

HL-LHC IT String: Planning and Validation Program

M. Bajko TE-MPE-SF/HL-LHC WP16

CÉRN

HL-LHC Collaboration Meeting, Uppsala September 2022

Outline

- STRING Validation Program
 - The HL-LHC IT STRING Motivation
 - The IT STRING Scope
 - The IT STRING: a test stand
 - The IT String Validation Program organisation
 - The Validation Program Drivers
 - The IT String Validation Program
- Planning
 - Remarks on the schedule
 - Tools for planning
- Status
- Summary

The HL-LHC IT STRING MOTIVATION

Warm Diodes

In the HL-LHC configuration, the present LHC's Inner Triplet (IT) regions of IR1 and IR5 will be heavily modified will be heavily modified. The magnets will be powered

QP: OL QHs + CLIQ + Cold Diodes

The IT quadrupoles (Q1-Q3) will use Nb₃Sn instead of the Nb-Ti used by the present ones.

The protection of magnets based on Nb₃Sn superconductor technology will be different from what is used at present. This will be the first time using the CLIQ and QHs. Higher magnetic energy stored (1.2 MJ/m, 2-4 x higher than in the LHC) in the magnets, in operational conditions.

CDB

DFHx

New continuous and remote alignment system (FRAS) for minimising aperture optimisation, corrector strength and radiation exposure of personnel. At1 sigma the target is ±0.100 mm precision.

CERI

18 kA **QP: OHs** /± 2 kA CDB CDB Warm Diodes CDB 1± 35 A (60 A*) DFHx CDB x10 CDB CDE CDB CDB DFHx DFHx DFHx CDB Local Local Local DFHx Cold Diodes 122 P1 P4 P2 PL 124 P4 122 P2 121 D.4 Q2a Q2b 14 kA ×1 01 O2a O₂b **O**3 СР **D**1 MQXFA x2 MQXFB MQXFB MQXFA x2 MBXF OC (Q2) OC (Q3) • 300 мсвх MCBXFB x2 x2 Powered from the UL14, UL16, UL557 and USC55 QP SF HO MOSXE (200A DFHx DFHx MCSXF/MCSSXF (2x120A) MCOXF/MCOSXF (2x120A CDB CDB QP: Ear MCDXF/MCDSXF (2x120A arthing MCTXF/MCTSXF (2×120A) Ex 2 9 **QP:** Quench Propagatior y Extraction -t midpoint of EE In addition, the aperture will Local be much larger. The cold mass configuration will be ± 200 A (600 A*) completely different ± 120 A

with a higher current than the present LHC IR magnets and will be fed via a superconducting link and new a generation superconducting of current leads

DFHx

CDB

Q

: Energy

x8

The **D1** magnet will be superconductor made of instead of normal conductors as is in today's LHC.

The corrector package will be substantially modified as configuration and technology too.

Train teams and validate procedures for LS3 and HL LHC HWC.

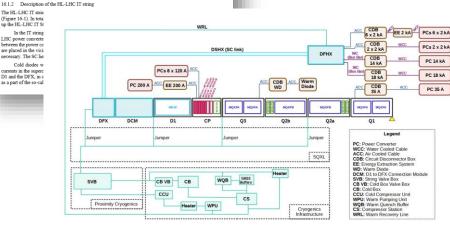
ion Meeting Sept 2022

The IT STRING Scope

IT string and hardware commissioning

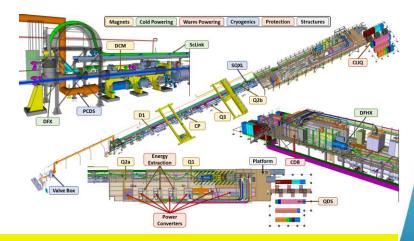
M Bajko1* and M Pojer1*

¹CERN, Accelerator & Technology Sector, Switzerland *Corresponding authors


16 IT string and hardware commissioning

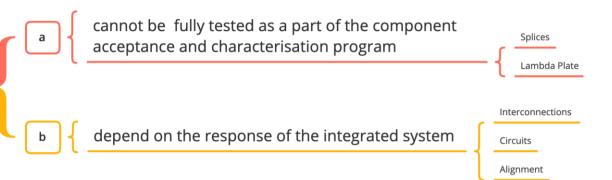
16.1 The HL-LHC IT string layout

16.1.1 Introduction and goal of the HL-LHC IT string


The HL-LHC IT string (IT string) is a test staaf for the HL-LHC, whose goal is to validate the collective behaviour of the IT magnets and circuits in conditions as near as possible to the operational correct while cooled to 15 M in liquid heim. The test stand will be matalled in the building 2173 (SM18) and will use magnets, superconducting (SO) link, current leads, power converters and protection equipment designed for the HL-LHC with their final design, and usable for the HL-LHC. The to bench will allow a real user training for the installation and alignment, the validation of the electrical circuits, the protection scheme of the magnets, and the SC link At its occision, all ubolystem overs will be able to fineture the string for the magnets, and the SC link At its occision, all ubolystem the HL-RC. The to bench will allow a rest up and to complement or change when necessary, before they are finally installed into the HL. CFC. The powering procedures will be written and validated during the test. These sets will also improve our knowledge of every single component and will give us the opportunity to optimize the installation and hardware commissioning procedures.

CÉRN

The *scope* of the IT STRING is to represent, as best as reasonably achievable in a surface building, the various operation modes to <u>STUDY and VALIDATE the</u> <u>COLLECTIVE BEHAVIOUR</u> of the different systems of the HL-LHC's IT zone (magnets, magnet protection, cryogenics of the magnets and of the superconducting link, magnet powering, vacuum, alignment, interconnections between magnets, and the superconducting link itself).


Ref. HL-LHC IT STRING Scope https://edms.cern.ch/document/1693312/1

The IT **STRING** will deliver **the first complete experience** of installing and operating the IT zone

The HL-LHC IT STRING: a test stand

The HL-LHC IT STRING will serve as a test bed for matters or conditions that either

The STRING test takes place TOO LATE in the project to be used FOR QUALIFICATION of COMPONENTS and « known unknowns » must be addressed at the level of the design.

We rather look for VALIDATION AND « unknown unknowns » of the INTEGRATED SYSTEM during its installation, operation and dismounting.

Drivers of the String Validation Program

STRING Validation

Program

Alignment and repeatability

Quench protection and Circuit

Compatibility of Control layers

Beam operation cycles

Cryogenic operation scenarios

Quench detection thresholds

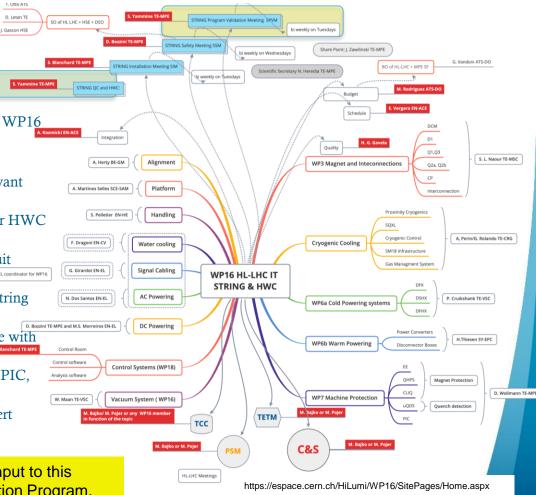
Power Convertre's accuracy, precision and control

Tooling and methods for Interconnections Validation of the collective

behaviour

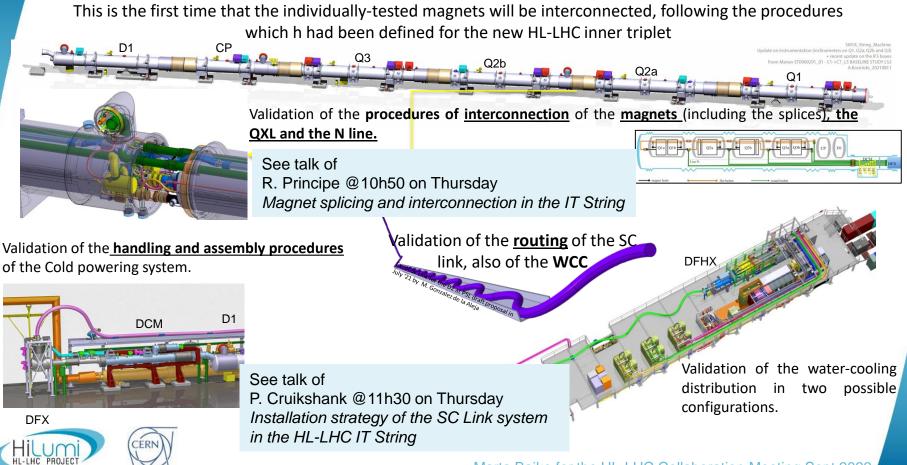
Training teams

Validate procedures


HL-LHC IT STRING organisation for validation program

WP2, WP3, WP6a, WP6b, WP7, WP9, WP12, WP15/15.4 and WP16 are represented

- Objective of the Meetings:
 - Define the validation program of the string with the relevant WPs
 - Coordinate with equipment owners the test procedure for HWC and QC tests (ElQA, leak, pressure tests, etc.)
 - Produce the powering procedure for HWC tests per circuit family and for combined powering
 - Define the additional string-specific tests desired in the String Validation Program
 - Ensure the definition of the control layer and tools in line with the LHC tools
 - Ensure the adaptability of the supervision tools (CRYO, PIC, QPS, etc.) to the IT String
 - Identify QA/QC steps in the assembly sequence and insert them, when necessary all along the String lifetime


Particular thanks for S. Yammine for input to this presentation specifically for the Validation Program.

String Validation Program and QC Planning

What will we learn during installation?

What will we learn during STRING HWC and operation?

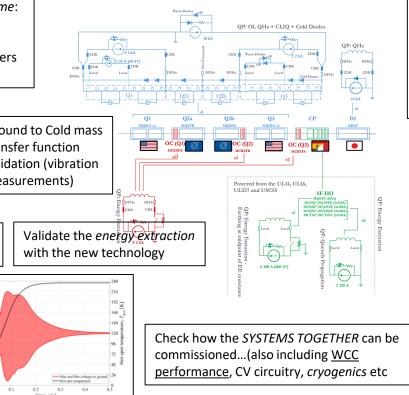
Ex. Validation of the new **POWERING AND PROTECTION STRATEGIES**

VALIDATE the new powering scheme: ex. new decoupling algorithm parameters for the circuit nested control and the new FGC parameters for the HL-LHC IT circuits.

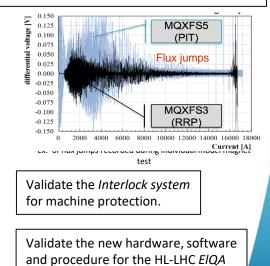
Ground to Cold mass transfer function Circuit 1 validation (vibration Circuit 3 measurements)

Validate the *protection* strategy combining CLIQ and QH

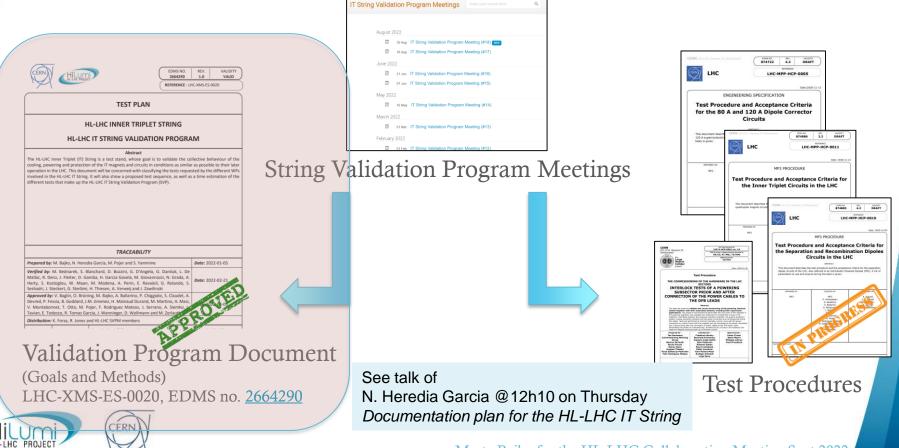
Circuit


Circuit 2

Sircuit 4


Circuit 2

Circuit 4



Define *thresholds* and validate the *quench* detection considering cross-talk among circuits and flux jumps, in order to increase the availability and reduce the amount of false triggers in both HWC and in the operation while keeping a suitable quench detection scheme.

Documentation Plan

String Validation Program Document

	Requirement	Requirement				Magnets:															Cryogenics Commis (Refer to paragraph			iets
	ID	Name	Items to Test		of the Test	Warm or Cold?														2	EIQA Tests of the SC Refer to paragraph	C Link, th	e DFHX and th	ie DFX
		Ground-to-	WP2 and Beam Op	perations [12] [13]																3	Tooling, Procedure DCM, DFX, SC link I	es a		
	WP2-1	Cold-Mass Transfer Function (TF)	Requirement ID	Requirement Name	Items to Test		ioal of the Test	× ×	Magnets: Warm or Cold?											4	Vacuum Pumping Powering System Individual System T	ar No.	Protection	Sustem
		Tests	c			and con	et field and the ntrol of the con e nominal perfo	verter.													Individual System T Individual System T		PIC Tests at Powering T	t Zero C
	WP2-2	Alignment Tests	WP2-12	Nominal Beam Cycle	Requirement ID	Requirement Name	Items to	o Test	3	Goal of the Te	st V	Magnets: Narm or Cold?]							7	Software and PIC H	lard 4	Powering T (Inom)	ests for
	WP2-3	Alignment Tests during	WP2-13	Noise Studies	WP6a-6	Impact of Quenches Ter	Cold poweri			ite effect of qu	ench in a	2		Magnets:						9	checks by EN-EL) EIQA Tests of the M Ground-to-Cold-Ma	Aag		
		Powering			WP6a-7	Individual Powering	ID	Requireme Name	ent	items to Test		Goal of	the Test omated analysis	Warm or Cold?						11	Tooling, Procedure Magnets Interconn	es i S iecti	Powering T	ests for
	WP2-4	K-modulation Powering	WP3-1	EIQA Tests Resistance		Powering of Grouped	WP7-2	System an Software Te	10	ftware for the l ortem, AccTest	Post	of faults		w&c						12	Vacuum Local Leak Ground-to-Cold-Ma IFS Connectors Mar	355		
	WP2-5	Triplet Trim	WP3-2	Measurements	_	Circuits				Requirement ID	Requiremen Name	nt	Items to Test	G	oal of the Test	Magnets Warm or Cold?	7			15	Pumping and Globa Cryogenics Pressure Insulation Vacuum	e ar 6	Powering T	ests for
	WP2-5	Powering	WP3-3	Individual Powering	WP6b-1	Individual	WP7-3 WP7-4	PIC Test EIQA Test						wiring of in	nets - including t strumentation ca	he ables.				17	Alignment Tests at	Wa		
	WP2-6	Triplet Trim Powering	WP3-4	Corrector Package Powering	8	System Testi	WP7-5	Heat Run T		WP9-2	Pressure an Leak Test		Cryogenics and agnet installation	magnet	s, the cold power d their connectio	ing w				19 20	EIQA Tests at Warm Cooling till 80 K EIQA Tests at 80 K	_		
		Powening	WP3-5	Powering of Grouped	WP6b-2	Short Circuit and Heat Rur Test			-		Control Syste	em C	Requirement ID	Requirement Name	Items to Te	est	Goal of the Test	Magnets: Warm or Cold?		22	Alignment Tests at Cooling till NOC (1.9 Static Cryogenics M	9 K	Powering o	of Group
	WP2-7	Orbit Corrector Tuning Tests	WP3-6	Circuits Powering Cycle	WP6b-3	Decoupling Control and FC	WP7-6	Detection Threshold T		WP9-3	Tuning		WP12-2	Leak Tests of the Magnets Vacuum TF	Insulation vac installatio	n Studie th	the vacuum installation of the magnets. e transfer functions due	w			EIQA at Nominal Co Alignment Tests at	No	Bayonet He	
	WP2-8	HOC Powering Combinations		Endurance Test	_	Configuration		-	_	WP9-4	Static and Dynamic Hei Load		WP12-3	Measurements	installatio	to diffe	rential pressures of the vacuum system.					10	Operation	Power
	WP2-9	Tuning of D1	WP6a-1	EIQA Tests	WP6b-4	Discharge Tes	WP7-7	Cross Talk T	fest		Measuremer		31070-005	Interconnection		proces	t of the interconnection dures. Will employ the pling and Quality Contro	1					Measurem	
	WF2-3	Powering	WP6a-2	Instrumentation Wiring Validation		Discharge Tes				WP9-5	Flow Test		WP15-1	Procedure and Tooling	Interconnect	(QC) represe) as in the tunnel. A ntation of the space will be also sought.	w				12		
	WP2-10	Orbit Feedback Tests	WP6a-3	Resistance Measurements	WP6b-5	after Loss of Cooling Wate	WP7-8	EMC Test		WP9-6	Heat Transfe	er 1	WP15-2	De- Interconnection Procedure and Tooling	Interconnect	Check th	e tooling and procedure de-interconnection.	e w				14 15	Powering b Warm-up T	
	WP2-11	Flux Jumps Measurements	WP6a-4	Cross Talk Test	(WP6b-6	Accuracy and Precision Test	WP7-9 WP7-10	EE Performa Tests CLIQ		WP9-7	Cryogenic Performanc Test during	e U	WP15-3	DCM, DFX and SC link Interconnection	DFX and SC	link	rify installation and connection operation on the DCM, SC link and	w					Tota	al effect
			WP6a-5	Impact of CLIQ	WP6b-7	Energy	WP7-11	Performan Quench			Quench Quench	- Ci	WP15-4	IFS Connectors	IFS cabli	Validate	DFX. IFS cable connection an	d						
From	th 1	e		Test	-	Recovery Test	WP7-12	Protection T Thermal Propagatio	1	WP9-8	Recovery System Set Pressure			Manipulation	WP15.4 a	Requirement ID	Requirement Name	Items t	o Test		Goal of the Test	÷	Magnet Warm Cold?	or
requi			s h	7	WP7-1	Individual Systems Test	WP7-13	Tests UPS Test		WP9-9	Maximum He Load	eat	WP15.4-1	FRAS Operation Tests	FRAS of Q1, Q Q3, DFX,	WP15.4-4	Remote Measurements Train	FRAS meas	urements	measur tuni	te and validate a ement "train" to nel measuremen mediary compor	prepar its of		
							WP9-1	Cryogenic		WP9-10	Warm-up Te	sts Col				WP15.4-5	FRAS Access and Maintenance	Mainten alignment/a systems	adjustment	system	and optimise the maintenance pro and duration) fo	ocedure		
the d	itte [.]	rent	W	Ps			0.000	Commission	ning	Shiring-Sec.	Pressure Dro	00		FRAS	Alignment mo		Mock-up Tests	compo	ments WP16		requirements.			_
	iiic.	I CIII	_						-	WP9-11	Tests	Col	WP15.4-2	Repeatability Tests	of cryostat internal comp (i.e. cold n	WP16-1	HWC	HWC Pro		Validate	HWC procedure LHC circuits.	s for H	L- C	
Hil	nU.	n	CE							WP12-1	Leak Tests o the Cold Powering System	of		100000000000000000000000000000000000000	· · · · · · · · · · · · · · · · · · ·	WP16-2	нwс	HWC So	oftware	(AccTe	idate HWC softw esting, Swan Noti lortem, etc.) for circuits.	ebook,	w&0	2
HL-LHC	PROJE		IN IN	The	0.000			~	_		000		WP15.4-3	Alignment Test Procedures and					WP18	Mallah -				二,
		LF	IC-X	MS-E	5-002	20, El	DMS	s no). <u>2</u>	664	290			Tolerances	and tolera	WP18-1	Control Systems Tests	Control S	Systems	rely o	the various system on the HL-LHC co rovided by WP1	ntrols	w&c	- 1

To the test sequence

ents HWC or

String Specific

N/A N/A

N/A N/A

HWC

Table 3 - Test sequence before and during first cool down

DFHX and the DFX at Warm WP6a-1, WP7-4

Protection System IST and UPS Test

owering Tests for 120A Circuits (Inom)

owering Tests for RCBX + RQSX3 Circuits

Powering Tests for RD1 Circuit (Inom)

owering of Grouped Circuits

ayonet Heat Exchanger Test

Operation Powering Cycles

wering beyond Nomina

Warm-up Tests of the Cold Pow

Total effective duration

Powering Tests for RQX Circuit (Inom) WP3-2, WP3-3

No. Test Nam

PIC Tests at Zero Current

requirements

Table 4 - Test senuence after first cool down

WP9-1

WP Duration

10 m

4 w

HWC or Duration String Specific

HWC 2 w

HWC 1 w

HWC 2 w

HWC

HWC 2 w

Protection System IST WP7-1 HWC Powering Tests for 120 A to 2 kA Circuits WP3-2, WP6a-3, WP16-1, HWC WP16-2
Powering Tests for RD1 and ROX Circuits WP3-2, WP6a-3, WP16-1,

WP16-2

WP15.4-1 N/A

WP15-2 Total effective duration of test sequence during and after the the

HWC(8w) 11 w Table 5 - Test sequence during and after the thermal cycle

Covered WP req

N/A WP12-1, WP12-2

WP15.4-1, WP15. WP15.4-4, WP15.4-5 WP15.4-2, N/A

WP3-1, WP6a-1, WP7-4

WP3-1, WP6a-1, WP7-4

WP16-1, WP16-2 WP3-1, WP6a-1, WP7-4

WP3-1, WP6a-1, WP7-4

WP3-1, WP6a-1, WP7-4

WP2-2. WP15.4-1. WP15.4- HW

WP3-1, WP6a-1, WP7-4

Covered WP requirements

WP7-1, WP7-13, WP18-1

WP3-2, WP3-3, WP6b-3

WP16-1, WP16-2, WP18-1

WP6a-3, WP6a-6, WP6a-7 WPENJ WPENS WPENG WP7-6, WP7-9, WP7-11 WP9-4, WP9-5, WP9-7 WP9-8 WP16-1, WP16-2, WP18-1

WP6a-3, WP6a-6, WP6a-7 WP6b-3, WP6b-5, WP6b-6 WP7-6, WP7-11 WP9-4, WP9-5, WP9-7 WP9-8 WP16-1, WP16-2, WP18-1

WP7-3, WP18-1

WP3-2, WP3-3

WP3-2, WP3-3

EIQA Tests at Nominal Condit

Alignment Tests at War

EIQA Tests at Warm

Cooling till 80 K EIQA Tests at 80 K

Alignment Tests

Alignment Checks Warm-up till 80 K

EIQA Tests at 80 K

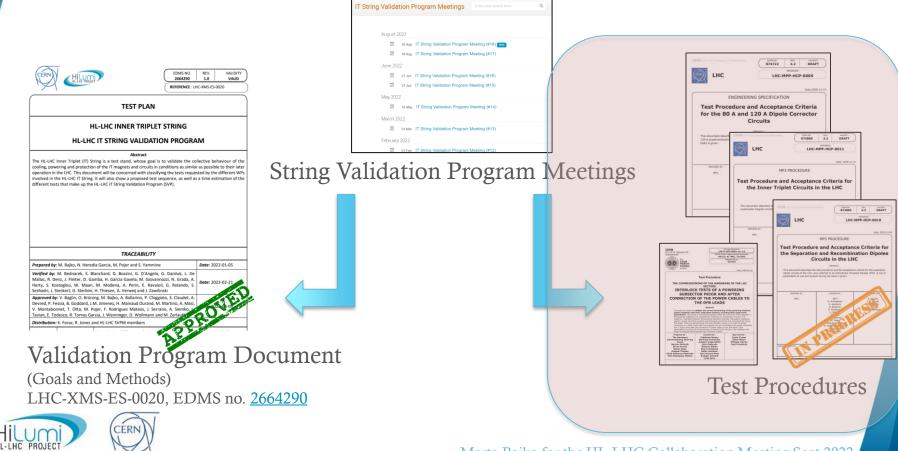
EIQA Tests at Warm

Warm-up till Room Tem

13

Alignment Tests at 80 8 Cooling till NOC (1.9 K in magnets) EIQA at Nominal Conditions

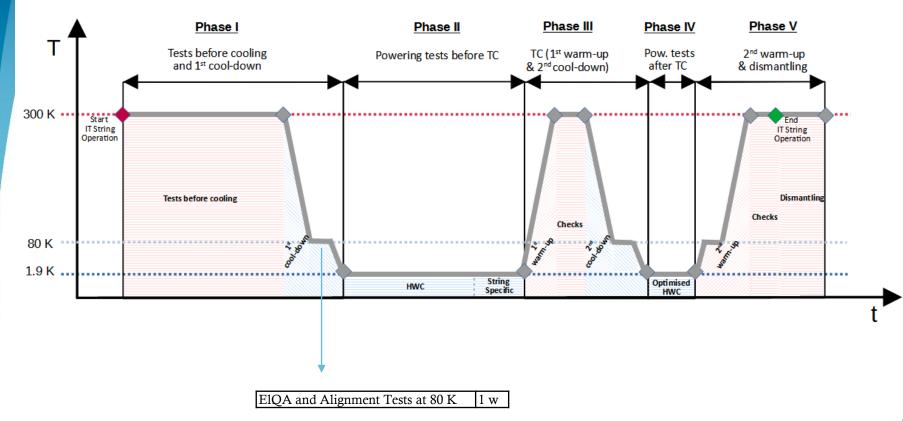
Alignment Checks Warm-up till Room Temperatur Global Leak Tests of Insulation V

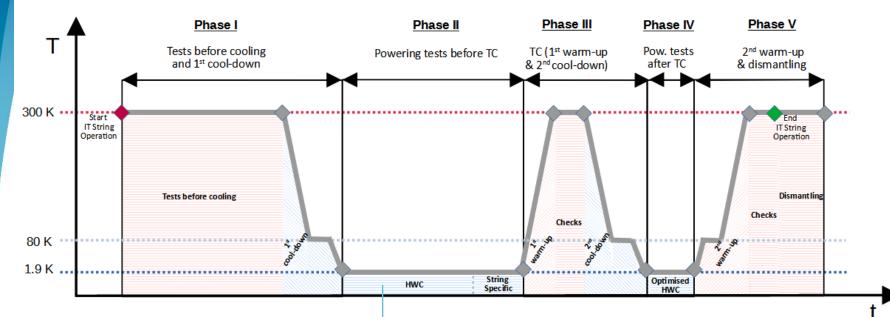

(2 w powering and 2 w training)

oration Meeting Sept 2022

Powering of Grouped Circuits EIQA Tests at Nominal Condition

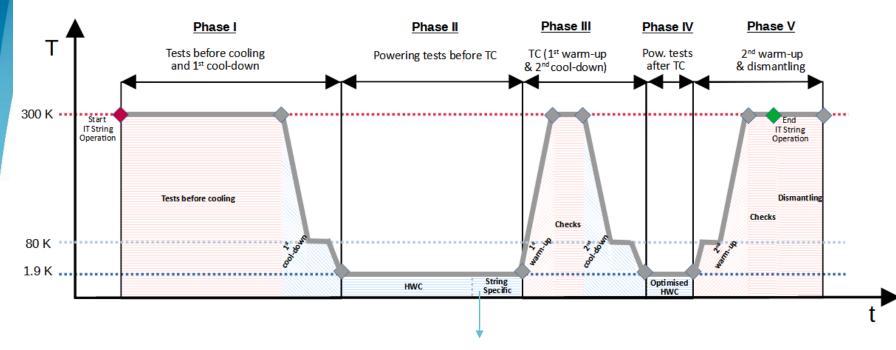
No. Test Name

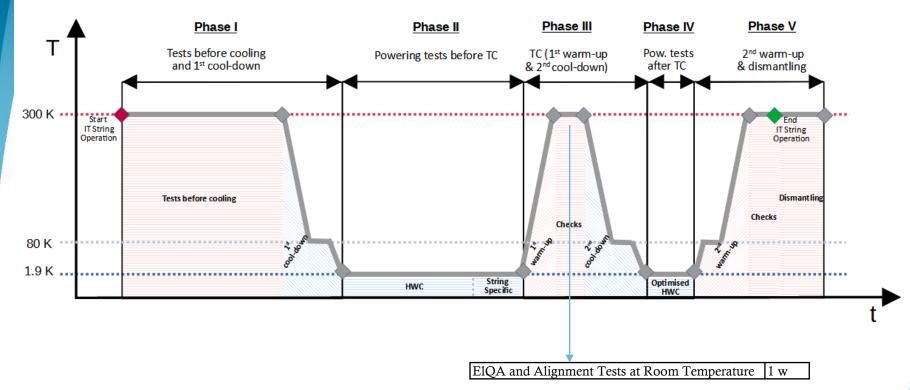

Documentation Plan

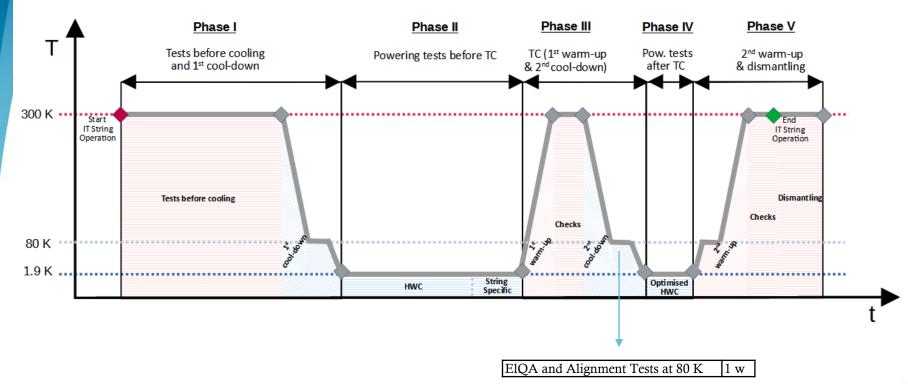


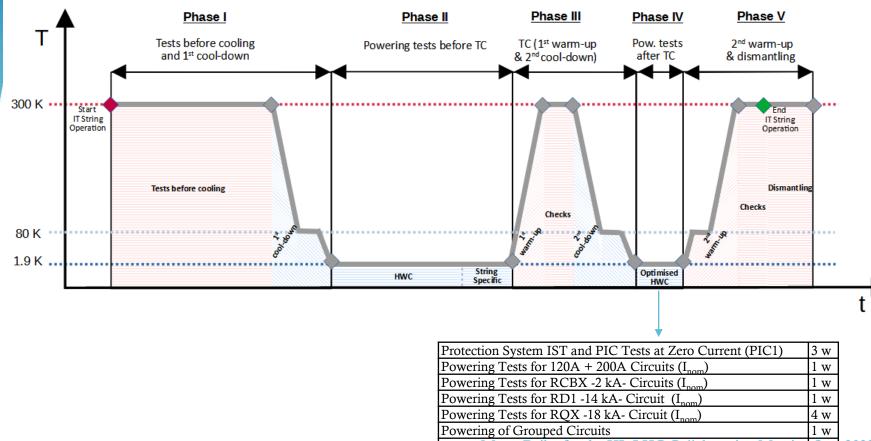
Powering Tests for Hardware Commissioning

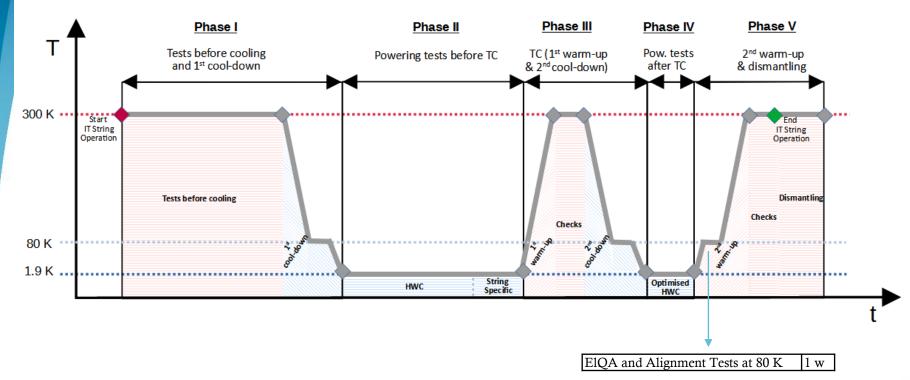
LHC 600 A	Step for HL-	Test Description	▲ 🥼 HL-LHC IT String Circuit Commissioning Tests											
(Reference)	LHC IT String	-	LHC-XMS-OP-0004 (v.0.1) ELQA QUALIFICATION OF SUPERCONDUCTING CIRCUITS IN THE HL-LHC IT STRING											
	<u></u>		LHC-MPP-HCP-0005 (v.4.2) Test Procedure and Acceptance Criteria for the 80 A and 120 A Dipole Corrector Circuits											
PCC	PCC	Power Converter	LHC-MPP-HCP-0003 (v.5.4) Test Procedure and Acceptance Criteria for the 600 A Circuits											
		Configuration	LHC-XMS-OP-0006 (v.0.1) Test Procedure and Acceptance Criteria for the 2 kA Corrector Circuits (RCBX) in the HL-LHC IT String LHC-XMS-OP-0007 (v.0.1) Test Procedure and Acceptance Criteria for the Separation Dipole Circuit (RD1) in the HL-LHC IT String											
PIC2	PIC2	PIC tests	LIC-XMS-OP-0007 (v.0.1) Test Procedure and Acceptance Criteria for the Inner Triplet Circuit (RQX) in the HL-LHC IT String											
PCS	PLI1.s1	Splice Mapping @ 500 A	LHC-XMS-OP-0009 (v.0.1) Parameters for the HL-LHC IT String Circuit Powering Tests											
100			106Hz											
	PLI1.b1	EE from QDS @ 500 A	PHU PHU											
	PLI1.d1	Powering Failure @ 500 A	IT Orbit Corrector (MCBXFA/B)											
	PLI1.e1	SPA @ 500 A												
PLI3.b1	PLI2.s1	Splice Mapping @ 1 kA												
	PLI2.c1	FPA @ 1 kA												
	PLI2.d1	Powering Failure @ 1 kA												
	PLI2.e1	SPA @ 1 kA												
PNO.d3	PNO.d1	Training and Powering Failure	│											
PNO.b1	PNO.b1	EE from QDS @ ±I_PNO	$\pm 2 \text{ kA}$											
PNO.a3	PNO.a1	Bipolar Cycle @ ±I_PNO												
PNO.x1	PNO.x3	Combined Powering	Example : Steps for 2 kA Circuits											
HL-LHC PROJECT	M A	Special thanks for MP3 mem	bers participating in the procedure redaction Meeting Sept 2022											

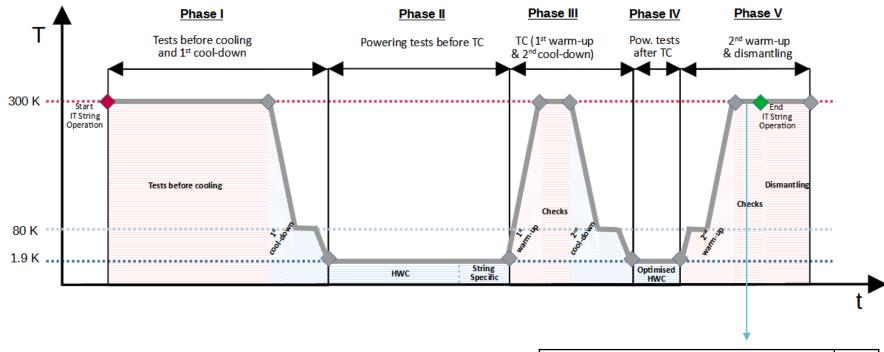


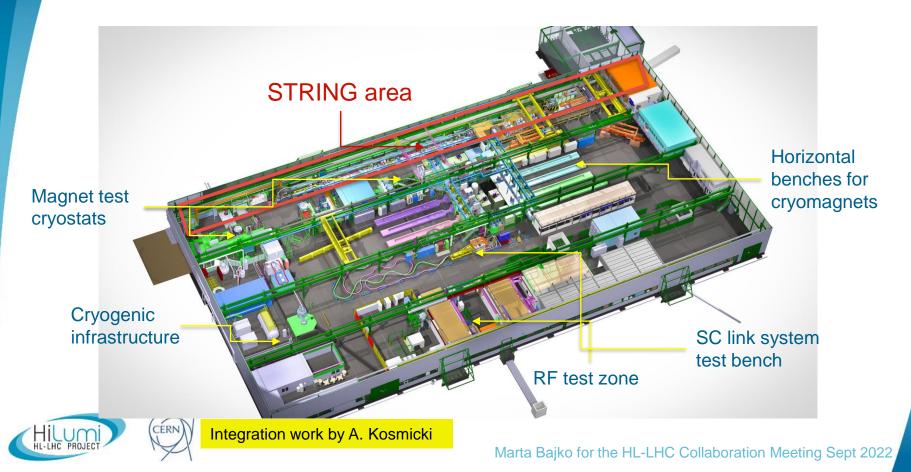


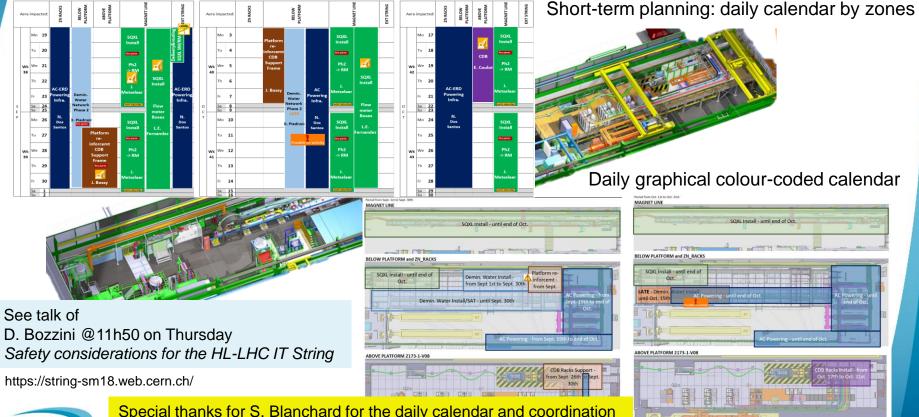

Static Cryogenics Measurements and Controls Tuning	4 w
ElQA and Alignment Tests at Nominal Conditions	1 w
Protection System IST and PIC Tests (PIC1)	3 w
Powering Tests for 120A + 200A Circuits (I _{nom})	2 w
Powering Tests for RCBX -2 kA- Circuits (I _{nom})	3 w
Powering Tests for RD1 -14 kA- Circuit (I _{nom})	2 w
Powering Tests for RQX -18 kA- Circuit (Inom)	11 w 📊
Powering of Grouped Circuits	1 w


Collaboration Meeting Sept 2022


Bayonet Heat Exchanger Test	1 w
Cross Talk Studies	4 w
Operation Powering Cycles and Noise Measurements	3 w
Flux Jump Measurements	3 w
Powering Cycle Endurance Test	3 w
Powering beyond Nominal (Place Holder)	3.w.

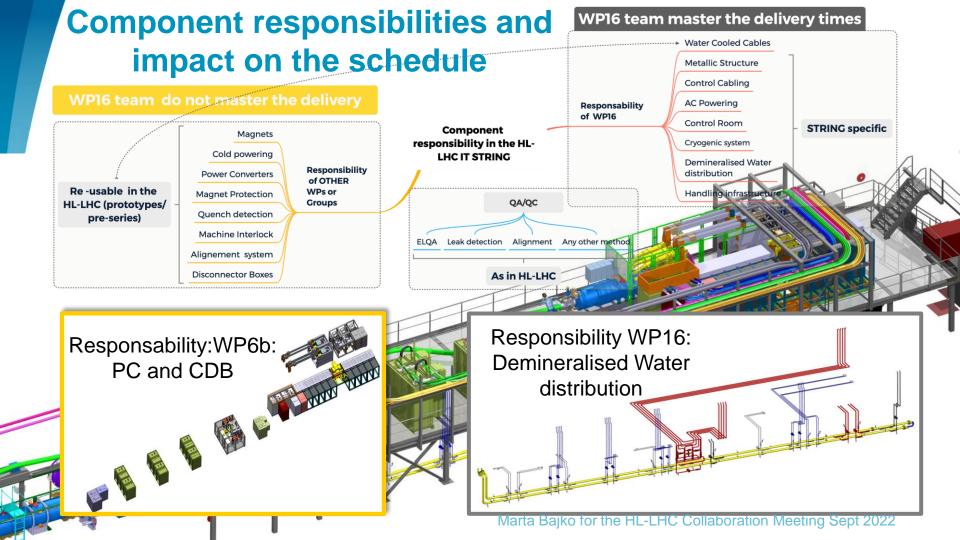


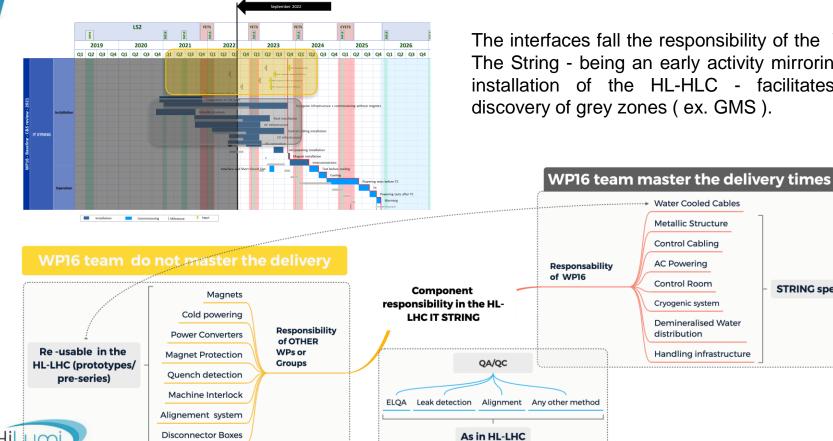

Final ElQA Tests at Nominal Conditions Collaboration Meeting Swp 2022



ElQA and Alignment Tests at Room Temperature 1 w

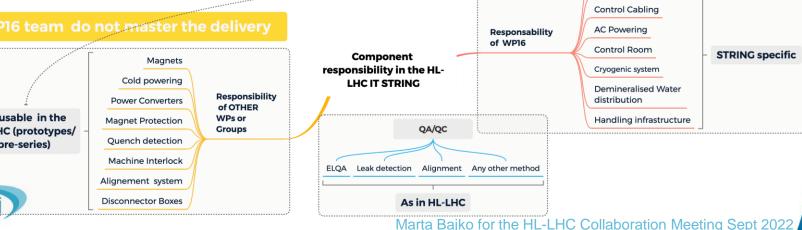
HL-LHC IT STRING in the SM18: activity planification


HL-LHC IT STRING in the SM18: activity planification


HILUMI PROJECT

Special thanks for S. Blanchard for the daily calendar and coordination work in Sm18; for D. Bozzini to insure the safety in the installation.

wana вајкотог me пс-спС Collaboration Meeting Sept 2022


Component responsibilities and impact on the schedule

The interfaces fall the responsibility of the WPs. The String - being an early activity mirroring the installation of the HL-HLC - facilitates the discovery of grey zones (ex. GMS).

Water Cooled Cables

Metallic Structure

Schedule

The first important results on the collective behaviour is expected at the end of the

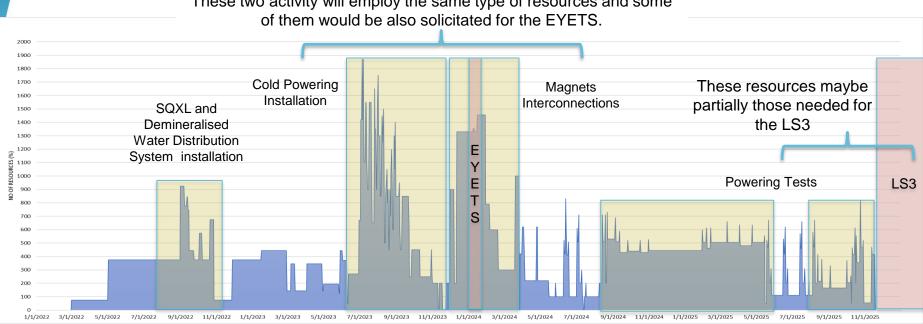
The adv the IT AI

IT STRING SM СО

HIL-LHC PROJECT

WP16 - Baseline - C&S review - 2021

first t	he	rma	l cy	cle	e: by	' S	ep	t 2()2	5.						Septe	ember 2	2022																		
		SM18			LS2		SM18		SM18	YET	TS 8WI8			YETS W18	S			YETS 81WS			EYETS 81Ws				SM18		SM18	LS	3							
		201)		2020)		20	021			202	2			2023			20	24		202	25		2026			20	27			202	28		202	29
	Q1	Q2 (Q3 Q4	Q1	Q2 Q	3 Q	4 Q1	Q2	Q3	Q4	Q1	Q2	QS Q4	4 Q	21 (Q2 Q3	3 Q4	Q	Q1 Q2	Q3 Q4	Q1	Q2	Q3	Q4	Q1 Q2 Q3	3 Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2
The YETS advanced he IT String Analysis delay activ	l wi Ini of	th 2 v frastr alter	veek uctu nativ	rs ir. re p e o _l	npact blanni otions	ing ng. s to				-	Prepara Illic stru	ation of the ucture	nz zone	Ť.	4		Cargoare to ready control ready and the ready and the ready and the ready and the read	ľ	ogenic infra	dela exp	ay. erie mmission	Too nce	day co		, we acc the enc cides wit	d o h th	f th e sta	ie art	IT of L	S S	tring 3.	9				
SM18 Shi confirme These da in	ed i ates	for 2 S will)22/2 have the	202 e a ST	3 yet	: t Ə	_					Interfac	e a d Shor	t Circu		DC connect	Con / infrastru tion Cold	ucture I powe	ering install net installati	ation			Powerin		the de to the The n systen	elive Strii ext n de	ng. I criti	of t t is cal	the s sho I ite	las ow m	st cr n in is t	ryo re the	-ma d. Se	agn		

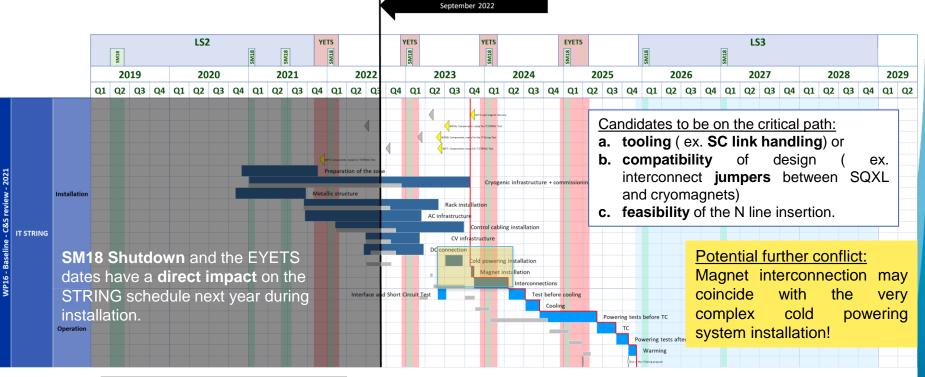

Installation Commissioning

Input Milestone

Magnet interconnection now coincides with YETS 2023, impacting the availability of some teams: VSC, Alignment, ELQA etc.

Warming TString program

Resources & resource distribution in time



These two activity will employ the same type of resources and some

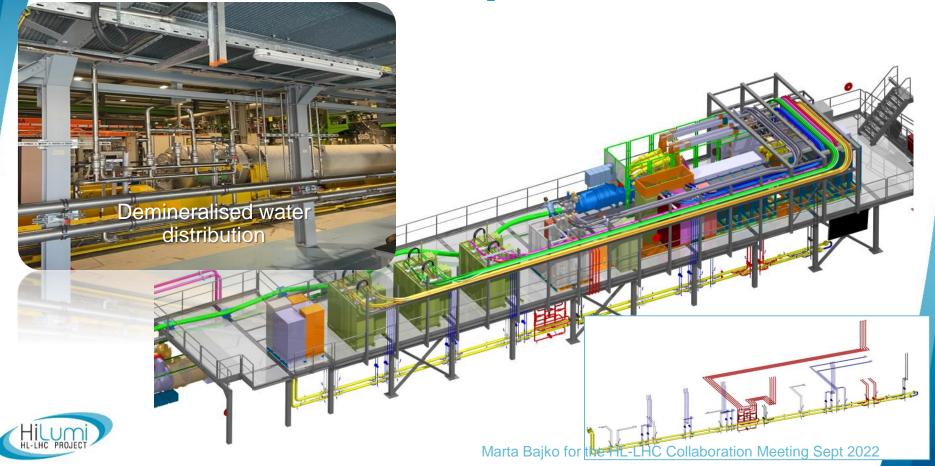
Particular thanks for N. Heredia Garcia and E. Vergara for input to this presentation specifically for the schedule and resource loaded planning + related tools preparation.

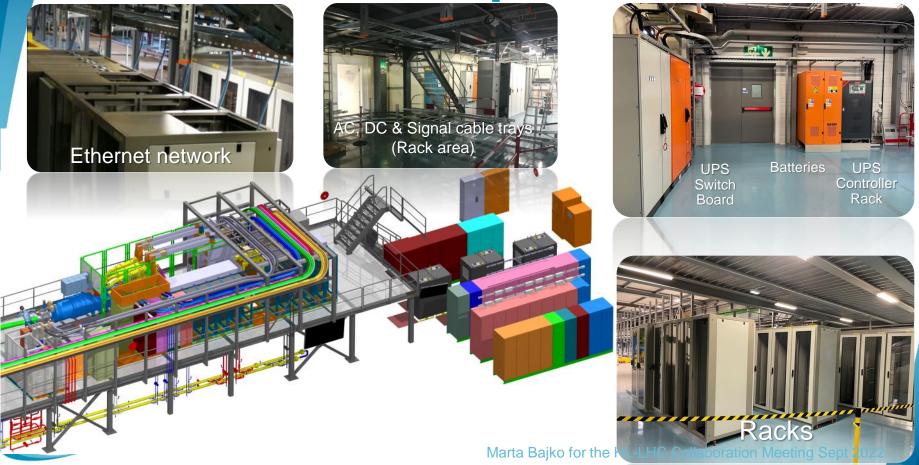
Potential candidates for the critical path and further conflicts

Installation

I-LHC PROJEC

Commissioning Milestone Input


On top of the metallic structure


See talk of A. Perin @10h30 on Thursday Status of the cryogenics system of the HL-LHC IT String

Proximity cryogenics

Marta Bajko for the HL-LHC Collaboration Meeting Sept 2022

SQXL

We are ready to perform the IT STRING Validation Program. Control layers strategy is made and work is planned for 2023.

Summary

- 1. **INTEGRATION** and **INFRASTRUCTURE** are well-advanced. At this stage change in dimensions of objects have a large repercussion on schedule.
- 2. VALIDATION PROGRAM has been set up and approved ; test procedures are under revision. While writing the HWC procedures for STRING, we prepare the work for the HWC of the HL-LHC itself.
- 3. Gymnastics are needed to adjust to SCHEDULE CHANGES (e.g.:. Sc link installation first then the converters- or vice versa; changes of SM18 shutdown schedule affecting the CRG equipment HWC) and to avoid (E)YETS or other possible co-activities (e.g.. delay in magnet delivery implying the coactivity with YETS and thus maybe a lack of personnel for QC as VSC and EIQA). Unfortunately we continue accumulating important delays from major components that already define the critical path. In todays Master Plan, the <u>STRING program will end at the beginning of the LS3 with a very first feed back on the collective behavior is expected for September 2025.</u>
- 4. **INSTALLATION SEQUENCE** definition with the required QA/QC has been started in dedicated regular meetings since May. This is our most important work right now: after the summer we made important advancements. The new information-both in sequence, time and in resources are introduced step by step into the IT STRING planning implying the risk of further delays as we still need to analyze. Handling tools to be still designed maybe also on the critical path.
- 5. The **COACTIVITY IN SM18** is quite important. Major component installation In parallel maybe not possible; The annual SM18 cryogenic shut down will have a direct impact on the planning of the STRING from early 2023.

HL-LHC IT String Infrastructure team

General Integration: Antoine Kosmicki, Alparslan Tursun (EN-ACE), Philippe Orlandi (EN-EL) Civil Engineering: Alejandro Martinez Selles, Wolfgang Bastien (SCE) AC Powering: Nuno Dos Santos, Mathieu Rigollet (EN-EL) Control Cables: Gael Girardot (EN-EL) DC Cables: Matheus Silva (EN-EL) IT Infrastructure: Maryse Da Costa (IT-CS) CV infrastructure: Francesco Dragoni, Dominique Piednoir (EN-CV) Cryogenic infrastructure: Gabriella Rolando, Jeremy Mouleyre, Jos Metselaar, Andrew Lees, Luis Fernandez, Benoit D'Hulster (TE-CRG) Transport: Serge Pelletier, Erik Richards, Antonio Jorge-Costa (EN-HE) Design and drawing: Robin Betemps, Oussama Id Bahmane, Hector Perez (EN-MME) Alignment: Andreas Herty, Jean-Frederic Fuchs, Kacper Widuch (BE-GM) Mechanical works: Jordi Bossy, Pascal Catherine (EN-ACE) Control HW infrastructure: Benjamin Ninet (BE-CEM), Enzo Genuardi (BE-CSS)

HL-LHC IT String Validation Program team

Work Packages	WP Leader	DWP Leader	GL	SVPM Members
WP2/BE-ABP	Rogelio Tomas Garcia	Elias Metral	Yannis Papaphilippou	Davide Gamba
WP3/TE-MSC	Ezio Todesco	Delio Duarte Ramos	Arnaud Devred	Ezio Todesco and Sandrine Le Naour
WP6a/TE-MSC	Amalia Ballarino	Paul Cruikshank	Arnaud Devred	Amalia Ballarino, Paul Cruikshank and Jerome Fleiter
WP6b/SY-EPC	Michele Martino	Valerie Montabonnet	Valerie Montabonnet	Louis de Mallac, Hugues Thiesen and Shruti Seshadri
WP7/TE-MPE	Daniel Wollmann	Reiner Denz	Felix Rodriguez Mateos	Daniel Wollmann and Jens Steckert
WP9/TE-CRG	Serge Claudet	Antonio Perin	Dimitri Delikaris	Antonio Perin and Gabriella Rolando
WP12/TE-VSC	Vincent Baglin	Giuseppe Bregliozzi	Paolo Chiggiato	Willemjan Maan
WP15/BE-GM	Paolo Fessia	Michele Modena	Helene Mainaud Durand	Michele Modena and Andreas Herty
WP16 (HWC)	Marta Bajko - Mirko Pojer		Felix Rodriguez Mateos	Marta Bajko and Mirko Pojer
WP18	Javier Serrano	Greg Daniluk	Alessandro Masi	Greg Daniluk and Odd Oyvind Andreassen

- A. Verweij, E. Ravaioli for MP3
- M. Giovannozzi, Riccardo De Maria for WGA
 - M. Zerlauth for the Project Office
 - S. Blanchard for IT String Installation
 - D. Bozzini for IT String Safety Coordinator

Zawilinski for IT String Tools Coordinator

- M. Guinchard for Mechanical TF Measurements
- M. Jakub Bednarek for ElQA tests
- S. Yammine (Chair)
- N. Heredia Garcia (Scientific Secretary)
- Others for specific topics (software, control layers, protection equipment, etc.)

Thank you very much for your attention

String Day 2-15th of September https://indico.cern.ch/event/1183794/timetable/ Marta Bajko for the HL-LHC Collaboration Meeting Sept 2022