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Hadron beams for radiation therap
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* Wilson, then at Harvard designing 150 MeV cyclotron:
— Identified benefits and properties of proton beams for RT
— Pointed out potential of ions (carbon) and electrons



Evolving state of the art
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Particle beam therapy today
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LhARA; the Laser-hybrid Accelerator for Radiobiological Applications

CHALLENGES AND OPPORTUNITIES



Radiotherapy; the challenge

Cancer: second most common cause of death globally
— Radiotherapy indicated in half of all cancer patients

Significant growth in global demand anticipated:
— 14.1 million new cases in 2012 -» 24.6 million by 2030
— 8.2 million cancer deaths in 2012 > 13.0 million by 2030

Scale-up in provision essential:
— Projections above based on reported cases (i.e. high-income countries)
— Opportunity: save 26.9 million lives in low/middle income countries by 2035

Atun, Lancet Oncol. 2015 Sep;16(10):1153-86

Provision on this scale requires:
— Development of new and novel techniques ... integrated in a
— Cost-effective system to allow a distributed network of RT facilities



The benefit of particles

* Maximise therapeutic benefit by:
— Maximising damage to tumour
— Minimising damage to healthy tissue
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e X-ray therapy:
— Modality used in most radiotherapy
— Dose falls exponentially with depth
— Proximity of sensitive organs limits dose to tumour




There is a strong rationale for the clinical
benefit of proton and carbon therapies,
but current evidence is limited

Therapy Rationale for clinical benefit

= Deliver a higher, targeted radiation dose
with decreased toxicity to surrounding
tissue compared with photon therapy,
especially near critical structures

® Further increase target tissue damage with
decreased secondary tissue affected
compared with proton

Carbon

= Specific potential benefit with intractable
radio-resistant tumors

A. Giacca;
RAL Lecture, 28Apr22



https://ccap.hep.ph.ic.ac.uk/trac/wiki/Communication/ExternalSeminars/2022

Superior Dose Distribution of Carbon lons
Compared to Protons and Photons
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RAL Lecture, 28Apr22
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Carbon lons Provide Highly Localized Tumor
Deposition of Dose (Sharper Transverse Edge)
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Better Localization
 Tighter deposition in depth (Bragg peak is narrower)
« Transverse deposition is more narrowly collimated

* Less dose to the healthy tissue .
A. Giacca;
RAL Lecture, 28Apr22
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Carbon lons Induce More Lethal Damage Per Unit Dose
than Photons or Protons
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Increased Biological Effectiveness:

Relative Biological Effectiveness is 3 times protons
* Reduces # fractionations by ~ 2: greater patient throughput/compliance
» Countermands radio-resistance: non-repairable, double-strand breaks

Production of positrons permits active monitoring using PET

A. Giacca;
RAL Lecture, 28Apr22
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Cell Survival Based on the LQ model
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The need for a step-change in capability

* Growing recognition of benefits of PBT worldwide:

— 70 PBT centres in operation;
40 under construction

* ‘Incremental’ development
of technique
— Existing suppliers
— New initiatives

* To meet the Radiotherapy prountean sy -
Cha"enge reqUire @ Carbon ion facility b 2
transformative techniques: G T - =

Furthermore ... exciting indications of additional benefits of novel beams ...
15



The benefit of novel beams ...

Worked example: FLASH

Conventional regime: ~2 Gy/min
FLASH regime : >40 Gy/s

i.e. enhanced therapeutic window

Time line:

e Confirmation in mini-pig & cat: 2018 (Clin. Cancer Research 2018)

* First treatment 2019 (Bourhis et al, Rad.Onc. Oct 2019)

16



Prezado; 13Nov19

Worked example: micro beams

Conventional regime: > 1 cm diameter; homogeous
Microbeam regime :<1 mm diameter; no dose between ‘doselets’

Remarkable increase of normal rat brain resistance.
[Dilmanian et al. 2006, Prezado et al., Rad. Research 2015]

Dose escalation in the tumour possible — larger tumor control prob.

The benefit of novel beams ...

17



LhARA; the Laser-hybrid Accelerator for Radiobiological Applications

RADIOBIOLOGY
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The case for fundamental radiobiology

Relative biological effectiveness: paganet;
— Defined relative to reference X-ray beam (2013)
SemRadOncol

— Known to depend on:
* Energy, ion species
* Dose & dose rate
* Tissue type |
* Biological endpoint s o g o
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Maximise the efficacy of PBT now & in the
future:

— Require systematic programme to develop
full understanding of radiobiology 0 a0 200

LET (keV/um)




Biological impact «~« physics of ionisation

* Low-LET radiation:

— Repairable single/double
strand breaks

Low-LET
High-LET

© Surviving fraction

[EN

* High-LET radiation:
— Complex DNA lesions
* Multiple DNA pathways

* More difficult to repair
* Enhances cell death

1 2 3
Dose (Gy)

Proton-IR (58 MeV)

M Proton-IR (58 MeV; modified)
Proton-IR (11 MeV)
Proton-IR (11 MeV; modified)

uI e

* Programmatic approach: .
— Dynamic studies of impact of radiation o s
— Interpret with advanced computer models (e.g. G4DNA)

20



Carbon is More Effective In Killing
Cancer Stem Cells

Survival fraction

In vivo growth by beam type and dose
In vitro clonogenic survival
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Radiobiology in new regimens

Space
domain

Time
domain

The ideally
flexible beam facility
can deliver it all!

=> substantial
opportunity for a
step-change in
understanding!

Energy

In combination
and with chemo/immuno Therapies

Py
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LhARA; the Laser-hybrid Accelerator for Radiobiological Applications

LHARA
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Laser-hybrid Accelerator for Radiobiological Applications

* Novel, hybrid, approach:

— High-flux, laser-driven
proton/ion source:

In Vivo Access
* Overcome instantaneous | [GENENNETaYEY Rack Room 3
dose-rate limitation Control L C
. . Room VN e 2 2
* Delivers protons or ions A 5
H In Vivo N £ 2
in very short pulses: End g g £
Assembl Station @
- PUISE Iength 10-40 ns & Y Area 6 Area 5 High Energy Line =
Cleanroom =
* Arbitrary pulse structure ; 2
— Novel plasma-lens I | : T
. Cg:ﬁbl Laser Room Target Low Energy Line Py y i?e(’;t”
capture & focusing e i WP o M <& e — .
° . Af@éii:>_'1j EEEEL Avrea 2 Area 3 pen
- Fast’ flxed-fleld (FFA) N Areal — — = % ,
post acceleration oo —— L e
Rack Room 1 @ /

Office
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Lh AR+ Vision and ambition

ooooooo
Radiobiological Applications

LhARA will be a uniquely-flexible, novel system that will:
* Deliver a systematic and definitive radiobiology programme
* Prove the feasibility of the laser-driven hybrid-accelerator approach

* Lay the technological foundations for the transformation of PBT
— automated, patient-specific: implies online imaging & fast feedback and control

26



—— LhARA collaboration’s mission

Create a uniquely-flexible, novel system that will:

— Deliver a systematic and definitive
radiobiology programme

— Prove the feasibility of the
laser-hybrid approach

— Lay the foundations for
transformative ion-beam therapy

* Highly automated,
patient-specific

— Implies triggerable source,
online imaging, integrated
fast feedback and control

27



Laser-hybrid Accelerator for Radiobiological Applications
A novel, hybrid, approach: . Lh R~

* Laser-driven, high-flux proton/ion source

— Overcome instantaneous dose-rate limitation
* Capture at >10 MeV

— Delivers protons or ions in very short pulses
* Bunches as short as 10—40 ns

— Triggerable; arbitrary pulse structure

* Novel “electron-plasma-lens” capture & focusing
— Strong focusing (short focal length) without the use of high-field solenoid

Front. Phys., 29 September 2020; DOI: 10.3389/fphy.2020.567738

* Fast, flexible, fixed-field post acceleration
— Variable energy

LhARA performance summary

* Protons: 15—127 MeV — = 12 Me\ll (P;rotons 15 I\/ieQV Iz}rotons 127 hi[f\g 21 otons | 33.4 Mf;\;)/L(I}C’irbOH
* lons: 5—34 MeV/u

Instantaneous dose rate | 1.0 x 107 Gy/s | 1.8 x 10 Gy/s 3.8 x 10° Gy/s 9.7 x 10° Gy/s
71 Gyls 128 Gy/s 156 Gy/s 730 Gy/s




Sheath acceleration

Laser incident on foil target:
— Drives electrons from material
— Creates enormous electric field

Field accelerates protons/ions
— Dependent on nature of target

Active development:
— Laser: power and rep. rate
— Target material, transport

29



Applications in biological research, ambition to push toward clinical application ...

A selection ...

Phys Lett A. (2002) 299:240-7. doi: 10.1016/50375-9601(02)00521-2

Med Phys. (2003) 30:1660-70. doi: 10.1118/1.1586268

Med Phys. (2004) 31:1587-92. doi: 10.1118/1.1747751

Science. (2003) 300:1107-111

New J Phys. (2010) 12:85003. doi: 10.1088/1367-2630/12/8/085003

Phys Med Biol. (2011) 56:6969-82. doi: 10.1088/0031-9155/56/21/013

Appl Phys Lett. (2011) 98:053701. doi: 10.1063/1.3551623

Appl Phys Lett. (2012) 101:243701. doi: 10.1063/1.4769372

AIP Adv. (2012) 2:011209. doi: 10.1063/1.3699063

Appl Phys B. (2013) 110:437-44. doi: 10.1007/s00340-012-5275-3

Appl Phys B. (2014) 117:41-52. doi: 10.1007/s00340-014-5796-z

Radiat Res. (2014) 181:177-83. doi: 10.1667/RR13464.1

Phys Rev Acceler Beams. (2017) 20:1-10. doi: 10.1103/PhysRevAccelBeams.20.032801

J Instrum. (2017) 12:C03084. doi: 10.1088/1748-0221/12/03/C03084

A-SAIL Project. (2020). Available online at: https://www.qub.ac.uk/research-centres/A-SAILProject/
Vol. 8779. Prague: International Society for Optics and Photonics. SPIE (2013). p. 216-25.
Vol. 11036. International Society for Optics and Photonics. SPIE (2019). p. 93-103.
Nuovo Cim C. (2020) 43:15. doi: 10.1393/ncc/i2020-20015-6

10th International Particle Accelerator Conference. Melbourne, VIC (2019). p. TUPTS005

I will not attempt a review, choosing instead to focus on opportunity

Many initiatives in Americas, Europe, Asia

30



Laser-driven beams for rbio: example 1

On Draco @ HZDR )
DOI: 10.1038/541598-020-65775-7 \r D = i 2
e Draco:

— Petawatt laser
« E=13J,t=30fs, 3 um FWHM
e Beam line:

Target Normal Sheath Acceleration
(TNSA)

— Pulsed solenoid focusing
* 19.5T, 2 or 3 pulses/min.

dNp/dEp [MeV]

- [sr-TMeV-1]

* S1,S2:40 mm bore fa i
* Half angle acceptance 14° e L = o
— Measured transmission | e
(18.6 MeV p) ] "
* 50.6% (dual solenoid) :;jz
* 28.6% (single solenoid) o Sm St e e N A

Depth in water [cm]



Laser-driven beams for rbio: example 2

On BELLA @ Berkeley

a
Tape drive

DOI 10.1038/s41598-022-05181-3 Vacuum Air

‘ Active plasma lens Dipole magnet

* Berkeley Lab Laser Accelerator ot fser & A0 — N Gatehomic
(BELLA): — S ="

/’

— Petawatt laser apon | L S
« E=35J,t=35"fs, 52 um FWHM
i Beam Iine: 90 A 230A 295A 405A

i ' § =,
— Target Normal Sheath Acceleration '

(TNSA) BT R R
— Active plasma lens focusing
* 1 mm diameter Ar gas filled capillary 1
* 33 mm length
* 13 mm behind the tape drive target

* ~0.2% transport efficiency for protons zor0 spiva
with E > 1.5 MeV

Survival fraction

15 20 10 15
Dose / Gy Dose / Gy




Variety of initiatives; some key examples Ca pt ure
On PHELIX @ GSI

DOI: 10.1063/1.3299391

DOI: 10.1103/PhysRevSTAB.14.121301
DOI: 10.1103/PhysRevSTAB.16.101302
DOI: 10.1103/PhysRevSTAB.17.031302
NIMA 909 (2018) 173-176

 PHELIX:
— Petawatt High-Energy Laser for Heavy W, o |
lon EX pe riments httPS5/7www.gsi.de/work/forschung/apampsmaphysii;;}lelix/experimeﬁ;
 E<25),t=500fs,1>10'J/cm2
e LIGHT: L = .o =
— Target Normal Sheath Acceleration ‘"R B Eeene]

with FWHM=462ps DD |

(TNSA)

— lon beam is collimated by a pulsed high-
field solenoid

— Phase rotation in RF cavity : Ea—— )

— Final focus with a second pulsed high-
field solenoid

w
3
=
]
®
o]
3
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BPD #3

Capture

Variety of initiatives; some key examples
o Quadrupole-doublet lens

On CLAPA @ Peking University — -

a
b
&/

(
&

DOI: 10.1103/PhysRevAccelBeams.22.061302
DOI: 10.1103/PhysRevAccelBeams.23.121304

« Compact Laser Plasma Accelerator ,

Quadrupole-triplet lens
e BPD #1

(CLAPA):
o

Target ! L 1'.

— Petawatt laser
* E=13),t=30fs,5 um FWHM > By Loat -

e Beam line:
— Target Normal Sheath Acceleration

(TNSA)
— Quadrupole triplet focusing

The CLAPA beam line parameters.

TABLE L
Iype Length Aperture # turns Current
Q1 100 mm 30 mm 5 16 300 A
Q2 200 mm 64 mm 2.5 KC 20 540 A
03 100 mm 64_mm 2.5 KGs/ 20 5S40 A

— Measured transmission: ! L
* 88% transmission through triplet P Energy (McV)
e 150 mrad collection angle @ 5 MeV




Experimental Hall 4 ELIMAIA lon Acceleration V4
. ELIMAIA-ELIMED

¥ S SARE L I Al el A Quantum Beam Sci. 2018, 2, 8; doi:10.3390/qubs2020008
e Frontiers in Phys. Med. Phys. & Imag. — doi: 10.3389/fphy.2020.564907

Beam Transport

Selection, Transport
& Diagnostics

EliMed

"r} 17\4 1,1 1

lon Accelerator .

Extreme Light Infrastructure, Prague, Czech Republic:

* ELI Multidisciplinary Applications of laser-lon Acceleration
(ELIMAIA)

— ELI MEDical and multidisciplinary applications (ELIMED)

* ELIMAIA section dedicated to ion focusing, selection,
characterization, and irradiation

— Proton energies from 5 to 250 MeV transported to in-air section




Laser-driven proton/ion source

 Commercial laser:
Smilei 2D: X-Z Position Space at 1 ps HT Lau
¥ Thesis, 2022

— Motivation: risk management

o
14 q)
12 _9
e
10 m
.2
18
s |G
. |3

=
HES

PRI AT I IR 0
40 50 60 7 L
L

Ti:Sapphire commercial system >150TW
Pulse ~35 fs at rep-rate of at least 10Hz
At least 500mJ laser energy - I, ~ 102° Wecm

aaaaaaaaaaaaaaaaaaaaaaaaaaa



LhARA Capture
* “Electron-plasma” (Gabor) lens: ;@@@W@W?

— Strong focusing exploiting electron e N
gas in "Penning/MaImberg” trap o [2efico000000000]

MAGNETRON LEXS FOR 10N BEAMS

1957

Gabor Lens ‘M I_\

RF Cavity
Octupole
Collimator

Dipole Vertical Matching Arc

Quadrupole
- Beam Dump
Beam Shaping

Capture Matching and Energy Selection and Extraction

N
- —HeH -

Front. Phys., 29 September 2020; DOI: 10.3389/fphy.2020.567738
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Abstract: An electron plasma lens is a cost-effective, compact, strong-focusing element that can
ensure efficient capture of low-energy proton and ion beams from laser-driven sources. A Gabor lens
prototype was built for high electron density operation at Imperial College London. The parameters
of the stable operation regime of the lens and its performance during a beam test with 1.4 MeV protons
are reported here. Narrow pencil beams were imaged on a scintillator screen 67 cm downstream
of the lens. The lens converted the pencil beams into rings that show position-dependent shape
and intensity modulation that are dependent on the settings of the lens. Characterisation of the
focusing effect suggests that the plasma column exhibited an off-axis rotation similar to the m = 1
diocotron instability. The association of the instability with the cause of the rings was investigated
using particle tracking simulations.

Keywords: plasma trap; space-charge lens; beam transport; instability; proton therapy

1. Introduction

One of the principal challenges that must be addressed to deliver high-flux pulsed
proton or positive-ion beams for many applications is the efficient capture of the ions ejected
from the source. A typical source produces protons with kinetic energies of approximately
60keV [1-3] and ions with kinetic energies typically below 120 keV [4,5]. At this low energy
the mutual repulsion of the ions causes the beam to diverge rapidly. Capturing a large
fraction of this divergent flux therefore requires a focusing element of short focal length.
Proton- and ion-capture systems in use today employ magnetic, electrostatic, or radio

frequency quadrupoles, or solenoid magnets to capture and focus the beam [2,6-8].
Laser-driven proton and ion sources are disruptive technologies that offer enormous
potential to serve future high-flux, pulsed beam facilities [9-16]. Possible applications in-
clude proton- and ion-beam production for research, particle-beam therapy, radio-nuclide
production, and ion implantation. Recent measurements have demonstrated the laser-
driven production of large ion fluxes at kinetic energies in excess of 10 MeV [17-20]. The fur-
ther development of present technologies and the introduction of novel techniques [21,22]
makes it conceivable that significantly higher ion energies will be produced in the fu-
ture [13,23,24]. By capturing the laser-driven ions at energies two orders of magnitude
greater than those pertaining to conventional sources, it will be possible to evade the current
space-charge limit on the instantaneous proton and ion flux that can be delivered. While
in some situations the high divergence of laser-driven ion beams can be reduced [25,26],
for the tape-drive targets proposed for medical beams [16,20] it necessary to capture the
beam using a strong-focusing element as close to the ion-production point as possible.

Appl. Sci. 2021, 11, 4357. https:/ /doi.org/10.3390/app11104357
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Beam envelopes Stage 1
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* Rapid, flexible acceleration for stage 2
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the lon Therapy earch Facility
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LhARA; the Laser-hybrid Accelerator for Radiobiological Applications
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_LhARA

Laser-hybrid Accelerator for
Radiobiological Applications

Novel accelerator techniques

System: image processing
fast feedback, control

Fundamental
radiobiology
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Conclusions

* Laser-driven sources are disruptive technologies ...
— With the potential to drive a step-change in clinical capability

* Laser-hybrid approach has potential to:
— Overcome dose-rate limitations of present PBT sources

— Deliver uniquely flexible facility:
* Range of: ion species; energy; dose; dose-rate; time; and spatial distribution

— Be used in automated, triggerable system - reduce requirement for large gantry
* Disruptive/transformative approach to “distributed PBT for 2050”

* To serve the ITRF, the LhARA collaboration now seeks to:
— Prove the novel laser-hybrid systems in operation

— Contribute to the study of the biophysics of charged-particle beams
* Enhance treatment planning

— Create novel capabilities to ‘spin back in’ to science and innovation

uuuuuuuuuuuuuuuuuuuuuuu
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