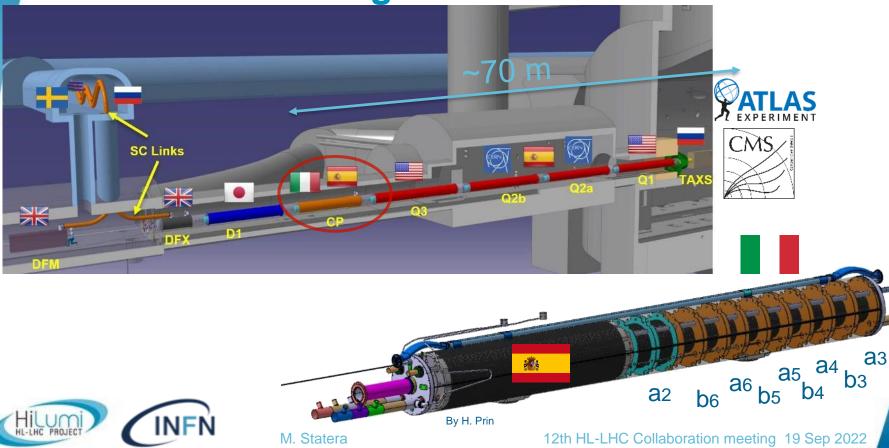


High Order Corrector update

Marco Statera on behalf of the LASA team INFN Milano – LASA Emma Gautheron CERN


12th HL-LHC Collaboration meeting Uppsala – Sep 19^h 2022

OUTLINE

- Scope: the High Order Correctors magnets
- Overview on HO Correctors
- The test station and selected results
- Integration
- Schedule
- Conclusions

THE LOW BETA SECTION and the High Order Correctors

SCOPE - High Order Correctors

The INFN-LASA followed the design, construction and test of the 5 prototypes of the High Order (HO) corrector magnets for the HL interaction regions of HL-LHC. KE2291 The INFN-LASA follows the series production of the HO corrector magnets for the HL interaction regions of HL-LHC. KE3085

Deliverables are the magnets, i.e. active part (coils) with iron yoke and support structure, plus the vertical tests. Integration in the cold mass corrector package is done at CERN

ADDENDUM No. 2 KE3085/TE/HL-LHC

to

30th Nov 2017

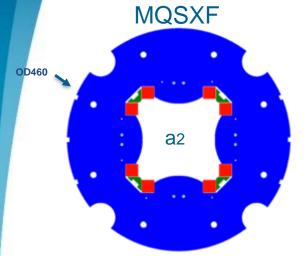
FRAMEWORK COLLABORATION AGREEMENT KN3083

between

THE EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

and

Istituto Nazionale di Fisica Nucleare (the "Institute") concerning

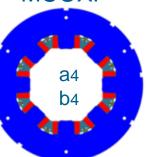

54 S.C. High Order Corrector magnets

Collaboration in design, procurement and testing of the high-order orbit corrector superconducting magnets in the framework of the High Luminosity upgrade for the LHC at CERN

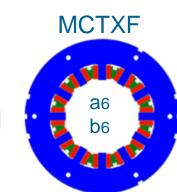

M. Statera

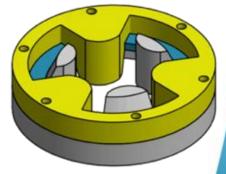
HO Corrector Magnets Zoo

Prototypes tested 2016-2020 NbTi SuperFerric design Geometrical lengths: 200 mm - 265 mm 12P, S4P: 540 mm - 580 mm



MCDXF


a5

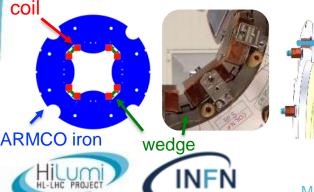

b5

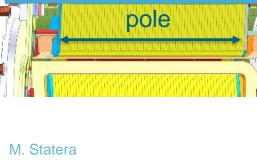
Design **Construction & Test**

- 5 protoptypes
- 54 series magnets 6P 8P 10P +50% Bdl

Round Coil Superconducting Magnet MgB₂demonstrator

M. Statera

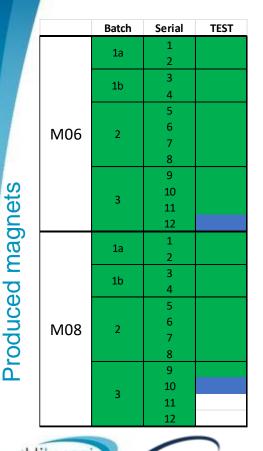

12th HL-LHC Collaboration meeting 19 Sep 2022

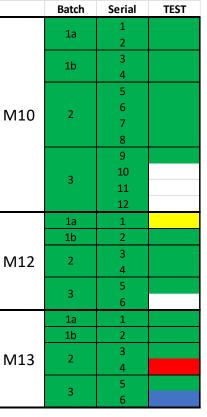

Superferric Design

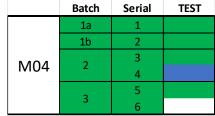
constraints

NbTi superconding coils

- Racetrack
- Insulation by S2 glass reinforced material
- Superferric design
- Compact and modular
- Strong contribution of the iron poles
- Field quality influenced by the shape of the poles CuB

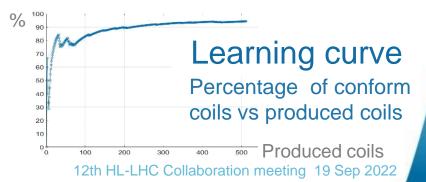



- Longitudinal dimension
- Quench protection
- Small dimension: 84kN series production (6 families)


	magnet	lc @ 4.2 K	Margin @4.2 K	Margin @1.9K			
CuBe rods	4P S	315.5 A	42.3 %	57.1 %			
	6P	225.5 A	53.4 %	>60 %			
	8P	230.2 A	54.4 %	>60 %			
	10P	255.7 A	58.9 %	>60 %			
	12P N	232.6 A	54.9 %	>60 %			
	12P S	230.2 A	54.4 %	>60 %			
Quench protection							
 No energy extraction (but 4P) 							
= 60% margin @ 1.0 k							

60% margin @ 1.9 K 12th HL-LHC Collaboration meeting 19 Sep 2022

Status of Production



Legend done/tested re-test Ongoing re-assembly Test ongoing

Last 10 produced magnets delivered to LASA in Oct 2021 Produced coils 508

- 29 NC (6%)
- Spares delivered to CERN except 4P

1

Test 1

date	Magnets	date	Magnets	date	Magnets
Jul 2020	MQSXFP1c MCDXF01	Apr 2021 CD5	MQSXF1 MCSXF05 MCTSXF1 MCTSXF2	Apr 2022 CD11	MCTSXF6 MCTXF5 RCSM 2 coils
Nov 2020	MCDXF02 MCOXF01 MCSXF01 MCTXF01	Jun 2021 CD6	MCOXF04b MCOXF07 MCSXF06 MQSXF3	Jul 2022 CD12	MCDXF09 MCOXF09 MCSXF11 MCTXF6
	MCDXF03 MCOXF03 MCSXF03 MCTXF2	Sep 2021 CD7	MCDXF07 MCDXF08 MCSXF07 MCTXF3	Sep 2022 CD13	MCTXF6 MCOXF10 MCSXF12 MQSXF4
Mar 2021	MCOXF02 MCOXF04	Nov 2021 CD8	MCOXF05 MCOXF01b MCSXF08 MCTXF4	Oct 2022 CD14	MCDXF10 MCOXF11 MCDXF11 MQSXF6
Mar-Apr 2021 CERN	MCSXF02 MQSXF2 MCDXF02b MCDXF04 MCSXF01b MCDXF05 MCDXF06 MCSXF04 MCDXF01b MCTXF1	Dec 2021 CD9	MCOXF08 MCOXF06 MCSXF09 MQSXF1b	Nov 2022 CD15	MCOXF12 MCDXF12 MCTXF4*
		Feb 2022 CD10	MCTSXF3 MCTSXF4 MCSXF10 MQSXF5		

21 magnets tested since last Collaboration Meeting and one MgB2 Round Coil Superconducting Magnet

M. Statera

12th HL-LHC Collaboration meeting 19 Sep 2022

Test 2 Delivered to CERN 55% Cooled magnets 55 MM all magnets except one Compliant magnets 42 8@CERN and others @LASA @CERN 80 70 55.6% 30 60 50 **Tested** 20 20 20 77.8% 42 Produced 10 0 100.0% giu-20 lug-20 ago-20 set-20 ott-20 gen-2[.] feb-2[.] gen-2 apr-2 giu-2 giu-2 ago-2 set-2 set-2 nov-2 mar-apr-giu-biu-biu-ago-set-set-set-ott-ott-novgenott-, nag-

0

10

30

40

20

54

54

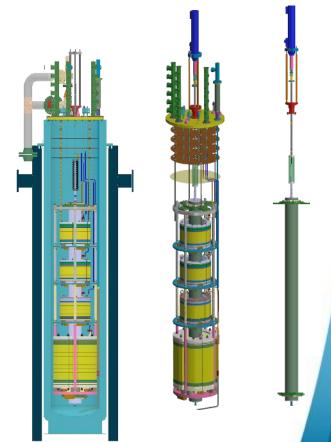
54

50

The test station

Four HO correctors cooled

- Each magnet powerd individually
- Magetic Measurements


New power converter 600 A

- Dump resistance 1 Ω or 1.5 Ω
- IGBT polarity switch by LASA
- IGBT for quench protection

Field probe for the series

- Each magnet measured individually
- No cross talk

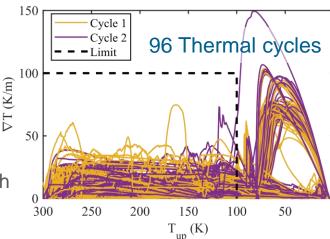
Test results

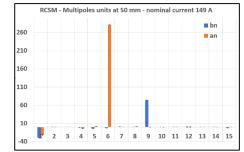
Powering (M. prioli)

- Training (both polarities)
- Endurance test 1h at ultimate

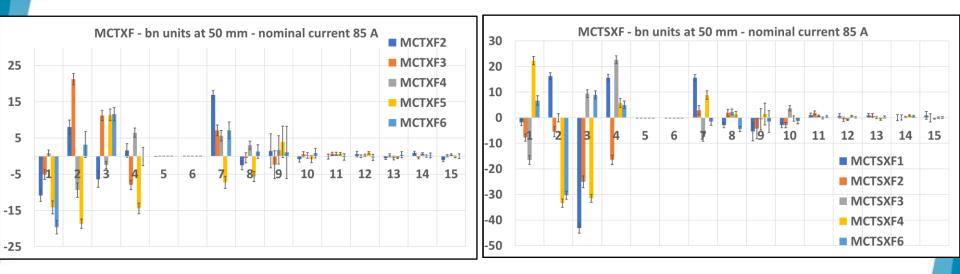
Magnetic field measurement

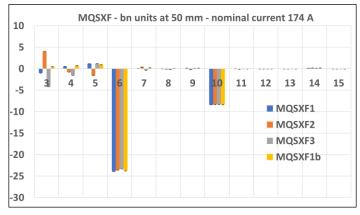
(E. De Matteis, S. Mariotto)

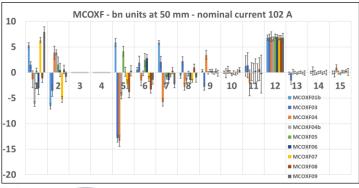

- Field integral 1% to 3% wrt simulations
- Field integral reproducibility <0.1%
- Field quality high reproducibility
- Transfer function very good agreement with simulations, high reproducibility

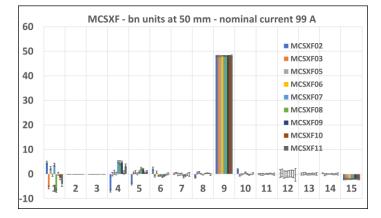

Quenched coil recostruction via Magnetic Measurements (S. Mariotto)

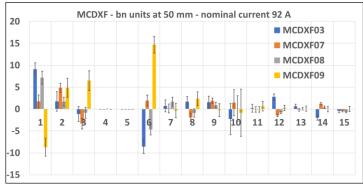
Roud Coil Superconducting Magnet 2 MgB₂ coils Reached 230 A (1.5 I_{nom})




MM results 1




- Very reproducible
- Monitor of assembly quality over time



MM results 2

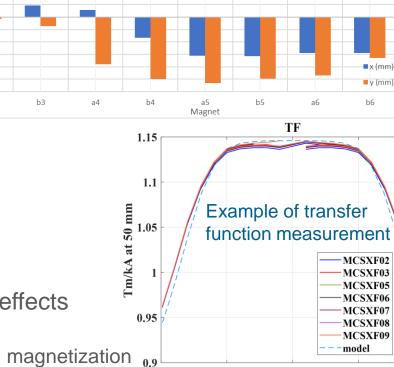
M. Statera

Integration

0.10 0.00 -0.10 -0.20 -0.30 -0.40

-0.50

-0.60


a3

Mechanical integration Assembly in b.180 by H. Prin Alignment measurement by C. Petrone

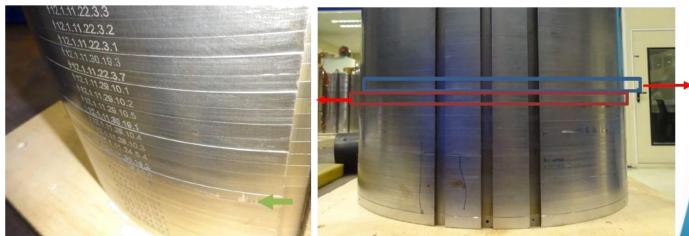
Field Description of the LHC (FiDeL) model Transfer function of LHC magnets by several effects by A. Chmielinska, L. Fiscarelli

Geometric, DC magnetization, saturation, residual magnetization

-50

-100

100

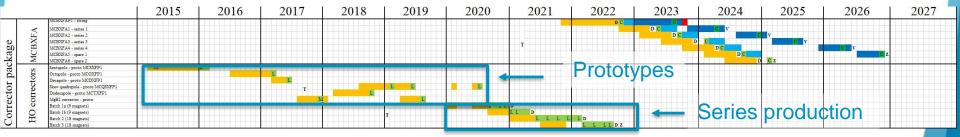

50

a2

NCs and challenges

- Updated design to improve robustness of coil positioning (wedges) ok
- Handling has to be monitored

EDMS 2649775 MCTXF1b test ongoing



Schedule

- Delays in testing due to covid restriction
- Delays in testing due cryogenic maintenance and safety update
- Expected end of testing at LASA Dec 2022

M. Statera

Conclusions

- All magnets assembled
- 75 % of the series magnets have been tested
- About half of the magnets at CERN
- Cold mass preparation ongoing
 - Alignement has been measured
- All HO Correctors tested and delivered to CERN within Jan 2023

Istituto Nazionale di Fisica Nucleare Laboratorio Acceleratori e Superconduttività Applicata

LASA team

F. Broggi, M. Dam, E. De Matteis,
S. Mariotto, A. Paccalini, A. Palmisano,
A. Pasini, D. Pedrini, L. Imeri,
A. Leone, M. Prioli, M. Sorbi, S. Sorti,
M. Statera, M. Todero,
R. Valente
CERN E. Gautheron, E. Todesco

M. Statera

NFN GIO