## Real-Time Dosimetry and Beam Monitoring for UHDR VHEE Beams for FLASH RT

### Joseph Bateman

John Adams Institute, University of Oxford

HITRIplus Specialised Course on Heavy Ion Therapy Research "Beams and Dreams" Session

July 2022









# VHEE (the beam) and FLASH (the dream)

- FLASH effect healthy tissue sparing observed at >40 Gy/s.
- Demonstrated for low energy electrons, protons and photons.
- Very High Energy Electrons (VHEE) of 100 – 250 MeV could be a promising option for FLASH RT with deep-seated tumours.



## Challenge for Dosimetry of UHDR Beams

- Ionisation chambers saturate in UHDR conditions required for FLASH.
- Correction factors can account for decrease in ion collection efficiency at UHDR but introduce large uncertainties.
- Collection time of transmission ICs too slow for FLASH beam monitoring.



Petersson et al., Med Phys 44 (2017) 1157

### **Requirements for UHDR Dose Monitor**

- 1. A response the does not saturate at the FLASH dose rates.
- 2. High temporal resolution.
- 3. High spatial resolution.
- 4. High level of beam transparency.
- 5. Large area to cover entire beam.

## Potential Options for UHDR Dosimetry

- Modified ionisation chamber geometry and design, e.g., ultra-thin plane parallel ion chambers
- Solid-state detectors e.g., diamond detectors, Si detectors
- Scintillators
- Accelerator Beam Instrumentation current transformers, pick-up monitors etc.

## CLEAR Accelerator (the beam that could make or break my dreams)

- <u>CERN Linear Electron Accelerator for</u> <u>Research</u>
- 60 220 MeV electron beam.
- Used for accelerator and component R&D, electronics irradiations and medical applications.
- Significant focus on UHDR VHEE RT research.







## Initial Detector Experiments at CLEAR

#### pCVD Diamond Detector



#### **GEM Foil Detector**



#### Timepix3 ASIC



### **Detector Experiments at CLEAR**

- 1. pCVD B2-HV Diamond Detector saturated at 1.6 Gy/s.
- 2. Timepix3 ASIC saturated at 5 Gy/s.
- 3. GEM foil did not saturate up to 200 Gy/s and high temporal resolution.





Timepix3 response at a) 100 pC pulse and b) 250 pc pulse

### Beam Dosimetry at CLEAR

- Beam Current Transformers (BCTs) provide non-destructive charge measurements.
- Linear response with dose measured on film at a reference position.
- However... beams at CLEAR are not flat and have varying beam size.
- Therefore the area integrated dose is used.





### Next steps...

- Existing range of detectors investigate only applicable for small size beams.
- BCTs only capable of providing total charge/dose measurements – no info on flatness, symmetry or beam size.
- Tests on other solid-state detectors.
- Investigate and characterise a number of scintillating/optical fibre arrays.
- Detectors and instrumentation for *in vivo dosimetry*.



Ortega Ruiz, I et al. Nuclear Inst. and Methods in Physics Research, A 951 (2020)

### Thank you for listening!

## Any questions?







08/07/2022

Joseph Bateman