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The Common Perception of Monte Carlo  



The Concept of Monte Carlo for Me and 

Maybe You After This Talk….

200 MeV/u 12C ions shower



The Monte Carlo Method

Invented by John von Neumann, Stanislaw Ulam and Nicholas Metropolis (who gave it its

name), and independently by Enrico Fermi
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Not your laptop size….

FUSSZEILE

The ENIAC
Electronic Numerical Integrator And Computer

http://upload.wikimedia.org/wikipedia/commons/4/4e/Eniac.jpg 



Integration? or Simulation ? 

Why, then, is MC often considered a simulation technique?

Originally, the Monte Carlo method was not a simulation method, but a
device to solve a multidimensional integro-differential equation by
building a stochastic process such that some parameters of the resulting
distributions would satisfy that equation

The equation itself did not necessarily refer to a physical process, and if it
did, that process was not necessarily stochastic



Simulation: in special cases

• It was soon realized, however, that when the method was applied to an equation

describing a physical stochastic process, such as neutron diffusion, the model (in

this case a random walk) could be identified with the process itself

• In these cases the method (analog Monte Carlo) has become known as a

simulation technique, since every step of the model corresponds to an identical

step in the simulated process

Image from  Wikipedia



Particle Transport

• Particle transport is a typical physical process described by probabilities (cross sections =
interaction probabilities per unit distance)

• Therefore it lends itself naturally to be simulated by Monte Carlo

• Many applications, especially in high energy physics and medicine, are based on simulations
where the history of each particle (trajectory, interactions) is reproduced in detail

• However in other types of application, typically shielding design, the user is interested only in
the expectation values of some quantities (fluence and dose) at some space point or region,
which are calculated as solutions of a mathematical equation

• This equation (the Boltzmann equation), describes the statistical distribution of particles in
phase space and therefore does indeed represent a physical stochastic process

• But in order to estimate the desired expectation values it is not necessary that the Monte
Carlo process be identical to it



Integration Without Simulation

• In many cases, it is more efficient to replace the actual process by a different
one resulting in the same average values but built by sampling from modified
distributions

• Such a biased process, if based on mathematically correct variance reduction
techniques, converges to the same expectation values as the unbiased one

• But it cannot provide information about the higher moments of statistical
distributions (fluctuations and correlations)

• In addition, the faster convergence in some user-privileged regions of phase
space is compensated by a slower convergence elsewhere



Particle Transport Monte Carlo

Application of Monte Carlo to particle transport and interaction:

• Each particle is followed on its path through matter

• At each step the occurrence and outcome of interactions are decided by random
selection from the appropriate probability distributions

• All the secondaries issued from the same primary are stored in a “stack” or “bank”
and are transported before a new history is started

• The accuracy and reliability of a Monte Carlo depend on the models or data on
which the probability distribution functions are based

• Statistical precision of results depends on the number of “histories“

• Statistical convergence can be accelerated by “biasing" techniques



Assumptions made by most Monte Carlo codes

• Static, homogeneous, isotropic, amorphous media and geometry Problems: e.g.
moving targets*, atmosphere must be represented by discrete layers of uniform
density, radioactive decay may take place in a geometry different from that in which
the radionuclides were produced*.

*These restrictions have been overcome in few Monte Carlo codes

• Markovian process: the fate of a particle depends only on its actual present
properties, not on previous events or histories

• Particles do not interact with each other
Problem: e.g. the Chudakov effect (charges cancelling in e+e– pairs)

• Particles interact with individual electrons / atoms / nuclei / molecules
Problem: invalid at low energies (X-ray mirrors)

• Material properties are not affected by particle reactions
Problem: e.g. burnup



Practical Implementation



Statistical errors, systematic errors, and...mistakes

Systematic errors, due to code weaknesses

• Apart from the statistical error, which other factors affect the accuracy of 
MC results?

 physics: different codes are based on different physics models. Some models are
better than others. Some models are better in a certain energy range. Model quality
is best shown by benchmarks at the microscopic level (e.g. thin targets)

 artifacts: due to imperfect algorithms, e.g., energy deposited in the middle of a
step, inaccurate path length correction for multiple scattering, missing correction for
cross section and dE/dx change over a step, etc. Algorithm quality is best shown by
benchmarks at the macroscopic level (thick targets, complex geometries)

 data uncertainty: an error of 10% in the absorption cross section can lead to an
error of a factor 2.8 in the effectiveness of a thick shielding wall (10 attenuation
lengths). Results can never be better than allowed by available experimental data!



Statistical errors, systematic errors, and...mistakes

Systematic errors, due to user ignorance

• Missing information:
 material composition not always well known. In particular concrete/soil composition

(how much water content? Can be critical)
 beam losses: most of the time these can only be guessed. Close interaction with

engineers and designers is needed
 presence of additional material, not well defined (cables, supports...)
 Is it worth to do a very detailed simulation when some parameters are unknown or

badly known?

Systematic errors, due to simplification

• Geometries that cannot be reproduced exactly (or would require too much effort)
• Air contains humidity and pollutants, has a density variable with pressure



Statistical errors, systematic errors, and...mistakes

Code mistakes (“bugs”)

• MC codes can contain bugs:
 Physics bugs
 Programming bugs

User mistakes

• mis-typing the input
• error in user code: use the built-in features as much as possible!
• wrong units
• wrong normalization: quite common
• unfair biasing: energy/space cuts cannot be avoided, but must be done with much care



Monte Carlo Codes for Dose Calculation

• General purposes (GPMC): 

FLUKA, GEANT4, MCNP, TOPAS, PHITS, ….

• Tailored for medical applications:

RayStation MC, gPMC, FRED, MonteRay, …

• Why Monte Carlo for this task? 

1. Better description of the physical processes

2. Flexibility 

3. -> Gold Standard (GPMC) where data are not available



Geometry

• Beamline: full geometry or phase space ? 
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• Patient-specific components

Geometry



Geometry

• Patient CT/ Phantom 

Petoussi-Henss et al, 2002



Materials for the Monte Carlo physical processes

General problems for MC calculations on CT scans

 How to assign realistic human tissue parameters (= materials) for MC

Calculation ?

 How to find a good compromise between the number of different HU

values (~ 3000-5000) and the materials to be considered in the MC ?

(issues on memory and computation speed when attempting to treat each

HU number as a different material !!!)

 How to preserve continuous, HU-dependent information when segmenting

the HU numbers into intervals sharing the same “tissue” material ?

(critical for ion range calculation in charged hadron therapy !!!)



CT stoichiometric calibration

Soft tissue

Air, Lung,

Adipose tissue

Skeletal tissue

Schneider et al PMB 45, 2000



CT stoichiometric calibration

Assign to each material a “nominal mean density”, e.g. using the 
density at the center of each HU interval (Jiang et al, MP 2004) 

But “real density” (and related physical quantities) varies 
continuously with HU value !!!

Schneider et al PMB 45, 2000



Forcing MC to follow the same range calibration curve as TPS for p

Parodi et al MP 34, 2007, Parodi et PMB 52, 2007

1000

The CORRFACT ionization scaling factors were obtained from the

dEdx ratio between TPS and FLUKA (+ Schneider “mass density”)

Schneider’s segmentation

24 Materials, 

2600 regions

(HU values)

Ti

Extrapolation to Ti

3 Materials, 

1900 regions

(HU values)



EM interactions for 150 MeV proton: 

picking energy loss and scattering angle 

Energy Loss                                       Scattering

dx = 1 cm dx = 1 cm

Left: energy loss distributions shifted along the x-axis by the mean energy. Right:  

angular distributions. 



Inelastic Cross Section

Inelastic p+16O and 4He+16O cross sections as function of the beam energy

per nucleon: points and lines represent experimental data and model

predictions, respectively.



Simplified Scheme of Nuclear Interactions



Secondaries produced in nuclear interactions

(A) Average number of particles produced per p+16O collision as a function of proton beam energy. (B) For 200

MeV p+16O collisions, the angularly integrated probability of a product particle being produced in a certain energy

bin (bin size: 10 MeV) is shown.



www.fluka.org

The Effect of Physical Processes on Bragg Peak



Ion Beam Therapy: 12C ions Bragg PeakCarbon Ions: Large Contributions of Secondaries



Ion Beam Therapy: 12C ions Mixed Radiation Field

Böhlen, Cerutti, Dosanjh, A Ferrari, Gudowska, Mairani and Quesada PMB 55 2010

Carbon Ions: Large Contributions of Secondaries



Böhlen, Cerutti, Dosanjh, A Ferrari, Gudowska, Mairani and Quesada PMB 55 2010
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Monte Carlo calculation of fragment spectra in water  for 12C (80-440 MeV/u)

Fragment spectra @ HIT: 12C

Parodi,  Mairani et al PMB 57 2012

Carbon Ions: Towards Biological Calculations



ARTEMIS – Adaptive RadioThErapie mit IonenStrahlen

Vision: MR- Image-guided radiotherapy with ion beams

Task: Develop a fast Monte Carlo dose optimization and 

calculation engine to perform the following:

1. simulate Proton, Helium and Carbon beam transport and 

interaction with matter

2. Simulate changes in particle transport due to  magnetic fields / 

charged particle interaction (deflection).

3. Accelerated computation, fast enough for daily adaptation.



MonteRay – Fast Dose Calculation Engine

Depth-dose distributions in water 

Lysakovski, …, Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453



MonteRay – Fast Dose Calculation Engine

Lateral dose distributions in water 

Lysakovski, …, Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453



MonteRay – Fast Dose Calculation Engine

Absolute dose in water: monitor calibration

Lysakovski, …, Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453



MonteRay – Fast Dose Calculation Engine

Spread-Out Bragg Peak: depth-dose distributions

Lysakovski, …, Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453



MonteRay – Fast Dose Calculation Engine

Spread-Out Bragg Peak: Lateral dose distributions

Lysakovski, …, Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453



MonteRay – Fast Dose Calculation Engine

Pencil beams in magnetic field 

Lysakovski, …, Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453



MonteRay – Fast Dose Calculation Engine

Lysakovski, …, Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453

Patient recalculation



MonteRay – Fast Dose Calculation Engine

Lysakovski, …, Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453

Patient recalculation



experimental

On average: FRoG matches FLUKAs D95, D50, D5 within 2%. Measurements are ~2% difference.

S. Mein et al 2019 Phys. Med.

Experimental Validation in complex scenario: TPS vs MC



S. Mein et al 2019 Phys. Med.

Experimental Validation in complex scenario: TPS vs MC



Lung TreatmentsAccuracy: MC vs. FRoG vs. clinical TPS (MC)

3D-γ passing rate (2mm/2%):    RS-MC = 98%,  FRoG = 94%

G. Magro,…,Mairani, 86, 2021 Physica Medica



1H LET
d

in silico

S. Mein et al. 2018 Sci Rep.; K. Choi et al. 2018 Cancers 10, 395

LETd values match within 0.3 keV/µm

LETd distributions in proton therapy 



RBE model comparison: LEM vs. MKM

Biological calculations for 12C ions 





The common application of a Graphics Processing Unit (GPU)



Fast Monte Carlo on GPU: an example

Jia et al 2012 PMB

GPU-based fast MC (gPMC) vs. general purpose MC (TOPAS), 3Dγ (2%/2mm) 99%

Calculation Time: seconds vs. hours



Conclusions

• Monte Carlo Methods became a standard for dose computation in radiation therapy

• Fast CPU and GPU Monte Carlo codes are available

• General purposes Monte Carlo codes remain the gold standard in case where

experimental data are not available

• None MC is perfect, it is important to understand the limitations and perform

experimental validations!



Thank you for your attention!

BioPT + PartRadBio hike 2021


