, t)\phi_0(t)]/2$.

For arbitrary f, this source satisfies the Schwarzian equation of motion

$$\left[\frac{1}{f'}\left(\frac{(f'\phi_0)'}{f'}\right)'\right]' = 0$$

If one imposes that φ₀(t) = constant, before as well as after acting with the large diffeo, then for infinitesimal diffeo f(t) = t + ϵ(t), the Schwarzian eom reduces to

$$\epsilon^{\prime\prime\prime\prime}(t) = 0$$

with its cubic solution $\epsilon(t) = e_0 + e_1 t + e_2 t^2 + e_3 t^3$. \checkmark

Thank you