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The Concept of Monte Carlo for Me and




The Monte Carlo Method

Invented by John von Neumann, Stanislaw Ulam and Nicholas Metropolis (who gave it its

name), and independently by Enrico Fermi

http://en.wikipedia.org/wiki/Nicholas http://www.atomicarchive.com/History/hbom http://http://upload.wikimedia.org/wikipedia/comm http://steppforcongress.blogspot.de/
_Metropolis#/media/File:Nicholas_M b/images/ulam_stanislaw_s.jpg ons/5/5e/JohnvonNeumann-LosAlamos.gif 2011/01/enrico-fermi-immigrant-of-
etropolis_cropped.PNG day.html
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Integration? or Simulation ?

Why, then, is MC often considered a simulation technique?

Originally, the Monte Carlo method was not a simulation method, but a
device to solve a multidimensional integro-differential equation by
building a stochastic process such that some parameters of the resulting
distributions would satisfy that equation

The equation itself did not necessarily refer to a physical process, and if it
did, that process was not necessarily stochastic
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Simulation: in special cases

e |t was soon realized, however, that when the method was applied to an equation
describing a physical stochastic process, such as neutron diffusion, the model (in
this case a random walk) could be identified with the process itself

e In these cases the method (analog Monte Carlo) has become known as a
simulation technique, since every step of the model corresponds to an identical
step in the simulated process |

Image from Wikipedia



Particle Transport

Particle transport is a typical physical process described by probabilities (cross sections =
interaction probabilities per unit distance)

Therefore it lends itself naturally to be simulated by Monte Carlo

Many applications, especially in high energy physics and medicine, are based on simulations
where the history of each particle (trajectory, interactions) is reproduced in detail

However in other types of application, typically shielding design, the user is interested only in
the expectation values of some quantities (fluence and dose) at some space point or region,
which are calculated as solutions of a mathematical equation

This equation (the Boltzmann equation), describes the statistical distribution of particles in
phase space and therefore does indeed represent a physical stochastic process

But in order to estimate the desired expectation values it is not necessary that the Monte
Carlo process be identical to it
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Integration Without Simulation

e In many cases, it is more efficient to replace the actual process by a different
one resulting in the same average values but built by sampling from modified
distributions

e Such a biased process, if based on mathematically correct variance reduction
techniques, converges to the same expectation values as the unbiased one

e But it cannot provide information about the higher moments of statistical
distributions (fluctuations and correlations)

e |n addition, the faster convergence in some user-privileged regions of phase
space is compensated by a slower convergence elsewhere
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Particle Transport Monte Carlo

Application of Monte Carlo to particle transport and interaction:

e Each particle is followed on its path through matter

e At each step the occurrence and outcome of interactions are decided by random
selection from the appropriate probability distributions

e All the secondaries issued from the same primary are stored in a “stack” or “bank”
and are transported before a new history is started

e The accuracy and reliability of a Monte Carlo depend on the models or data on
which the probability distribution functions are based

e Statistical precision of results depends on the number of “histories”

e Statistical convergence can be accelerated by “biasing" techniques
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Assumptions made by most Monte Carlo codes

e Static, homogeneous, isotropic, amorphous media and geometry Problems: e.g.
moving targets*, atmosphere must be represented by discrete layers of uniform
density, radioactive decay may take place in a geometry different from that in which
the radionuclides were produced*.

*These restrictions have been overcome in few Monte Carlo codes

e Markovian process: the fate of a particle depends only on its actual present
properties, not on previous events or histories

e Particles do not interact with each other
Problem: e.g. the Chudakov effect (charges cancelling in e*e™ pairs)

e Particles interact with individual electrons / atoms / nuclei / molecules
Problem: invalid at low energies (X-ray mirrors)

e Material properties are not affected by particle reactions
Problem: e.g. burnup
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Practical Implementation

Source: generate the primary particle

Estimators

particle exits the problem before interaction | -

Track through geometry

=+ | Random distance to interaction

Continuous processes
Estimators

take one particle from stack
and follow it

/
~

particle dies
(below transport threshold,

discarded..)
Estimators

Generate secondary particles

Interaction

Estimators

Empty stack:

[/ [/

fill the “stack” with particleID, E, x, 0

end “history”
start with new |+« P1 Pz P3
primary

P,

Ps

Pe

P;

Pg

Py




Y 0 0 . .. ...
Statistical errors, systematic errors, and...mistakes

Systematic errors, due to code weaknesses

e Apart from the statistical error, which other factors affect the accuracy of
MC results?

o physics: different codes are based on different physics models. Some models are
better than others. Some models are better in a certain energy range. Model quality
is best shown by benchmarks at the microscopic level (e.g. thin targets)

o artifacts: due to imperfect algorithms, e.g., energy deposited in the middle of a
step, inaccurate path length correction for multiple scattering, missing correction for
cross section and dE/dx change over a step, etc. Algorithm quality is best shown by
benchmarks at the macroscopic level (thick targets, complex geometries)

o data uncertainty: an error of 10% in the absorption cross section can lead to an
error of a factor 2.8 in the effectiveness of a thick shielding wall (10 attenuation
lengths). Results can never be better than allowed by available experimental data!
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Statistical errors, systematic errors, and...mistakes

Systematic errors, due to user ignorance

e Missing information:

» material composition not always well known. In particular concrete/soil composition
(how much water content? Can be critical)

» beam losses: most of the time these can only be guessed. Close interaction with
engineers and designers is needed

» presence of additional material, not well defined (cables, supports...)

» Is it worth to do a very detailed simulation when some parameters are unknown or
badly known?

Systematic errors, due to simplification

e Geometries that cannot be reproduced exactly (or would require too much effort)
e Air contains humidity and pollutants, has a density variable with pressure
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Statistical errors, systematic errors, and...mistakes

Code mistakes (“bugs”)

e MC codes can contain bugs:
» Physics bugs
» Programming bugs

User mistakes

* mis-typing the input

e errorin user code: use the built-in features as much as possible!

® wrong units

e wrong normalization: quite common

e unfair biasing: energy/space cuts cannot be avoided, but must be done with much care
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Monte Carlo Codes for Dose Calculation

 General purposes (GPMC):
FLUKA, GEANT4, MCNP, TOPAS, PHITS, ....

« Tailored for medical applications:
RayStation MC, gPMC, FRED, MonteRay, ...

« Why Monte Carlo for this task?
1. Better description of the physical processes
2. Flexibility
3. ->Gold Standard (GPMC) where data are not available
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Geometry

« Beamline: full geometry or phase space ?
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Geometry

« Patient-specific components




Geometry

Petoussi-Henss et al, 2002
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B OO0 .
Materials for the Monte Carlo physical processes

General problems for MC calculations on CT scans

e How to assign realistic human tissue parameters (= materials) for MC
Calculation ?

e How to find a good compromise between the number of different HU
values (~ 3000-5000) and the materials to be considered in the MC ?

(issues on memory and computation speed when attempting to treat each
HU number as a different material !!!)

e How to preserve continuous, HU-dependent information when segmenting
the HU numbers into intervals sharing the same “tissue” material ?

(critical for ion range calculation in charged hadron therapy ')
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CT stoichiometric calibration wiep)
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CT stoichiometric calibration

Assign to each material a “nominal mean density”, e.g. using the
density at the center of each HU interval (Jiang et al, MP 2004)
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Forcing MC to follow the same range calibration curve as TPS for p

The CORRFACT ionization scaling factors were obtained from the
dEdx ratio between TPS and FLUKA (+ Schneider “mass density”)
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EM interactions for 150 MeV proton: Monte
picking energy loss and scattering angle Ray

Energy Loss Scattering
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Left: energy loss distributions shifted along the x-axis by the mean energy. Right: K ), NCT
angular distributions.



Inelastic Cross Section Monte

Ray
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Simplified Scheme of Nuclear Interactions

Target nucleus description (density, Fermi motion, etc)
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Secondaries produced in nuclear interactions
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The Effect of Physical Processes on Bragg Peak

200 MeV p on water (pencil beam)
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Carbon lons: Large Contributions of Secondaries

12C (400 MeV/u) on water
Bragg-Peak

Arbitrary units

cfrevcrrnreeiprimanybeam.. S B o b

.

secondary fragments

0 50 100 150 200 250 300 350 400
Depth [mm]

Exp. Data (points) from Haettner et al, Rad. Prot. Dos. 2006 N CT
Simulation: A. Mairani PhD Thesis, 2007, Nuovo Cimento C, 31, 2008 Q




B ——
Carbon lons: Large Contributions of Secondaries

2C (400 MeV/u) on water

Build-up of secondary fragments

Attenuation of primary beam
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Carbon lons: Large Contributions of Secondaries

2C (400 MeV/u) on water

Angular distribution
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Carbon lons: Towards Biological Calculations

Monte Carlo calculation of fragment spectra in water for 12C (80-440 MeV/u)

12C ions (400 MeV/u) - Energy Spectra at 25 cm
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GEFORDERT VOM

ARTEMIS — Adaptive RadioThErapie mit lonenStrahlen %lBundesmmmm

fiir Bildung
und Forschung

Vision: MR- Image-guided radiotherapy with ion beams

Task: Develop a fast Monte Carlo dose optimization and
calculation engine to perform the following:

1. simulate Proton, Helium and Carbon beam transport and

interaction with matter

2. Simulate changes in particle transport due to magnetic fields /
charged particle interaction (deflection).

3. Accelerated computation, fast enough for daily adaptation.




MonteRay — Fast Dose Calculation Engine
Monte

Depth-dose distributions in water Ray
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FIGURE 2 | Integrated depth-dose profiles of quasi-monoenergetic

beams with energies of 71 MeV, 158.5, and 222.6 MeV are shown.
Peakfinder measurements are indicated by blue points and MonteRay
simulations as solid red lines. The relative error, after correcting for a

lateral shift, between measurements and MonteRay simulations is shown with

grey dotted lines after correcting for the lateral shift. ( ) NCT

Lysakovski, ..., Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453



MonteRay — Fast Dose Calculation Engine

Lateral dose distributions in water

Narmalized dose [a.u.]

FIGURE 3 | Lateral dose profiles of vertically scanned proton lines at 81.5 MeV (left column), 158.5 MeV (central column) and 222.6 MeV (right column) at
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MonteRay — Fast Dose Calculation Engine Monte
Absolute dose in water: monitor calibration ay
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MonteRay — Fast Dose Calculation Engine Monte
Spread-Out Bragg Peak: depth-dose distributions Ray
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MonteRay — Fast Dose Calculation Engine Monte

Spread-Out Bragg Peak: Lateral dose distributions Ray
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MonteRay — Fast Dose Calculation Engine Monte

Pencil beams in magnetic field Ray
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FIGURE 5 | For 200 MeV protons in water, 2D dose distributions calculated with MonteRay (A) and FLUKA (B) are shown in a plane perpendicular to the 2 T
magnetic field. In (C), Lateral profiles for 200 MeV protons in water and with magnetic field strengths of 0 T, 0.5 T, 1 T, and 2 T are displayed at the location of the BP.

MonteRay’s results are indicated by a red line while FLUKA's results are displayed as blue dots.

Lysakovski, ..., Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453



Monte

MonteRay — Fast Dose Calculation Engine

Patient recalculation
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FIGURE 8 | Axial views of calculated doses for the plan described in Section 2.2.4 with an added perpendicular magnetic field of 1 T are shown for (A)
FLUKA and (B) MonteRay. In panels (C) and (D), longitudinal and lateral profiles are shown, respectively. Besides the lateral profiles obtained from FLUKA and
MonteRay, we also show the lateral profile of the RayStation dose calculated without a magnetic field. The locations of the profiles relative to the 2D plots are (
indicated trough red lines in panel (A). RayStation profiles are indicated by a solid green line, FLUKA profiles by a dotted blue line and MonteRay profiles by ‘ N CT

a dashed red line.
Lysakovski, ..., Mairani (2021) Front. Phys. 9:741453. doi: 10.3389/fphy.2021.741453



MonteRay — Fast Dose Calculation Enaine
Patient recalculation
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FIGURE 7 | Computed DVHs for the CTV, the brain, the brainstem and

the right optical nerve (r. 0. nerve) are shown. DVHs were computed for
RayStation (green, solid line), FLUKA (blue, dotted line) and MonteRay (red
dashed line). In panel (A), DVHs for the patient case without a magnetic

field are shown while in panel (B) DVVHs calculated for the case with an applied
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Experimental Validation in complex scenario: TPS vs MC

experimental
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On average: FRoG matches FLUKAS Dz, D¢y, D within 2%. Measurements are ~2% difference.

S. Mein et al 2019 Phys. Med.
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Experimental Validation in complex scenario: TPS vs MC
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Physics Contribution

Pencil Beam Algorithms Are Unsuitable
for Proton Dose Calculations in Lung
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Summary

Commercial analytic proton
algorithms were compared
with measurements and
Monte Carlo—based
algorithms in a multi-
institution phantom study.
The analytic algorithms
dramatically and consistently
overestimated delivered dose
up to 31% in the iGTV and
46% in the PTV. Monte
Carlo algorithms and mea-
surements showed consider-
ably better agreement.
Proton therapy centers
should implement Monte
Carlo—based (or other more
advanced) algorithms in
proton therapy for thoracic
malignancies. Pencil beam
algorithms for proton dose
calculation in lung are
unacceptable.

Purpose: To compare analytic and Monte Carlo—based algorithms for proton dose
calculations in the lung, benchmarked against anthropomorphic lung phantom mea-
surements.

Methods and Materials: A heterogeneous anthropomorphic moving lung phantom has
been irradiated at numerous proton therapy centers. At 5 centers the treatment plan
could be calculated with both an analytic and Monte Carlo algorithm. The doses calcu-
lated in the treatment plans were compared with the doses delivered to the phantoms,
which were measured using thermoluminescent dosimeters and film. Point doses were
compared, as were planar doses using a gamma analysis.

Results: The analytic algorithms overestimated the dose to the center of the target by
an average of 7.2%, whereas the Monte Carlo algorithms were within 1.6% of the
physical measurements on average. In some regions of the target volume, the analytic
algorithm calculations differed from the measurement by up to 31% in the internal
gross target volume (iGTV) (46% in the planning target volume), over-predicting
the dose. All comparisons showed a region of at least 15% dose discrepancy within
the iGTV between the analytic calculation and the measured dose. The Monte Carlo
algorithm recalculations showed dramatically improved agreement with the measured
doses, showing mean agreement within 4% for all cases and a maximum difference of
12% within the iGTV.

Conclusions: Analytic algorithms often do a poor job predicting proton dose in lung
tumors, over-predicting the dose to the target by up to 46%, and should not be used
unless extensive validation counters the consistent results of the present study. Monte
Carlo algorithms showed dramatically improved agreement with physical measure-
ments and should be implemented to better reflect actual delivered dose distributions.
© 2017 Elsevier Inc. All rights reserved.

Accuracy: MC vs. FRoG vs. clinical TPS (MC)
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Biological calculations for 1C ions

RBE model comparison: LEM vs. MKM
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First Monte Carlo-based TPS for p, “He, 1°C

" PTV-TPS
~—PTV-MC REC
| T PTV-MC OPT
==~ OAR-TPS
=== 0AR-MC REC
— == OAR-MC OPT

60 e AW

Volume (%)

40 i \ O PP

Hot spot

0 2‘0 40 60 80 160 120 140 180
RBE-weighted Dose [%])

Dose sparing

20 X 2%\ 3

—_—PTV

Opt. Nerve(l)

Chiasma

= Opt. Nerve(R)
Brainstem

NN

Volume (%]

H(RBE=1.1)

0 10 20 30 40 5 60 70 80 92
Dose [Gy(RBE))

A. Mairani, et al Physics in Medicine Biology, 2013, 58, 2471

T. Tessonnier, A. Mairani, et al. Radiation Oncology, 2018, 13,1

Proton Patient Plan:
TPS
Vs
MC re-calculation
VS
MC optimization

Proton
Vs
“He
Patient Plan:
normal tissue sparing
with “He ion

(O NCT



The common application of a Graphics Processing Unit (GPU)
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Fast Monte Carlo on GPU: an example

GPU-based fast MC (gPMC) vs. general purpose MC (TOPAS), 3Dy (2%/2mm) 99%
Calculation Time: seconds vs. hours
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Conclusions

* Monte Carlo Methods became a standard for dose computation in radiation therapy
* Fast CPU and GPU Monte Carlo codes are available

* General purposes Monte Carlo codes remain the gold standard in case where

experimental data are not available

* None MC is perfect, it is important to understand the limitations and perform

experimental validations!
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