

Marburg Ion-Beam Therapy Center (MIT)

KILIAN-SIMON BAUMANN

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

Marburg Ion-Beam Therapy Center (MIT) 2

group

Marburg Ion-Beam Therapy Center (MIT)

Kilian-Simon Baumann

• Postdoctoral Researcher at

History of MIT

Constructed by Siemens Healthineers

2 facilities in operation: Marburg and Shanghai

Technical Equipment

Marburg Ion-Beam Therapy Center (MIT) 4

Patient statistics

Treatments:

- 66% Primary
- 34% Boost

Treatments:

- -40% ¹²C
- 60% Protonen

Treated tumor entities

Marburg Ion-Beam Therapy Center (MIT) and the contract of the

Clinical trials initiated by MIT

Since 2018 MIT hosted about 18 scientific projects and groups

Radiobiology

Research@MIT

- Medical physics
- Particle physics
- **Annual grants for beamtime for hessian research groups**

Medical Physics Research at MIT

Research topics:

- Particle therapy of lung cancer patients
	- Investigation of lung modulation effects
	- Development of 3d range modulator
- Monte-Carlo based dosimetry on microscopic and macroscopic scales
	- Calculation of beam quality correction factors for air-filled ionization chambers
	- Track structure simulation on cellular scales using Geant4-DNA
- Optical range verification

Giraffe

millimetre scale

• Changes in energy smaller than 0.5 MeV detectable

light emitted by protons

• Range of protons can be

determined on the sub -

- Source of light:
	- Cherenkov radiation only at entrance region
	- Measurements of spectral fluence

Optical range verification

Track structure simulations

Marburger Jonenstrahl-Therapiezentrum

- Geant4 -DNA is able to simulate track structures on the nm scale and dose deposition down to several eV
- Simulation of chemical stage as well as biological stage
- Determination of quantity and quality of DNA damage
- Influence of FLASH irradiation
- Simulations will be used to support cell experiments
- Overall goal is optimization of RBE models

creates ion-electron pairs in cavity

• Applied voltage accelerates ions and electrons to cathode and anode

• Clinical dosimetry

ionization chambers

with air-filled

• Ionizing radiation

• Measured charge proportional to deposited dose

Macroscopic dosimetry

Ionization Chambers

 10^{9}

Continuous Discharg

 V_{κ}

- Calibration of air-filled ionization chambers
- Connection between measured charged and deposited dose under well-defined conditions

Marburger lonenstrahl-Therapiezentrum

HITI

Heavy Ion Therapy Research Integration

- If measurement conditions differ from calibration conditions each deviation has to be accounted for!
	- Background: *M⁰*
	- Change in air temperature and pressure: *kp,t* Air temperature and pressure influence the number of air molecules and, hence, the amount of created charge in the air cavity
	- Response of the chamber to different beam qualities *Q*: *k^Q* **Beam quality correction factor**

Further correction factors:

- Applied voltage
- Saturation effects
- Humidity
- Effective point of measurement

• …

$$
D_W = (M - M_0) \cdot N_{D_W, Q_0} \cdot (k_Q) \cdot \prod_i (k_i)
$$

Beam quality correction factor k_o

- Beam quality correction factor accounts for different response of the ionization chamber between calibration beam quality Q_o and used beam quality Q
- Ideally, should be determined for each ionization chamber individually and for each beam quality employed!
- But how?
- Option 1: Measurement-based determination:

$$
k_{Q,Q_0} = \frac{N_{D_w,Q}}{N_{D_w,Q_0}} = \frac{(D_w)_{Q}/M_Q}{(D_w)_{Q_0}/M_{Q_0}}
$$

- Measurement with calorimetry
- High experimental effort
- Not convenient for clinical routine

- Beam quality correction factor accounts for different response of the ionization chamber between calibration beam quality Q_o and used beam quality Q
- Ideally, should be determined for each ionization chamber individually and for each beam quality employed!
- But how?
- Option 2: Theoretical calculation:

Theoretically calculated *k^Q* **factors are tabulated in dosimetry protocols like the IAEA TRS-398 Code of Practice**

- Beam quality correction factor accounts for different response of the ionization chamber between calibration beam quality Q_o and used beam quality Q
- Ideally, should be determined for each ionization chamber individually and for each beam quality employed!
- But how?
- Option 3: Calculation with the Monte Carlo method:
	- Calculation of absorbed dose-to-water D_W in reference volume
	- Modelling of ionization chamber geometry in Monte Carlo code
	- Calculation of dose *Ddet* absorbed in air cavity of ionization chamber
	- Calculation of doses for calibration beam quality and user beam quality

- Beam quality correction factor accounts for different response of the ionization chamber between calibration beam quality Q_o and used beam quality Q
- Ideally, should be determined for each ionization chamber individually and for each beam quality employed!
- But how?
- Option 3: Calculation with the Monte Carlo method:
	- Determination of *f^Q* factor (overall response of chamber):

$$
f_Q = \left(\frac{D_{\rm w}}{D_{\rm det}}\right)_Q = \left(s_{\rm w, air}\right)_Q \cdot P_Q
$$

• Calculation of *k^Q* factor:

$$
k_Q = \frac{f_Q}{f_{Q_0}} \cdot \frac{(W_{\text{air}})_Q}{(W_{\text{air}})_{Q_0}}
$$

- For clinical photon beams, experimentally as well as Monte Carlo calculated values for k_o factors exist
- Agreement between experimentally determined and Monte Carlo calculated *k^Q* factors on the 1%-level
- For protons, data are scarce
- Hence, for the update of the IAEA TRS-398 Code of Practice, experimental as well as Monte Carlo calculated values will be created and included

- Used Monte Carlo codes: PENH, FLUKA and Geant4
- PENH values from Carles Gomà (Hospital Cliníc de Barcelone)
- FLUKA and Geant4 values produced at our working group
- First step: Optimization of codes (production cut and length of a condensed -history step)

- Comparison of Monte Carlo calculated *fQ* factors in proton beams
- Good agreement (~1%) for low energies
- Larger differences (up to 2%) for high energies
	- Role of nuclear interactions?
- FLUKA leads to smallest values, PENH to largest

 \lozenge this study (FLUKA) * Kretschmer et al 2020 (GATE/Geant4) O Baumann et al 2020 (TOPAS/Geant4) \triangleright Gomà & Sterpin 2019 (PENH) \triangle Lourenço et al 2019 (FLUKA) Wulff et al 2018 (TOPAS/Geant4) Gomà et al 2016 (PENH) **IBA NACP-02** PTW Roos 1.13 1.13 ⇞ ⇟ \sim $^{1.12}$ ా 1.11 1.11 1.10 150 200 250 100 200 50 100 50 150 250 $energy$ (MeV) $energy$ (MeV) IBA PPC-05 PTW Markus 1.13 1.1 1.12 \mathfrak{c} \mathfrak{c} 1.11 1.12 1.10 200 250 50 100 150 50 100 150 200 250 energy (MeV) energy (MeV)

Heavy Ion Therapy Research Integration Marburger lonenstrahl-
Therapiezentrum

- Determination of average Monte Carlo calculated *f^Q* factors in proton beams
- Average Monte Carlo calculated *f^Q* factors are constant over the energy regime within ~1%
- ♦ Baumann et al 2021 (FLUKA) x Kretschmer et al 2020 (GATE/Geant4) \Box average f_o O Baumann et al 2020 (TOPAS/Geant4) \triangleright Gomà & Sterpin 2019 (PENH) Wulff et al 2018 (TOPAS/Geant4) **IBA NACP-02 PTW Roos** 1.13 1.13 舞子車 1.12 불 1.12 ص \overline{C} 1.11 1.11 1.10 150 200 250 150 200 50 100 50 100 250 $energy$ (MeV) energy (MeV) **IBA PPC-05 PTW Markus** 1.13 1.14 $rac{1}{\sqrt{2}}$ 1.12 ڀ .∽ ቶ 1.11 1.12 1.10 50 100 200 250 150 200 250 150 50 100 energy (MeV) energy (MeV)

- Determination of average Monte Carlo calculated *f^Q* factors in proton beams
- Average Monte Carlo calculated *f^Q* factors are constant over the energy regime within ~1%
- Overall uncertainty for low energies relatively small (~0.3%)
- Overall uncertainty increases with proton energy up to ~1%

- Comparison of Monte Carlo calculated beam quality correction factors *k ^Q* with values from IAEA TRS -398
- Values agree within one standard uncertainty
- Monte Carlo calculated values are smaller than values from IAEA TRS -398
- Differences up to 2.4%
- Uncertainty of Monte Carlo calculated values is smaller

Marburg Ion-Beam Therapy Center (MIT)

- Potential role of nuclear interactions
- Modelling of nuclear interactions complex and might be different between individual Monte Carlo codes
- Impact increases with energy which might explain the difference at high energies

- Conclusion:
- Monte Carlo calculations are an efficient tool for dosimetry calculations
- Physics models and transport parameters have to be optimized
- Difference between codes for high energies most likely due to nuclear interactions

PT of thoracic tumors

Heavy Ion Therapy Research Integration Marburger lonenstrahl-Therapiezentrum

- Particle therapy promising alternative to photon -based radiotherapy for lung cancer patients
	- Conformal dose deposition in tumor and significantly better sparing of normal tissue
	- Higher biological effectiveness for carbon ion
- However: major challenges!
	- Motion
	- Lung modulation effects

Heavy Ion Therapy Research Integration Marburger Jonenstrahl-Therapiezentrum

• Heterogeneous structure of lung tissue leads to degradation of Bragg peak

beam

- Potential underdosage of target volume and overdosage of distal normal tissue
- Effect should be considered in treatment planning
- Problem: Structure of lung tissue is not sufficiently resolved in treatment -planning CTs
	- More homogeneous
	- Consideration of effects hardly possible

- Mathematical description of Bragg peak degradation by convolution with normal distribution
- Definition of material characteristics **modulation power** mod
- Modulation power can be determined experimentally
	- Applicability for human lung tissue?
- Estimation of modulation power on basis of clinical CT -images with the help of a histogram analysis

- Monte-Carlo based solution to reproduce lung modulation effects on clinical CT -images
- Modulation of physical density of lung voxels
- Investigation of dose uncertainties for clinical treatment plan
- Different tumor volumes, positions within the lung, and irradiation strategies

- **Binary density** distribution
- Heterogeneous fine structure not depicted in CT -images

- Rougher structure (CT -voxel)
- Modulation of mass density

EN 5.0

• Lung modulation effects lead to a) 90% smaller region of high dose • Range uncertainties of up to 10 mm Patient | Underdosage in terms of average dose in CTV • The region of low dose is **1 -2.1%** smaller and reaches farther **2 -3.1%** • Range uncertainties of up $|c|$ 20% to 5 mm **3 -1.8%** • Underdosage of CTV up to -5% **-2.2% 4** for protons **5 -4.9%** • Effects significantly more

pronounced for carbon ions

- Consideration of lung modulation effects in treatment planning
- Degradation of base data depth dose curves for dose calculation and optimization
	- Reference plan optimized without consideration of lung modulation effects
	- Lung modulation effects lead to underdosage of target volume
	- Improved optimization reduces dose uncertainties to <0.5%

Heavy Ion Therapy Research Integration Marburger lonenstrahl

Outlook:

- Investigation of lung modulation effects on biological effectiveness of carbon ions
- Implementation of determination of modulation power
- Automatic determination of modulation properties and compensation for lung modulation effects patient individually

HITE Heavy Ion Therapy Research Integration Marburger lonenstrahl-

Therapiezentrum

- Background: Particle therapy of lung cancer patients
- For active scanning interference between tumor motion and movement of the particle beam
	- \rightarrow Interplay effects
- Potential hot and cold spots negatively influencing therapy outcome

Can we achieve a sufficient reduction in irradiation time enabling an irradiation under breath hold?

- For synchrotron -based facilities an acceleration of particles is necessary for each iso -energy layer that is being irradiated
- Acceleration takes time in the order of seconds
- For an exemplary treatment plan with 16 iso -energy layers, the total irradiation time is 78 seconds
- Is there a possibility to enlarge high -dose region of depth dose curve?

80

- Approach: Use passive Range Modulator similar to Ripple Filter to enlarge Bragg Peak
- Range Modulator consists of Pins
- Energy loss and hence range depend on the particle's trajectory through the pin
- Length of Pin defines width of Spread -Out Bragg Peak
- Only 1 energy needed to apply Spread -Out Bragg Peak

- By arranging different pins, 3D dose distributions can be created
- 3D Range Modulators can easily be 3D-printed
- Verification with measurements at MIT

• 3D Range Modulator for complex tumor geometries designed patient individually

3D Range Modulator also essential for FLASH irradiation with active scanning and "slow" energy selection!

Thank you very much for your attention!

This material was prepared and presented within the HITRIplus **Specialised Course on Heavy Ion Therapy Research,** and it is intended for personal educational purposes to help students; people interested in using any of the material for any other purposes (such as other lectures, courses etc.) are requested to please contact the authors: Kilian-Simon Baumann ([kilian-simon.baumann@staff.uni-marburg.de\)](mailto:kilian-simon.baumann@staff.uni-marburg.de)