

ADAM and LIGHT

ALBERTO DEGIOVANNI

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548

"This material was prepared and presented within the HITRIplus **Specialised Course on Heavy Ion Therapy Research,** and it is intended for personal educational purposes to help students; people interested in using any of the material for any other purposes (such as other lectures, courses etc.) are requested to please contact the authors:

Alberto Degiovanni alberto.degiovanni@avo-adam.com

08.07.2022

... LIGHT and ADAM

Linac for Image Guided Hadron Therapy and Applications of Detectors and Accelerators to Medicine SA

Outlook:

- 1. The LiGHT accelerator "product"
- 2. The industrialization process

Outlook:

1. The LiGHT accelerator "product"

2. The industrialization process

Clinical motivation – Photon vs proton therapy for cancer treatment

Source: American Society of Clinical Oncology & BCG

From clinical needs to beam and system requirements

The requirements of the beam spots of the LIGHT system include: variable charge, variable energy and variable spot position

Beam spots with:

- Variable charge: ~ 1-250 Million protons in a pulse
- Variable energy: 70-230 MeV (in depth scanning between 3 and 32 cm)
- Variable spot position: spot can be moved transversally up to a 30x30 cm² field

The high-frequency linac technology choice

1991: first "all-linac" approach to proton therapy

R. W. Hamm, K. R. Crandall and J. M. Potter, Preliminary design of a dedicated proton therapy linac, in *Proc. PAC90*, Vol. 4 (San Francisco, 1991), pp. 2583–2585.

1994: "cyclinac" approach to proton therapy

The LIGHT Beam Production System

Parameter	Value	Unit	
Length	~25	m	
Max. Energy	230	MeV	
Output Peak Current (at the end)	0.3 - 40	μA	
Pulse Length	0.5-2	μs	
Max. Repetition Rate	200	Hz	
RF Frequency	2997.92	MHz	

• Why 3 GHz ?

3 GHz electron linac for «conventional» radio-therapy

- Energy range of linacs: 4-25 MeV
- Electrons are accelerated by microwaves (10³-10⁴MHz)
- Philips SL-75/5: S-band 2856 MHz, MW cavities dimensions lenght
- 3 cm, radius 5 cm, electrons 5 MeV, tungsten target

Cooperate the Karley Divisionly

- Why 3 GHz ?
- →medical linacs used in conventional radiotherapy are based on 3 GHz structures
- \rightarrow RF power sources and network components are readily available

From 3 GHz electron linacs to 3GHz proton linacs

From electron linac to proton linacs \rightarrow speed and energy

- Why 3 GHz ?
- →medical linacs used in conventional radiotherapy are based on 3 GHz structures
- \rightarrow RF power sources and network components are readily available

- From 3 GHz electron linacs to 3GHz proton linacs
 - Rest mass of protons is ~ 2000 bigger than the rest mass of electrons
 - Energy gain required is 10 times bigger: 20 MeV → up to 230 MeV

\rightarrow Multiple units with increasing speed of the beam

Cell Coupled Linac structures – unit

Accelerating modules

Cell Coupled Linac structures

Linear accelerating structure:

- Standing wave
- $-\pi/2$ phase advance
- biperiodic structure (with coupling cells on the side)

Synchronicity condition:

$$L = v \cdot \frac{T}{2} = \beta c \frac{\lambda}{2c} = \frac{\beta \lambda}{2}$$

Energy gain (per cell):

$$\Delta W = qE_0T \cdot L\cos\varphi$$

Example of synchronous particle motion (in a 5.7 GHz linac)

Permanent Magnet Quadrupoles for transverse focusing

From LIBO to the first unit of LIGHT

LIBO (Linac Booster) prototype by TERA-CERN-INFN

- Built in 1999-2000
- First proof of principle

- First Unit of LIGHT (ADAM)
 - first industrial 3 GHz linac unit for Proton Therapy
 - Optimized for industrial production
 - Produced following industry standards in 2009-2010

Amaldi et al., NIM A(521), 512-529, 2004

LIGHT – linac technology

- -> Pulsed beam at 200 Hz
- -> Active energy modulation (i.e no mechanical degrader)
- -> **Pencil beam scanning** or "spot scanning"
- -> Modularity & flexibility

Proton Injector

Pantechnik

(at Geneva)

Dreebit (at

Daresbury)

adapt and

optimize for

variable intensity

AVO-ADAM:

Integration:	Source	RFQ	SCDTL1	SCDTL 2	SCDTL3	SCDTL4	CCL1-2
B. energy:	40 keV	5 MeV	7.5 MeV	16 MeV	26.5 MeV	37.5 MeV	52 MeV

RFQ and its coaxial power lines

CCLs modules

ADVANCED ONCOTHERAPY

SCDTLs modules: accelerating tanks

ADVANCED ONCOTHERAPY

LIGHT Full-Scale Integration at 230 MeV

STFC Daresbury laboratory, Daresbury, Warrington

- Daresbury Integration Site (DIS): technical test site in UK
- End-to-end testing: Accelerator & Medical technical systems
- After the complete installation and integration → V&V tests
- Partnership with University Hospital Birmingham NHS Foundation Trust ("UHB"), aiming at treating patients in Daresbury in the context of our certification plan

https://www.youtube.com/watch?v=07TFUL5DzMU

- 1. The LiGHT accelerator "product"
- 2. The industrialization process

The technology application...

Medical Industry

The technology application...and what is behind it

User (patient) New Clients opportunities Technology application Production and Research commercialization Regulation Intellectual **Documentation** and Certification properties Quality process Testing development **Standards** V&V Product development Supply chain Funding

Medical Industry

Industry Standards for Medical Device

ISO-13485 Medical devices PROJECT INITIATION framework User Needs & Regulatory Requirements Validation It relies on Quality Management Design Planning System and on process **Design Input** Verification **Design Research & Activities** CHANGE MANAGEMENT Z. Design Change Management Customer Requirements OMS Change Management Supplier Quality Risk Review Identification / Traceability **Design Output** f¢f ٠ Reprezentative product **Design Transfer** 0 ORRECTIVE AND REVENTIVE ACTION QUALITY Risk Management Eliminate Noncomformities Inputs / Outputs QMS Improvement. - Verification / Validation MANAGEMENT Verify Effectiveness Medical Device SYSTEM Post-design control & PRODUCT Commercialization Post-market END OF LIFE surveilance Complaint Handling Management Review Risk Monitoring Inspection Readiness Vigilance Internal Audit Complaints **Regulatory Changes** New Hazards · Personnel Competency Deviations Infrastructure Work Environment

The Innovation Chain: converting science into wealth

Accelerators and Innovation

ADVANCED ONCOTHERAPY

HITRIplus - Specialised Course on Heavy Ion Therapy Research

The case of LIGHT

Thank you for your attention!

Questions ?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101008548