

Marburg Ion-Beam Therapy Center (MIT)

KILIAN-SIMON BAUMANN

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

group

Marburg Ion-Beam Therapy Center (MIT)

- Postdoctoral Researcher at • Philipps-University Marburg
- Medical Physicist at MIT
- Overview of the Marburg Ion-Beam ٠ **Therapy Center**
- Physics research performed at our working ٠

History of MIT

Constructed by Siemens Healthineers

2 facilities in operation: Marburg and Shanghai

Start of construction: End of construction:	09/2007 04/2009
Installation accelerator: First beam in treatment room:	08/2008 02/2010
First patient treatment: (planned)	2011
Shut down:	2011
Restart (leadership HIT):	2015
First patient treated:	2015
Change of ownership HIT -> UKGM:	08/2019

Technical Equipment

Marburg Ion-Beam Therapy Center (MIT)

Patient statistics

year	number of patients
2018	251
2019	293
2020	323
2021	311

Treatments:

- 66% Primary
- 34% Boost

Treatments:

- 40% ¹²C
- 60% Protonen

Treated tumor entities

Clinical trials initiated by MIT

GliProPh (phase III)	INSPIRE	GIRO (phase III)	KOENIG (phase I/II)
GPicPh Veson V3/ von 25.63.2017 Studienplan ass III Studie zum Vergleich einer Protonen- vs. Photosen-Strahlentherapie für Patienten mit WHO Grad II-III Gilomen (GIIProPh)	100000 subry of 6.1 bit is the order of this is the bit	Re-Bestrahlung von <u>Glioblastomrezidiven</u> mit Kohlenstoffionen (C12) versus stereotaktische Re-RT mit Photonen	Klinisches Studienprotoko Kohlenstoffionentherapie beim primären Glioblaston Die KOENIG Studi
Phase III Intial of radiotherapy with protons vs. conventional radiotherapy with photons for patients with WHO grade II-III glioma (GLProPh) Vector/V37 voir 35.06.2617		(GIRO) multizentrische zweiarmige prospektive Phase III Studie	Varsion 1.0 26.8.2019
grade 2 and 3 glioma	registry	recurrent glioblastoma	glioblastoma
protons vs. photons	all patients out of prospective trials	C ¹² vs. photons	C ¹²
multicentric prospective randomised	monocentric prospective	multicentric prospective randomised	monocentric prospective one armed
recruiting	recruiting	start in Q3/2021	start in Q1/2022

- Since 2018 MIT hosted about 18 scientific projects and groups
 - Radiobiology

Research@MIT

- Medical physics
- Particle physics
- Annual grants for beamtime for hessian research groups

Medical Physics Research at MIT

Research topics:

- Particle therapy of lung cancer patients
 - Investigation of lung modulation effects
 - Development of 3d range modulator
- Monte-Carlo based dosimetry on microscopic and macroscopic scales
 - Calculation of beam quality correction factors for air-filled ionization chambers
 - Track structure simulation on cellular scales using Geant4-DNA
- Optical range verification

Optical range verification

Marburger Ionenstrahl-Therapiezentrum

120 MeV

160 MeV

220 MeV

5 cm

- CMOS camera is used to collect light emitted by protons
- Range of protons can be determined on the submillimetre scale
- Results verified against PTW Bragg peak chamber and IBA Giraffe
- Changes in energy smaller than 0.5 MeV detectable
- Source of light:
 - Cherenkov radiation only at entrance region
 - Measurements of spectral fluence

200

160 180

Track structure simulations

Marburger Ionenstrahl-Therapiezentrum

- Geant4-DNA is able to simulate track structures on the nm scale and dose deposition down to several eV
- Simulation of chemical stage as well as biological stage
- Determination of quantity and quality of DNA damage
- Influence of FLASH irradiation
- Simulations will be used to support cell experiments
- Overall goal is optimization of RBE models

- accelerates ions and electrons to cathode and anode
- Measured charge ٠ proportional to deposited dose

Clinical dosimetry ٠ with air-filled ionization chambers

•

Ionizing radiation creates ion-electron pairs in cavity Radiation Applied voltage

sufficient accuracy!

- Calibration of air-filled ionization chambers
- Connection between measured charged and deposited dose under well-defined conditions

Marburger Ionenstrahl Therapiezentrum

Parameter	Condition
Beam quality	⁶⁰ Co γ-radiation
Measurement medium	Water
Measurement depth	10 cm
Beam size	10 cm x 10 cm
Temperature	293.15 К
Pressure	101.325 hPa

HIT

Heavy Ion Therapy Research Integration

- If measurement conditions differ from calibration conditions each deviation has to be accounted for!
 - Background: *M*₀
 - Change in air temperature and pressure: k_{p,t}
 Air temperature and pressure influence the number of air molecules and, hence, the amount of created charge in the air cavity
 - Response of the chamber to different beam qualities Q: k_Q
 Beam quality correction factor

Further correction factors:

- Applied voltage
- Saturation effects
- Humidity
- Effective point of measurement

• ...

$$D_W = (M - M_0) \cdot N_{D_W,Q_0} \cdot k_Q \cdot \prod_i k_i$$

Beam quality correction factor k_Q

- Beam quality correction factor accounts for different response of the ionization chamber between calibration beam quality *Q*₀ and used beam quality *Q*
- Ideally, should be determined for each ionization chamber individually and for each beam quality employed!
- But how?
- Option 1: Measurement-based determination:

$$k_{Q,Q_0} = \frac{N_{D_w,Q}}{N_{D_w,Q_0}} = \frac{(D_w)_Q/M_Q}{(D_w)_{Q_0}/M_{Q_0}}$$

- Measurement with calorimetry
- High experimental effort
- Not convenient for clinical routine

- Beam quality correction factor accounts for different response of the ionization chamber between calibration beam quality *Q*₀ and used beam quality *Q*
- Ideally, should be determined for each ionization chamber individually and for each beam quality employed!
- But how?
- Option 2: Theoretical calculation:

Theoretically calculated k_Q factors are tabulated in dosimetry protocols like the IAEA TRS-398 Code of Practice

- Beam quality correction factor accounts for different response of the ionization chamber between calibration beam quality Q₀ and used beam quality Q
- Ideally, should be determined for each ionization chamber individually and for each beam quality employed!
- But how?
- Option 3: Calculation with the Monte Carlo method:
 - Calculation of absorbed dose-to-water D_W in reference volume
 - Modelling of ionization chamber geometry in Monte Carlo code
 - Calculation of dose *D_{det}* absorbed in air cavity of ionization chamber
 - Calculation of doses for calibration beam quality and user beam quality

- Beam quality correction factor accounts for different response of the ionization chamber between calibration beam quality *Q*₀ and used beam quality *Q*
- Ideally, should be determined for each ionization chamber individually and for each beam quality employed!
- But how?
- Option 3: Calculation with the Monte Carlo method:
 - Determination of **f**_o factor (overall response of chamber):

$$f_Q = \left(\frac{D_w}{D_{det}}\right)_Q = \left(s_{w,air}\right)_Q \cdot P_Q$$

• Calculation of k_q factor:

$$k_Q = \frac{f_Q}{f_{Q_0}} \cdot \frac{(W_{\text{air}})_Q}{(W_{\text{air}})_{Q_0}}$$

- For clinical photon beams, experimentally as well as Monte Carlo calculated values for k_Q factors exist
- Agreement between experimentally determined and Monte Carlo calculated k_Q factors on the 1%-level
- For protons, data are scarce
- Hence, for the update of the IAEA TRS-398 Code of Practice, experimental as well as Monte Carlo calculated values will be created and included

- Used Monte Carlo codes: PENH, FLUKA and Geant4
- PENH values from Carles Gomà (Hospital Cliníc de Barcelone)
- FLUKA and Geant4 values produced at our working group
- First step: Optimization of codes (production cut and length of a condensed-history step)

- Comparison of Monte Carlo calculated
 f_Q factors in proton beams
- Good agreement (~1%) for low energies
- Larger differences (up to 2%) for high energies
 - Role of nuclear interactions?
- FLUKA leads to smallest values, PENH to largest

♦ this study (FLUKA) ★ Kretschmer et al 2020 (GATE/Geant4) • Baumann et al 2020 (TOPAS/Geant4) ▶ Gomà & Sterpin 2019 (PENH) ▲ Lourenço et al 2019 (FLUKA) ♦ Wulff et al 2018 (TOPAS/Geant4) Gomà et al 2016 (PENH) PTW Roos IBA NACP-02 1.13 1.13 o^{1.1} ് 1.111.11 1.10 100 150 200 250 100 150 200 50 50 250 energy (MeV) energy (MeV) IBA PPC-05 PTW Markus 1.13 1.1 1.12 J ٦ ر 1.11.12 1.1050 100 150 200 250 50 100 150 200 250 energy (MeV) energy (MeV)

- Determination of average Monte Carlo calculated f_q factors in proton beams
- Average Monte Carlo calculated *f_Q* factors are constant over the energy regime within ~1%

- Determination of average Monte Carlo calculated f_{q} factors in proton beams
- Average Monte Carlo calculated *f_Q* factors are constant over the energy regime within ~1%
- Overall uncertainty for low energies relatively small (~0.3%)
- Overall uncertainty increases with proton energy up to ~1%

- Comparison of Monte Carlo calculated beam quality correction factors k_q with values from IAEA TRS-398
- Values agree within one standard uncertainty
- Monte Carlo calculated values are smaller than values from IAEA TRS-398
- Differences up to 2.4%
- Uncertainty of Monte Carlo calculated values is smaller

Marburg Ion-Beam Therapy Center (MIT)

- Potential role of nuclear interactions
- Modelling of nuclear interactions complex and might be different between individual Monte Carlo codes
- Impact increases with energy which might explain the difference at high energies

	Complete chamber		
Particle	Dose (Gy/pp)	Fraction	
With nuclear interactions			
All	6.272(5)E-12	100.0	
Primary protons	3.601(1)E-12	57.4	
Secondary protons	3.883(10)E-13	6.2	
Electrons generated by primary protons	1.958(1)E-12	31.2	
Electrons generated by secondary protons and ions	1.841(5)E-13	2.9	
Alpha particles	6.668(20)E-14	1.1	
Residual fragments	7.294(35)E-14	1.2	
Without nuclear interactions			
All	5.633(2)E-12	100.0	
Primary protons	3.649(1)E-12	64.8	
Electrons generated by primary protons	1.984(2)E-12	35.2	

- Conclusion:
- Monte Carlo calculations are an efficient tool for dosimetry calculations
- Physics models and transport parameters have to be optimized
- Difference between codes for high energies most likely due to nuclear interactions

PT of thoracic tumors

Heavy Ion Therapy Research Integration

- Particle therapy promising alternative to photon-based radiotherapy for lung cancer patients
 - Conformal dose deposition in tumor and significantly better sparing of normal tissue
 - Higher biological effectiveness for carbon ion
- However: major challenges!
 - Motion
 - Lung modulation effects

 Heterogeneous structure of lung tissue leads to degradation of Bragg peak

beam

- Potential underdosage of target volume and overdosage of distal normal tissue
- Effect should be considered in treatment planning
- Problem: Structure of lung tissue is not sufficiently resolved in treatment-planning CTs
 - More homogeneous
 - Consideration of effects hardly possible

- Mathematical description of Bragg peak degradation by convolution with normal distribution
- Definition of material characteristics modulation power P_{mod}
- Modulation power can be determined experimentally
 - Applicability for human lung tissue?
- Estimation of modulation power on basis of clinical CT-images with the help of a histogram analysis

- Monte-Carlo based solution to reproduce lung modulation effects on clinical CT-images
- Modulation of physical density of lung voxels
- Investigation of dose uncertainties for clinical treatment plan
- Different tumor volumes, positions within the lung, and irradiation strategies

- Binary density distribution
- Heterogeneous fine structure not depicted in CT-images

- Rougher structure (CT-voxel)
- Modulation of mass density

A 5.0

•

•

•

- Consideration of lung modulation effects in treatment planning
- Degradation of base data depth dose curves for dose calculation and optimization
 - Reference plan optimized without consideration of lung modulation effects
 - Lung modulation effects lead to underdosage of target volume
 - Improved optimization reduces dose uncertainties to <0.5%

Heavy Ion Therapy Research Integration

Marburger Ionenstrahl-Therapiezentrum

Marburger Ionenstrahlherapiezentrum

Outlook:

- Investigation of lung modulation effects on biological effectiveness of carbon ions
- Implementation of determination of modulation power
- Automatic determination of modulation properties and compensation for lung modulation effects patientindividually

Heavy Ion Therapy Research Integration

- Background: Particle therapy of lung cancer patients
- For active scanning interference between tumor motion and movement of the particle beam
 - → Interplay effects
- Potential hot and cold spots negatively influencing therapy outcome

Can we achieve a sufficient reduction in irradiation time enabling an irradiation under breath hold?

- For synchrotron-based facilities an acceleration of particles is necessary for each iso-energy layer that is being irradiated
- Acceleration takes time in the order of seconds
- For an exemplary treatment plan with 16 iso-energy layers, the total irradiation time is 78 seconds
- Is there a possibility to enlarge high-dose region of depth dose curve?

With courtesy of IBA

Marburger Ionenstrahl

Heavy Ion Therapy Research Integration

- Approach: Use passive Range Modulator similar to Ripple
 Filter to enlarge Bragg Peak
- Range Modulator consists of Pins
- Energy loss and hence range depend on the particle's trajectory through the pin
- Length of Pin defines width of Spread-Out Bragg Peak
- Only 1 energy needed to apply Spread-Out Bragg Peak

- By arranging different pins, 3D dose distributions can be created
- 3D Range Modulators can easily be 3D-printed
- Verification with measurements at MIT

• 3D Range Modulator for complex tumor geometries designed patient individually

Ionenstrahl-

3D Range Modulator also essential for FLASH irradiation with active scanning and "slow" energy selection!

Thank you very much for your attention!

This material was prepared and presented within the HITRIplus **Specialised Course on Heavy Ion Therapy Research,** and it is intended for personal educational purposes to help students; people interested in using any of the material for any other purposes (such as other lectures, courses etc.) are requested to please contact the authors: Kilian-Simon Baumann (kilian-simon.baumann@staff.uni-marburg.de)