

LhARA; the Laser hybrid Accelerator for Radiobiological Applications

KENNETH LONG; IMPERIAL COLLEGE LONDON/STFC

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Hadron beams for radiation therapy

Robert R. Wilson

Wilson, then at Harvard designing 150 MeV cyclotron:

Identified benefits and properties of proton beams for RT

- Pointed out potential of ions (carbon) and electrons

Evolving state of the art

Particle beam therapy today

Cyclotron based

Synchrotron based

Christie Hospital Manchester

Christie Hospital Manchester

- Challenges and opportunities
- Radiobiology
- LhARA

Conclusions

LhARA; the Laser-hybrid Accelerator for Radiobiological Applications

CHALLENGES AND OPPORTUNITIES

Radiotherapy; the challenge

- **Cancer: second most common cause of death globally**
 - Radiotherapy indicated in half of all cancer patients
- Significant growth in global demand anticipated:
- Scale-up in provision essential:
- Radiotherapy indicated in half of all cancer patients
 Significant growth in global demand anticipated:

 14.1 million new cases in 2012 ---> 24.6 million by 2030
 8.2 million cancer deaths in 2012 ---> 13.0 million by 2030

 Scale-up in provision essential:

 Projections above based on reported cases (i.e. high-income countries)
 Opportunity: save 26.9 million lives in low/middle income countries by 2035

 Provision on this scale requires:
- **Provision on this scale requires:** \bullet
 - Development of new and novel techniques ... integrated in a
 - Cost-effective system to allow a distributed network of RT facilities

The benefit of particles

- Maximise therapeutic benefit by:
 - Maximising damage to tumour
 - Minimising damage to healthy tissue

• X-ray therapy:

- Modality used in most radiotherapy
- Dose falls exponentially with depth
- Proximity of sensitive organs limits dose to tumour

There is a strong rationale for the clinical benefit of proton and carbon therapies, but current evidence is limited

Rationale for clinical benefit
 Deliver a higher, targeted radiation dose with decreased toxicity to surrounding tissue compared with photon therapy, especially near critical structures
 Further increase target tissue damage with decreased secondary tissue affected compared with proton
 Specific potential benefit with intractable radio-resistant tumors

Superior Dose Distribution of Carbon lons Compared to Protons and Photons

A. Giacca; RAL Lecture, 28Apr22

Carbon lons Provide Highly Localized Tumor Deposition of Dose (Sharper Transverse Edge)

Better Localization

- Tighter deposition in depth (Bragg peak is narrower)
- Transverse deposition is more narrowly collimated
- Less dose to the healthy tissue

A. Giacca; RAL Lecture, 28Apr22

Carbon lons Induce More Lethal Damage Per Unit Dose than Photons or Protons

Increased Biological Effectiveness:

Relative Biological Effectiveness is 3 times protons

- Reduces # fractionations by ~ 2: greater patient throughput/compliance
- Countermands radio-resistance: non-repairable, double-strand breaks

Production of positrons permits active monitoring using PET

A. Giacca; RAL Lecture, 28Apr22

Progress in Medical Physics 2020;31:1-7

RAL Lecture, 28Apr22

The need for a step-change in capability

- Growing recognition of benefits of PBT worldwide:
 - 70 PBT centres in operation;
 40 under construction
- 'Incremental' development of technique
 - Existing suppliers
 - New initiatives
- To meet the Radiotherapy Challenge require transformative techniques:

Furthermore ... exciting indications of additional benefits of novel beams ...

The benefit of novel beams ...

Worked example: FLASH

Conventional regime: ~2 Gy/min FLASH regime : >40 Gy/s

Evidence of normal-tissue sparing while tumour-kill probability is maintained: i.e. enhanced therapeutic window

Time line:

- Initial reports: 2014 (e.g. Flauvadon et al, STM Jul 2014)
- Confirmation in mini-pig & cat: 2018 (Clin. Cancer Research 2018)
- First treatment 2019 (Bourhis et al, Rad.Onc. Oct 2019)

Prezado; 13Nov19

The benefit of novel beams ...

Worked example: micro beams

Conventional regime: > 1 cm diameter; homogeous Microbeam regime : < 1 mm diameter; no dose between 'doselets'

Remarkable increase of normal rat brain resistance.

[Dilmanian et al. 2006, Prezado et al., Rad. Research 2015]

Dose escalation in the tumour possible – larger tumor control prob.

LhARA; the Laser-hybrid Accelerator for Radiobiological Applications

RADIOBIOLOGY

The case for fundamental radiobiology

- Relative biological effectiveness:
 - Defined relative to reference X-ray beam

Relative dose

- Known to depend on:
 - Energy, ion species
 - Dose & dose rate
 - Tissue type
 - Biological endpoint
- Yet:
 - p-treatment planning uses 1.1
 - Effective values are used for C⁶⁺
- Maximise the efficacy of PBT now & in the future:
 - Require systematic programme to develop full understanding of radiobiology

Biological impact from the physics of ionisation

Low-LET radiation:

- *Repairable* single/double strand breaks
- High-LET radiation:
 - Complex DNA lesions
 - Multiple DNA pathways
 - More difficult to repair
 - **Enhances cell death**

Control

0

Hours post-IR

- **Programmatic approach:**
 - Dynamic studies of impact of radiation
 - Interpret with advanced computer models (e.g. G4DNA)

-radiation

Carbon is More Effective In Killing Cancer Stem Cells

Radiobiology in new regimens

and with chemo/immuno Therapies

LhARA; the Laser-hybrid Accelerator for Radiobiological Applications

Laser-hybrid Accelerator for Radiobiological Applications

- Novel, hybrid, approach:
 - High-flux, laser-driven proton/ion source:
 - Overcome instantaneous dose-rate limitation
 - Delivers protons or ions in very short pulses:
 - Pulse length 10 40 ns
 - Arbitrary pulse structure
 - Novel plasma-lens capture & focusing
 - Fast, fixed-field (FFA) post acceleration

⇒ compact, uniquely flexible facility

Vision and ambition

LhARA will be a uniquely-flexible, novel system that will:

- Deliver a systematic and definitive radiobiology programme
- Prove the feasibility of the laser-driven hybrid-accelerator approach
- Lay the technological foundations for the transformation of PBT
 - automated, patient-specific: implies online imaging & fast feedback and control

LhARA collaboration's mission

Create a uniquely-flexible, novel system that will:

- Deliver a systematic and definitive radiobiology programme
- Prove the feasibility of the laser-hybrid approach
- Lay the foundations for transformative ion-beam therapy
 - Highly automated, patient-specific
 - Implies triggerable source, online imaging, integrated fast feedback and control

Laser-hybrid Accelerator for Radiobiological Applications

<u>A novel, hybrid, approach:</u>

- Laser-driven, high-flux proton/ion source
 - Overcome instantaneous dose-rate limitation
 - Capture at >10 MeV
 - Delivers protons or ions in very short pulses
 - Bunches as short as 10-40 ns
 - Triggerable; arbitrary pulse structure
- Novel "electron-plasma-lens" capture & focusing
 - Strong focusing (short focal length) without the use of high-field solenoid
- Fast, flexible, fixed-field post acceleration

5—34 Me

- Variable energy
 - Protons: 15-127 N
 - lons:

		LhARA performance summary				
/		12 MeV Protons	15 MeV Protons	127 MeV Protons	33.4 MeV/u Carbon	
u	Dose per pulse	7.1 Gy	12.8 Gy	$15.6\mathrm{Gy}$	$73.0\mathrm{Gy}$	
	Instantaneous dose rate	$1.0 imes10^9{ m Gy/s}$	$1.8 imes10^9{ m Gy/s}$	$3.8 imes10^8{ m Gy/s}$	$9.7 imes10^8{ m Gy/s}$	
	Average dose rate	71 Gy/s	128 Gy/s	156 Gy/s	730 Gy/s	

Lh AR

DOI: 10.3389/fphy.2020

September 2020;

ront. Phys., 29

Schwoerer, H. et al., 2006; Nature, 439(7075).

Sheath acceleration
Laser incident on foil target:

Drives electrons from material
Creates enormous electric field

Field accelerates protons/ions
 Dependent on nature of target

• Active development:

- Laser: power and rep. rate

- Target material, transport

Many initiatives in Americas, Europe, Asia

Applications in biological research, ambition to push toward clinical application ...

Phys Lett A. (2002) 299:240-7. doi: 10.1016/S0375-9601(02)00521-2 Med Phys. (2003) 30:1660-70. doi: 10.1118/1.1586268 Med Phys. (2004) 31:1587-92. doi: 10.1118/1.1747751 Science. (2003) 300:1107-111 New J Phys. (2010) 12:85003. doi: 10.1088/1367-2630/12/8/085003 Phys Med Biol. (2011) 56:6969-82. doi: 10.1088/0031-9155/56/21/013 Appl Phys Lett. (2011) 98:053701. doi: 10.1063/1.3551623 Appl Phys Lett. (2012) 101:243701. doi: 10.1063/1.4769372 AIP Adv. (2012) 2:011209. doi: 10.1063/1.3699063 Appl Phys B. (2013) 110:437-44. doi: 10.1007/s00340-012-5275-3 Appl Phys B. (2014) 117:41-52. doi: 10.1007/s00340-014-5796-z Radiat Res. (2014) 181:177-83. doi: 10.1667/RR13464.1 Phys Rev Acceler Beams. (2017) 20:1–10. doi: 10.1103/PhysRevAccelBeams.20.032801 J Instrum. (2017) 12:C03084. doi: 10.1088/1748-0221/12/03/C03084 A-SAIL Project. (2020). Available online at: https://www.qub.ac.uk/research-centres/A-SAILProject/ Vol. 8779. Prague: International Society for Optics and Photonics. SPIE (2013). p. 216–25. Vol. 11036. International Society for Optics and Photonics. SPIE (2019). p. 93–103. Nuovo Cim C. (2020) 43:15. doi: 10.1393/ncc/i2020-20015-6 10th International Particle Accelerator Conference. Melbourne, VIC (2019). p. TUPTS005

I will not attempt a review, choosing instead to focus on opportunity

Laser-driven beams for rbio: example 1

<u>On Draco @ HZDR</u>

DOI: 10.1038/s41598-020-65775-7

- Draco:
 - Petawatt laser
 - E = 13 J, τ = 30 fs, 3 μ m FWHM
- Beam line:
 - Target Normal Sheath Acceleration (TNSA)

c)

E 45

eter 40

diam 35

36am

- Pulsed solenoid focusing
 - 19.5T, 2 or 3 pulses/min.
 - S1, S2: 40 mm bore
 - Half angle acceptance 14°
- Measured transmission (18.6 MeV p)
 - 50.6% (dual solenoid)
 - 28.6% (single solenoid)

Laser-driven beams for rbio: example 2

<u>On BELLA @ Berkeley</u>

DOI 10.1038/s41598-022-05181-3

- Berkeley Lab Laser Accelerator (BELLA):
 - Petawatt laser
 - E = 35 J, $\tau = 35 fs$, 52 μm FWHM
- Beam line:
 - Target Normal Sheath Acceleration (TNSA)
 - Active plasma lens focusing
 - 1 mm diameter Ar gas filled capillary
 - 33 mm length
 - 13 mm behind the tape drive target
 - ~0.2% transport efficiency for protons with E > 1.5 MeV

Variety of initiatives; some key examples

On PHELIX @ GSI

DOI: 10.1063/1.3299391 DOI: 10.1103/PhysRevSTAB.14.121301 DOI: 10.1103/PhysRevSTAB.16.101302 DOI: 10.1103/PhysRevSTAB.17.031302 NIMA 909 (2018) 173-176

- **PHELIX:** \mathbf{O}
 - Petawatt High-Energy Laser for Heavy **Ion EXperiments**
 - $E < 25 J, \tau = 500 fs, I > 10^{19} J/cm^2$
- LIGHT:
 - Target Normal Sheath Acceleration (TNSA)
 - Ion beam is collimated by a pulsed highfield solenoid
 - Phase rotation in RF cavity
 - Final focus with a second pulsed highfield solenoid

Capture

https://www.gsi.de/work/forschung/appamml/plasmaphysikphelix/experimente/light

Variety of initiatives; some key examples

On CLAPA @ Peking University

DOI: 10.1103/PhysRevAccelBeams.22.061302 DOI: 10.1103/PhysRevAccelBeams.23.121304

- Compact Laser Plasma Accelerator (CLAPA):
 - Petawatt laser
 - E = 1.3 J, τ = 30 fs, 5 μ m FWHM
- Beam line:
 - Target Normal Sheath Acceleration (TNSA)
 - Quadrupole triplet focusing

TABLE I. The CLAPA beam line parameters.									
Туре	Length	Aperture	Max B	# turns	Current				
Q1	100 mm	30 mm	5 KGs/cm	16	300 A				
Q2	200 mm	64 mm	2.5 KGs/cm	20	540 A				
O3	100 mm	64 mm	2.5 KGs/cm	20	540 A				

- Measured transmission:
 - 88% transmission through triplet
 - ±50 mrad collection angle @ 5 MeV

Extreme Light Infrastructure, Prague, Czech Republic:

- ELI Multidisciplinary Applications of laser-Ion Acceleration (ELIMAIA)
 - ELI MEDical and multidisciplinary applications (ELIMED)
 - ELIMAIA section dedicated to ion focusing, selection, characterization, and irradiation
 - Proton energies from 5 to 250 MeV transported to in-air section

ELIMAIA-ELIMED

Quantum Beam Sci. 2018, 2, 8; doi:10.3390/qubs2020008 Frontiers in Phys. Med. Phys. & Imag. – doi: 10.3389/fphy.2020.564907

Laser-driven proton/ion source

- Commercial laser:
 - Motivation: risk management

H.T. Lau

LhARA Capture

 "Electron-plasma" (Gabor) lens:
 Strong focusing exploiting electron gas in "Penning/Malmberg" trap

MQPI

Article Anomalous Beam Transport through Gabor (Plasma) Lens Prototype

Toby Nonnenmacher ^{1,*}, Titus-Stefan Dascalu ^{1,*}, Robert Bingham ^{2,3}, Chung Lim Cheung ^{1,}, Hin-Tung Lau ¹, Ken Long ^{3,4}, Jürgen Pozimski ^{3,4} and Colin Whyte ²

- ¹ Department of Physics, Imperial College London, Exhibition Road, London SW7 2AZ, UK; chung.cheung14@imperial.ac.uk (C.L.C.); h.lau17@imperial.ac.uk (H.T.L.)
- ² Department of Physics, SUPA, University of Strathclyde, 16 Richmond Street, Glasgow G4 0NG, UK; bob.bingham@stfc.ac.uk (R.B.); colin.whyte@strath.ac.uk (C.W.)
- ³ STFC Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0QX, UK; k.long@imperial.ac.uk (K.L.); i.pozimski@imperial.ac.uk (J.P.)
- 4 John Adams Institute for Accelerator Science, Imperial College London, London SW7 2AZ, UK
- * Correspondence: toby.nonnenmacher14@imperial.ac.uk (T.N.); t.dascalu19@imperial.ac.uk (T.S.D.)

Abstract: An electron plasma lens is a cost-effective, compact, strong-focusing element that can ensure efficient capture of low-energy proton and ion beams from laser-driven sources. A Gabor lens prototype was built for high electron density operation at Imperial College London. The parameters of the stable operation regime of the lens and its performance during a beam test with 1.4 MeV protons are reported here. Narrow pencil beams were imaged on a scinillator screen \mathcal{S} can downstream of the lens. The lens converted the pencil beams into rings that show position-dependent shape and intensity modulation that are dependent on the settings of the lens. Trancterisation of the focusing effect suggests that the plasma column exhibited an off-axis rotation similar to the m = 1 diocotron instability. The association of the instability with the cause of the rings was investigated using particle tracking simulations.

Keywords: plasma trap; space-charge lens; beam transport; instability; proton therapy

1. Introduction

Academic Editor: Paolo Branchini Received: 13 April 2021 Accepted: 4 May 2021

check for

Citation: Nonnenmacher, T.:

Whyte, C. Anomalous Beam Transport through Gabor (Plasma) Lens Prototype. Appl. Sci. 2021, 17, 4357. https://doi.org/10.3390/ app11104357

Dascalu, T.S.; Bingham, R.; Cheung, C.L.; Lau, H.T.; Long, K.; Pozimski, L;

Published: 11 May 2021 Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil-

© 0

iations

Copyright: © 2021 by the authors. Licensee MDP1, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 40/).

One of the principal challenges that must be addressed to deliver high-flux pulsed proton or positive-ion beams for many applications is the efficient capture of the ions ejected from the source. A typical source produces protons with kinetic energies of approximately $60 \, \mathrm{keV}$ [1–3] and ions with kinetic energies typically below 120 $\, \mathrm{keV}$ [4,5]. At this low energy the mutual repulsion of the ions causes the beam to diverge rapidly. Capturing a large fraction of this divergent flux therefore requires a focusing element of short focal length. Proton and ion-capture systems in use today employ magnetic, electrostatic, or radio frequency quadrupoles, or solenoid magnets to capture and focus the beam $12/\epsilon-81$.

Laser-driven proton and ion sources are disruptive technologies that offer enormous potential to serve future high-flux, pulsed beam facilities [9–16]. Possible applications include proton- and ion-beam production for research, particle-beam therapy, radio-nuclide production, and ion implantation. Recent measurements have demonstrated the laser-driven production of large on fluxes at kinetic energies in excess of 10 MeV [17–20]. The further development of present technologies and the introduction of novel techniques [21,22] makes it conceivable that significantly higher ion energies will be produced in the future [13,23,24]. By capturing the laser-driven ions at energies to orders of magnitude greater than those pertaining to conventional sources, it will be possible to evade the current space-charge limit on the instantaneous proton and ion flux that can be delivered. While in some situations the high divergence of laser-driven ions can be reduced [25,26], for the tape-drive targets proposed for medical beams [16,20] it necessary to capture the beam using a strong-focusing element as close to the ion-production point as possible.

Beam envelopes Stage 1

- Propagation of "semi-realistic" source distribution:
 - Generated using SMILEI
 - Optimisation studies on going

Rapid, flexible acceleration for stage 2

Ē

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

s [m]

- Fixed-field alternating-gradient accelerator (FFA):
 - Invented in 1950s
 - Kolomensky, Okhawa, Symon
 - Compact, flexible solution:
 - Multiple ion species
 - Variable energy extraction
 - High repetition rate (rapid acceleration)
 - Large acceptance
 - Successfully demonstrated:
 - Proof of principle at KEK
 - Machines at KURNS
 - Non-scaling PofP EMMA (DL)

-20 -25___

-10

-5

x [mm

-15

10

15

LhARA @ the Ion Therapy Research Facility

14 June 2021

41

LhARA; the Laser-hybrid Accelerator for Radiobiological Applications

CONCLUSIONS

Conclusions

- Laser-driven sources are disruptive technologies ...
 - With the potential to drive a step-change in clinical capability
- Laser-hybrid approach has potential to:
 - Overcome dose-rate limitations of present PBT sources
 - Deliver uniquely flexible facility:
 - Range of: ion species; energy; dose; dose-rate; time; and spatial distribution
 - Be used in automated, triggerable system → reduce requirement for large gantry
 - Disruptive/transformative approach to "distributed PBT for 2050"
- To serve the ITRF, the LhARA collaboration now seeks to:
 - Prove the novel laser-hybrid systems in operation
 - Contribute to the study of the biophysics of charged-particle beams
 - Enhance treatment planning
 - Create novel capabilities to 'spin back in' to science and innovation

Acknowledgements

ITRF team: N. Bliss, J. Clarke, M. Noro, H. Owen

"This material was prepared and presented within the HITRIplus **Specialised Course on Heavy Ion Therapy Research,** and it is intended for personal educational purposes to help students; people interested in using any of the material for any other purposes (such as other lectures, courses etc.) are requested to please contact the authors

Ken Long (k.long_at_imperial.ac.uk)