

HL-LHC Procurement Strategy and Risk Mitigation

Hector Garcia Gavela, Victor Guillen Humbria, Lorcan Quain Solis HL-LHC Procurement, Documentation, Quality and Risk Office

19.09.2022 – 12th HL-LHC Collaboration Meeting, Uppsala (Sweden)

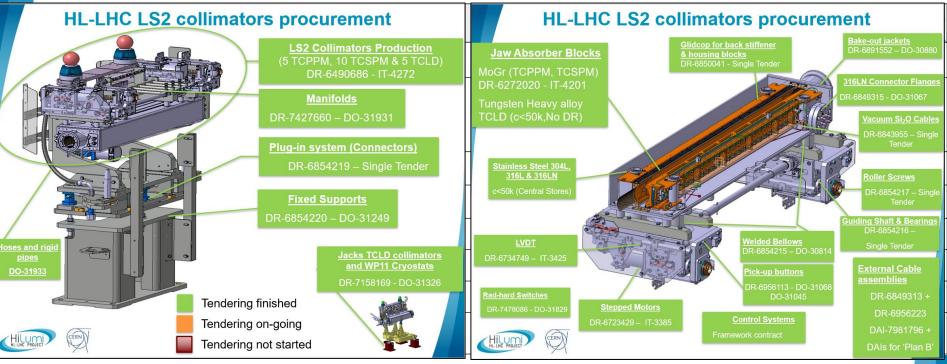
Outline

- 1. Procurement Plan (Make or Buy Plan)
- 2. Update 2022
- **3. Upcoming Tenders**
- 4. Risk Mitigation
- **5.** Conclusions

Outline

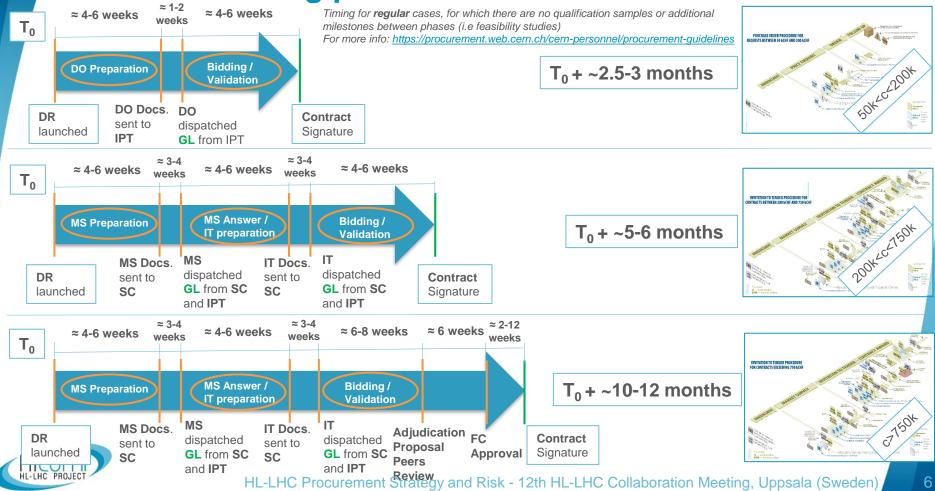
1. Procurement Plan (Make or Buy Plan)

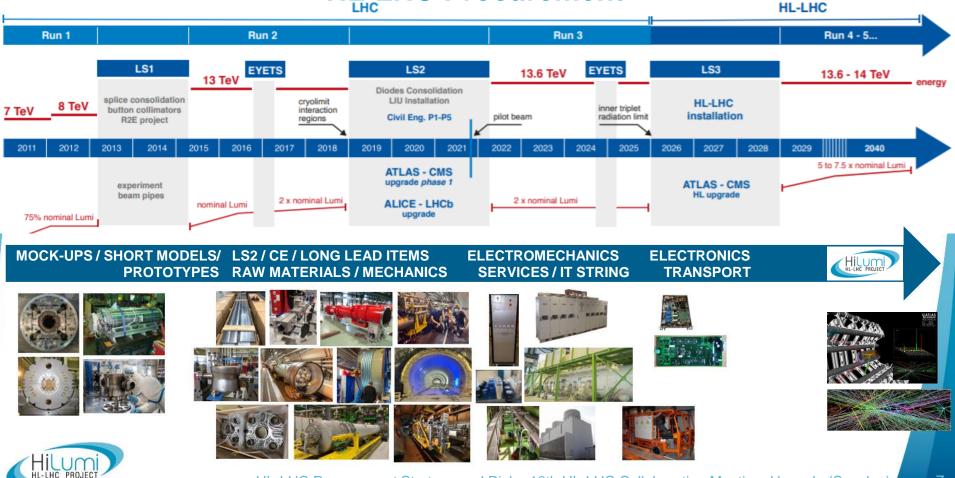
- **2.** Update 2022
- **3. Upcoming Tenders**
- 4. Risk Mitigation
- **5.** Conclusions



HL-LHC Procurement Plan - Briefing

- Acquisition process is a valuable input for the Project Planning and Follow-up. Procurement can be used as one of the project progress indicators.
 Delays in procurement will likely have impact on the following activities
- HLPO has been driving the **Make or Buy Plan** (**Procurement Plan**) since 2015:
 - Plan for all tenders (contracts) above 50 kCHF for the next (at least)
 18 months in line with the Project Master Schedule
 - Fostering Transparency, Equality & Competitiveness (CERN Financial Rules)
 - Launch the procurement the earliest possible. Early procurement allows building schedule margin and absorb potential delays during the production. It also avoids specifying too aggressive delivery schedules (impact on cost and number of Bids received)
- The past two years of global pandemic entailed a big challenge due to the disruptions in the supply chain and the unprecedented increase of prices. This has been exacerbated by the unexpected geopolitical conflict in Feb-2022


Make or Buy Plan


- Bottom-up approach in order to identify what what can be produced with industrial partners
- Breakdown of Contracts to be included within the HL-LHC Procurement Plan

Tendering processes and timeline

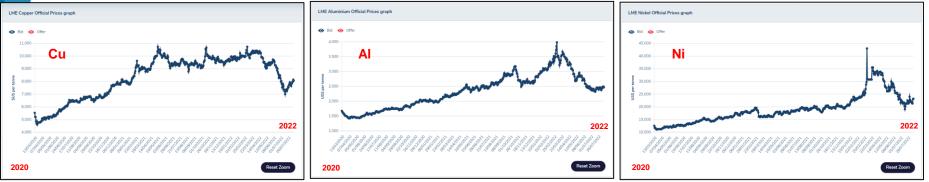
HL-LHC Procurement

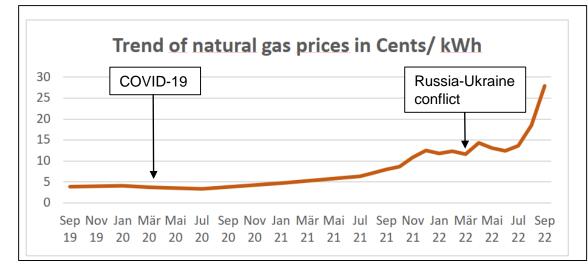
HL-LHC Procurement Strategy and Risk - 12th HL-LHC Collaboration Meeting, Uppsala (Sweden)

Outline

1. Procurement Plan (Make or Buy Plan)

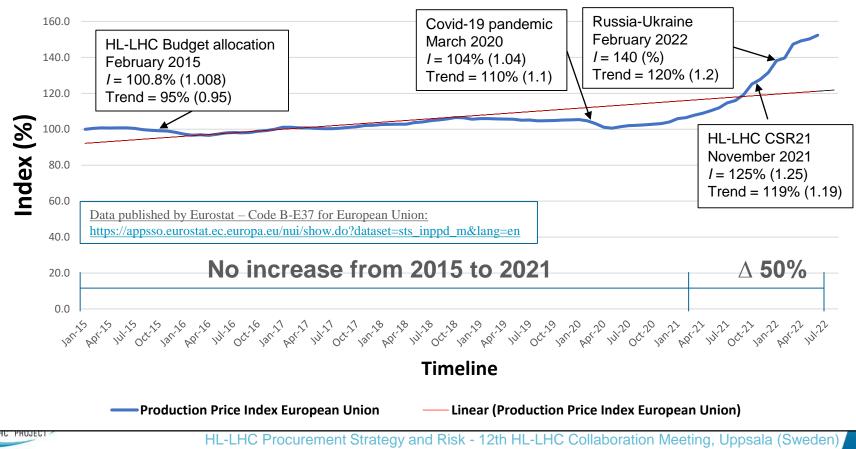
2. Update 2022

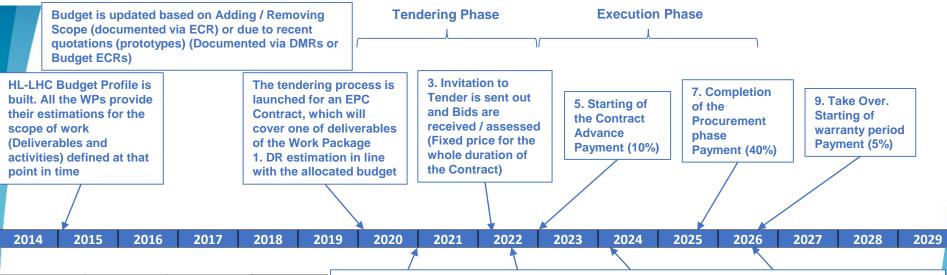

- **3.** Upcoming Tenders
- 4. Risk Mitigation
- **5.** Conclusions



Last two years of global pandemic entailed major challenges on the procurement activities

- In early 2022, slight recovery of the market was observed (still far from pre-pandemic times in terms of stability though)
- The Russia-Ukraine conflict strongly affected the still weak markets, further increasing the risk exposure (budget and schedule) of the Project:
 - Vendors cannot guarantee prices for more than few weeks This uncertainty is reflected in the Bids - Margins in offers are largely increased
 - Market volatility has increased Suppliers decline to bid, limiting options and reducing competition
 - Energy and oil prices increasing manufacturing and transportation costs highly impacted
 - Shortages or limited availability of many conventional components Lead times are increased (schedule risk highly increased)
 - On-going Contracts also affected Claims for extra costs, price revision formulas to be applied before the specified date





An example of an EPC (Engineering, Procurement, Construction) Contract at CERN

Phase	Breakdown Costs Bid	Level of Uncertainty (before 2020)	Level of Uncertainty (after 2020)
Engineering	20%	Low	Moderate
Procurement	50%	Moderate —	Very High
Construction	30%	Moderate —	

Under the situation faced during the last two years, you can imagine how difficult it is not only to stay within the estimations when the budget was allocated but also to provide a reasonable low-risk Bid by the Vendors (higher risk for the Project)

Russian in-kind (impact on HL-LHC Procurement)

Crystal collimators V3	2 units successfully produced and installed during the EYETS21, 4 additional units on-going production at CERN for installation in the EYETS22 (Procurement of main components driven by SY-STI)	
Resistive part HTS Current Leads	Already integrated in the Procurement plan. Production is taking place at CERN (EN-MME Main Workshop). Price Enquiries for Raw Materials and finished components launched by EN-MME effort during 2022)	an Vers
BPM mechanical bodies	Already integrated in the Procurement plan. Production is taking place at CERN (EN-MME Main Workshop). Price Enquiries for Raw Materials and finished components launched by EN-MME effort during 2022) Already integrated in the procurement plan. Production is taking planet the production has led not Workshop) as we already built the pre-series (to cope with the contribution has led not workshop) as we already built the pre-series (to cope with the contribution has led not workshop) as we already built the pre-series (to cope with the contribution has led not workshop) as we already built the pre-series (to cope with the contribution has led not workshop). All the une of the Russian in-kind Contribution production). All the une of the Russian in-kind to minimize the impact situation integration of the Russian in-kind to minimize the project) the integration of the Russian in the present market situation only to a non-negligible effort to the present market project) the integration of the risk due to the present market situation only to a non-negligible financial risk to the project of th	
LS3 Collimators and masks	Already integrated in the production is taking blass tributions of the pre-series (to cope with a contribution of the integration of the Russian in-kind containing market situation production). All the upon of the Russian in-kind present market situation of the risk due to the present project) to a non-negligible of the present project (a non-negligible of the risk due to the present project) to a non-negligible of the risk to the project of the risk of the risk to the project of the risk of the risk to the project of the risk to the project of the risk of the risk to the project of the risk of the risk to the project of the ris	
RF transmission chain	the integration negliging due to thisk to the sing of the risk due to the sing financial risk to the s	
TAXN, TAXS Vacuum Chambers	in-sourcing for an alternative as moduction strategy under discussion (most likely in-house production of 1+4 (We are re-insourcing the strategy under discussion)	
BLM (25% HL-LHC)	(in-house vs manufacturing in Industry)	
High Power RF	High Power RF – developed with IOTs (looking for an alternative as Collaboration) – Market Survey to be launched at CERN HL-LHC Procurement Strategy and Risk - 12th HL-LHC Collaboration Meeting, Upp	salasveden a 3

Outline

Procurement Plan (Make or Buy Plan) Update Q1 2022 Upcoming Tenders Risk Mitigation Conclusions

Procurement in 2022

							-				
January	February	March	April	May	June	July	August	September	October	November	December
(II-4630 (WP9)	WP17) Platforms PM17-57	Crowbar Diodes Stack 2 kA	BPM Ti buttons for LS3 Collimators		DO-XXXXX (WP4) 🚵 Vaccum Vessel for DQW Cryomodule	DO-XXXXX (WP12) Formed Vacuum Bellows	DO-33445 (WP3) Vaccum Vessels DCM Series	DO-XXXXX (WP13) RF Feedthroughs	MS XXXX (WP6B) Crowbar Diodes Stack 18 kA	DO-XXXXX (WP6A) Install. Tooling IT String - Spooling	DO-XXXXX (WP5) CuNi cooling pipes
	Shielding Doors		current Leaus		DO-XXXXX (WP13) BPM Button Electrodes	Stores (WP12) Raw materials - Flanges	Thermal Shields DCM	DO-XXXXX (WP6B) Mosfets, AOPs, Cooling Fans	IT XXXX (WP14) MKBH Coils 🚫	MS-4713 (WP6A) REBCO Tape	DO-XXXXX (WP15) Targets for CM Monitoring
	(WP6B)	Current Leads 🛛 💽			DO-33379 (WP6A) Current Leads 🛛 💽 Materials - EN/MME	DO-XXXXX (WP12) Vacuum modules 🚵 with DRF & bellows	DO-XXXXX (WP17.2) Power Transformers	MS-XXXX (WP15) 🕰 Customized Forklift	IT XXXX (WP14) MKBH Cores 🚫	MS-XXXX (WP5) Lead Screws for LS3 Collimators	DO-XXXXX (WP15) Feedthroughs for CM Monitoring
	Single Tender (WP3, WP15) Jacks for IT String 💽	DO-33169 (WP6A) Current Leads Materials - EN/MME			DO-33377 (WP6A) Current Leads 🛛 💽 Materials - EN/MME	DO-XXXXX (WP12) Vacuum Chamber include assembly & tubes	IT-4513 (2nd Phase) (WP6B) DCCTs Class 2	MS-4810 (WP5) Production of LS3 Collimators	IT-XXXX - SEF58 - 🚵 Harmonic Filters slab	IT-4813 (WP5, WP13) SiO2 Cables - LS3 💦 Collimators & BPMs	MS-XXXX (WP6B) 600A Power Converters
		IT-4703 (WP3, WP6A) SnAg Plating of NbTi wire		MS XXXX (WP14) MKBH Coils		DO-XXXXX (WP12) Insulation vaccum EPDM gaskets	MS-4802 (WP9) GHe Storage Tanks	MS-XXXX (WP1) Rad-tol and Rad-hard cables	MS-XXXX (WP17.2) Electrical Works SubS in P5	MS-XXXX (WP7) 🕐 Quench Heater Power Supply - Series	IT-4713 (WP6A) REBCO Tape
				MS XXXX (WP14) MKBH Cores		DO-XXXXX (WP12) Insulation vacuum valve blocks	IT-4643 (WP17.2) Water Cooled Cables	MS-XXXX (WP17.1) Vertical Cores Excavation		Single Tender (WP9) Subcooling heat exchangers	IT-XXXX (WP17.2) Electrical Works Sub- Station in P5
						DO-XXXXX (WP12) Pumping Ports	Single Tender (WP3) Cutting machines		MS-XXXX (WP5) MoGr for TCSPMs (LS3 Collimators) 🕜	Single Tender (WP9) Quench Valves	IT-4807 (WP17.2) Transformer SubS in P5
Cost estin	nation [50 kCHF ,	, 200 kCHF] 🛛	Already dispate	hed					MS-XXXX (WP6B) Power Modules 18kA		IT-XXXX (WP7) 2kA / 600A Mech.
Cost estin	nation [200 kCHF	, 750 kCHF]	Under preparat	tion					PCs		Switches EE System
Cost estin	nation > 750 kCH	IF 🤇	Under discussio	on					MS-XXXX (WP9) Interconnecting		IT-4802 (WP9) GHe Storage Tanks
Potential	Non-competitive	e Tender 🧕 🧕	Cancelled						Piping 🔬		

Upcoming Procurement (2023)

January	February	March	April	May	June	July	August	September	October	November	December
DO-XXXXX (WP6B) Assembly of CDB 2.0/0.6 kA	DO-XXXXX (WP5) Welded Bellows for LS3 Collimators	DO-XXXXX (WP9) LN2 Storage Tanks	MS-XXXX (WP6B) Power Modules 14kA PCs	DO-XXXXX (WP12) Bake-out System LS3	DO-XXXXX (WP15) FSI Series	IT-XXXX (WP5) Roller Screws for LS3 Collimators		MS-XXXX (WP15) Hydrostatic Levelling Sensors Series	DO-XXXXX (WP5) FMC Cards for Motion Control	IT-XXXX (WP5) Chains for flanges	DO-XXXXX (WP8) Plug-in connectors for VAX
DO-XXXXX (WP6B) Cooling Plates for CDBs/WCBBs	DO-XXXXX (WP6B) DCCTs Class 3	MS-XXXX (WP5) CuCD for LS3 Collimators	MS-XXXX (WP6B) Frames 14kA PCs	IT-XXXX (WP13) BGV vacuum system	DO-XXXXX (WP15) Targets for CCs Monitoring	IT-XXXX (WP5) CuCD for LS3 Collimators		MS-XXXX (WP15) Wire Positioning Sensors Series	DO-XXXXX (WP5) PXI-e COMe Adapter		IT-XXXX (WP5) Vacuum interconnects
DO-XXXXX (WP18) Crates	MS-XXXX (WP5) Production LS3 Masks	IT-XXXX (WP6B) DCCTs Class 4	MS-XXXX (WP5) PXIe Carrier	IT-XXXXX (WP5) Jig and Jacks for AUP Platforms	DO-XXXXX (WP15) Feedthroughs for CCs Monitoring	IT-XXXX (WP1) Rad-tol and Rad-hard cables		IT-XXXX (WP5) Production LS3 Masks	MS-XXXX (WP8) Y-chamber Series		IT-XXXX (WP15) ITMB for MAFI-like
DO-XXXXX (WP18) Rad-tol Power Supplies	MS-XXXXX (WP5) Jig and Jacks for AUP Platforms	IT-XXXX (WP6B)- Crowbar Diodes Stack 18 kA	Single Tender (WP5) GLIDCOP for LS3 Collimators	MS-XXXX (WP5) Chains for flanges	MS-XXXX (WP15) Unloading Equipment	Single Tender (WP5) Guiding Shaft for LS3 Collimators		IT-XXXX (WP5) PXIe Carrier	IT-XXXX (WP8) TAXN Absorber		IT-XXXX (WP15) Unloading Equipment
DO-XXXXX (WP18) Rad-tol System Boards	IT-XXXX (WP9) Interconnecting Piping	MS-XXXX (WP14) Material for Dump Cores			MS-XXXX (WP15) ITMB for MAFI-like			IT-XXXX (WP5) Stepping motors drivers	IT-XXXX (WP8) TAXS Absorber		IT-XXXX (WP13) BLM Electronics
DO-XXXXX (WP18) Field bus mezzanine	IT-XXXX (WP5) (MoGr absober blocks TCSPM	_			MS-XXXX (WP8) TAXN Absorber			Single Tender (WP5) Connectors for LS3 Collimators	IT-XXXX (WP5) Production of LS3 Collimators		
DO-XXXXX (WP5) Hydroformed Bellows for LS3 Collimators	IT-XXXX (WP7) Quench Heater Power Supply for LHC				MS-XXXX (WP8) TAXS Absorber						
DO-XXXXX (WP5) CuCr1Zr for LS3 Collimators					MS-XXXX (WP13) BLM Electronics						
MS-XXXX (WP6B) DCCTs Class 4					IT-XXXX (WP6B) 600A Power Converters						
MS-XXXX (WP13) BGV vacuum system					IT-XXXX (WP6B) Power Modules 14kA PCs						
IT-XXXX (WP15) Customized Forklift					IT-XXXX (WP6B) Frames 14kA PCs			-	0 kCHF , 200 k0 00 kCHF, 750 k		Iready dispatched
MS-XXXX (WP5) Stepping motors drivers								st estimation >		-	nder discussion
IT-XXXX (WP6B) Power Modules 18kA PCs							Pot	ential Non-cor	npetitive Tend	er 🛞 c	ancelled
L IT-XXXX (WP17.1) Vertical Cores		ŀ	HL-LHC Pro	ocurement	Strategy ar	nd Risk - 12	th HL-LHC	Collaborat	ion Meeting	g, Uppsala	(Sweden)

Upcoming Procurement (2024)

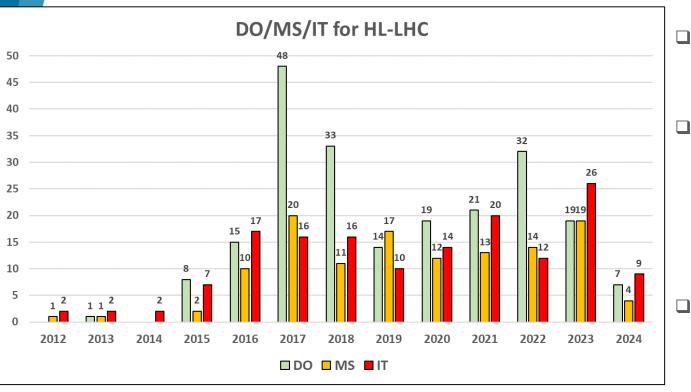
January	February	March	April	May	June	July	July	August	September	October	November	December
DO-XXXXX (WP15) Tractor for TAN, TAXN	MS-XXXX (WP14) Vaccum Vessel TDE			IT-XXXX (WP5) Vacuum interconnects	DO-XXXXX (WP3) W Bellows				DO-XXXXX (WP5) Bakeout jackets for LS3 Collimators			
DO-XXXXX (WP15) Trasnfer System for TAN, TAXN					MS-XXXX (WP4) LLRF Fararday Cages				IT-XXXX (WP4) LLRF Fararday Cages			
DO-XXXXX (WP15) Trailer for TAN, TAXN				IT-XXXX (WP5) Supports/Craddles LS3 Collimators	IT-XXXX (WP4) High Power RF Lines				MS-XXXX (WP14) Vaccum Vessel TDE			
DO-XXXXX (WP5) Manifolds for LS3 Collimators					IT-XXXX (WP14) Material for Dump Cores							

DO-XXXXX (WP5) COMe CPU

MS-XXXX (WP5) Supports/Craddles LS Collimators

MS-XXXX (WP13) BPM Electronics

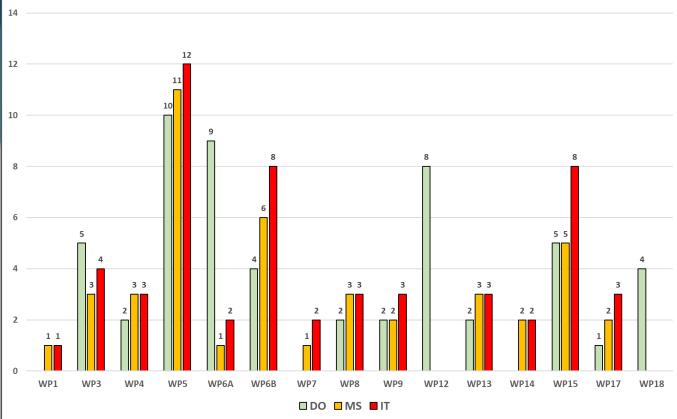
T-XXXX (WP8) (-chamber Series


MS-XXXX (WP4)

Next update of the plan in early 2023, so more tenders will be added to the plan. We expect a decrease of the activity after second half of 2024.

2022 and Upcoming Procurement

 Still very hectic procurement activity expected for the next three years


 About 100 contracts
 (c > 50 kCHF) to be awarded in various domains
 (Raw materials, Vacuum, Cryogenics, mechanics, Electromechanics, Power Converters, Transport...)

Opportunity for CERN
 Member State Industries

2022 and Upcoming Procurement

HL-LHC PROJECT

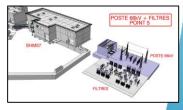
For some WPs (WP6B, WP12, WP15) it was already foreseen some intense procurement in the upcoming years

For WP4, WP5, WP6A and WP8 the insource of Russian contribution are/will be leading to more procurement than expected

HL-LHC Procurement Strategy and Risk - 12th HL-LHC Collaboration Meeting, Uppsala (Sweden)

Main Contracts for HL-LHC to be awarded

Contract	Contract Signature by (Tentative dates)
P1/P5 Refrigerators (Cryogenics)	FC June 2022
QXL - Cryogenic distribution line	FC September 2022 (next week) 💽
Raw materials for Current Leads and production	Through Price Enquiries
WCC for WP17	FC March 2023
GHe Storage Tanks	FC June 2023
18kA Power Converters	FC June 2023
600A / 2kA Mechanical Switches for EE System	FC June 2023
Interconnecting Piping (Cryo)	FC September 2023
Quench Heater Power Supplies (if no Collaboration)	FC September 2023
High Power RF Systems (IOTs)	FC December 2023
Actuators for FRAS (Motors and Gear Boxes)	FC December 2023
Vertical Cores Excavation	FC June 2024
LS3 Collimators Production	FC June 2024
Core Material for TDE Dump	Depends on material choice



The two biggest remaining Contracts for HL-LHC approved by FC in 2022!!!

Outline

Procurement Plan (Make or Buy Plan)
 Update Q1 2022
 Upcoming Tenders
 Risk Mitigation
 Conclusions

21

Mitigation Actions after CSR21

- In-source of the Russian Contribution by phases as presented in the CSR21 and to the ATS management /DHs (list of priorities)
- De-scope of some of the items from the Russian Collaboration (See Oliver and Markus' presentation)
- Looking for alternatives for some items included in Russian Collaboration (and some other items) with other potential Collaborations. Discussions ongoing
- Manufacturing of some urgent items via EN-MME (Current Leads, BPMs), for which the full tendering would have impacted the project schedule (due to the non activation of the in-kind Contribution) - Industries are involved too.
- Use of Framework Contracts and Central Services at CERN (prices are less volatile)
- Revision of number of units to be produced (i.e jacks) or material choices (i.e collimator's jaws) aiming at savings

Mitigation Actions after CSR21

- Foster Competitive Tenders It usually helps to have better prices (limited options are risky)
- Sharing risks with Suppliers in tenders by applying price revision formulas in the Contracts:
 - Price Index according to Producer prices in industry, domestic market monthly data", published by Eurostat, code B-E36 for European Union 27 countries for contracts in euro (EUR) or similar indices if the contract is in another currency: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=sts_inppd_m&lang=en
 - For raw material costs, CERN may apply price revision formulae based on the average London Market Exchange (LME) Closing Price (<u>https://www.lme.com</u>) of the month preceding that of the price revision, converted in the currency of the contract.

23

Outline

- **1.** Procurement Plan (Make or Buy Plan)
- **2.** Progress since last C&S Review
- **3.** Upcoming Procurement
- 4. Lessons Learned
- **5.** Conclusions

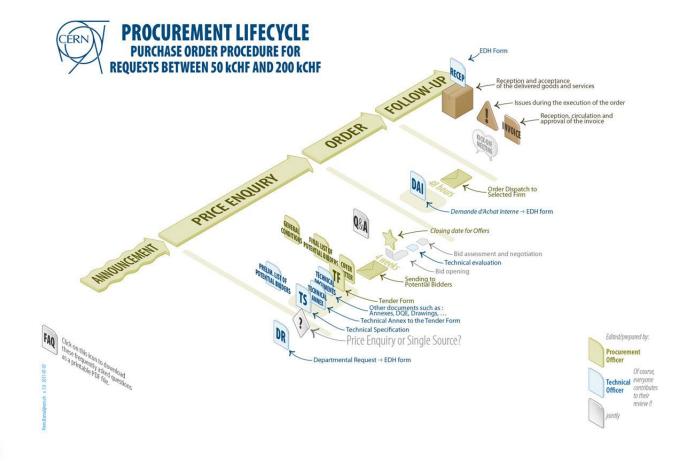
Conclusions

- Procurement activities have become a major challenge due to the global market situation (financial & schedule risk)
- Markets are moving from fixed to variable prices (linked to energy costs, price of raw materials, etc)
- Still high uncertainty in short term Energy is becoming an issue and we cannot still quantify the full impact
- Despite the LS3 shift the message from the Project was to keep the procurement schedule all along the project unless there were significant financial benefits by shifting it
- Very intense period of activity for procurement (more than foreseen) during 2022 (*it is not over until it is over*)
- Important Contracts approved (or close to be) by FC in 2022 (Big Step in the budget committed by the Project)

25

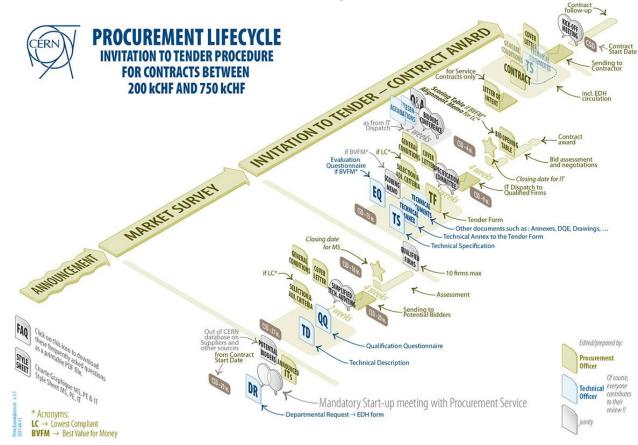
Many Thanks

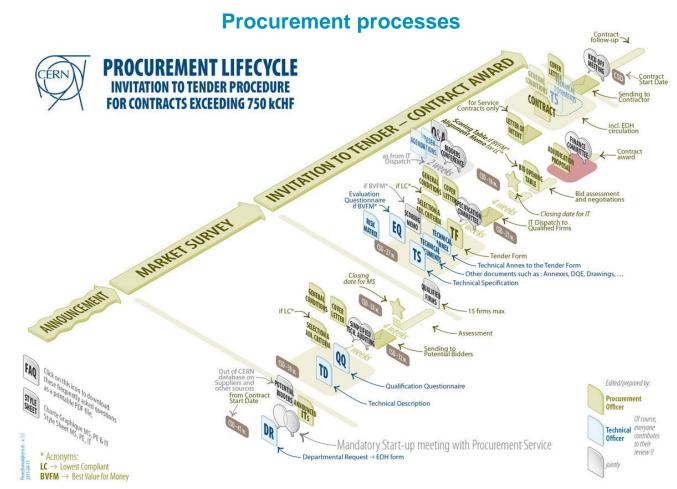
Special Thanks to IPT colleagues, my colleagues from the PDQR Office (Victor and Lorcan), SCE (Leila) and many others for their contributions to this presentation


HL-LHC Procurement Strategy and Risk - 12th HL-LHC Collaboration Meeting, Uppsala (Sweden)

Spare Slides

HL-LHC Procurement Strategy and Risk - 12th HL-LHC Collaboration Meeting, Uppsala (Sweden)


Procurement processes



28

Procurement processes

Lessons Learned

PROCESS

SOME LESSONS LEARNED

	 Processes that imply MS/IT take time (even standard cases without prototypes, qualification samples or studies in the MS phase): easily 5-6 months from process start to signature If FC is required it can easily take one year. Accommodate this minimum time in the planning
PROCUREMENT	
PROCESS	absorb potential issues during the production (Delays, Nonconformities, etc.)but not too early (mature final
	technical solution and strategy is needed). Sometimes to find the balance is not trivial
	 Standardization is also important in medium term to be more competitive (components, materials, off-the-
	shelf products) – Standardization Committee being set. This will also help to optimize the processes
STIMATIONS	 Estimating prices for exotic components with requirements for testing and documentation that go beyond typical industrial practice is difficult (companies are reluctant to give prices if there is no official RfQ from IPT)
MARKET SURVEYS	 Involve management at an early stage to discuss the strategy and form a common understanding Markets Surveys are issued to qualify companies and the documents should be oriented to this goal Qualification/No qualification of Firms must take place at this stage of the process Even a detailed and thoroughly prepared MS is sometimes not enough to qualify/disqualify firms. Visit the Suppliers before qualifying in case of doubts. COVID-19 times - either a virtual visit or a video showing the facilities/tools would be advised Qualification samples/units during the MS phase are very useful. We have seen much better prices as the final specification can be tuned based on the outcome (relax/tight requirements). However, we do not have the luxury to request this for every MS as it implies time, budget and resources
	3

Lessons Learned

PROCESS	SOME LESSONS LEARNED
INVITATION TO TENDER	 Avoid over specifying (aka Gold-plated specifications) Aggressive delivery schedule has impact on cost. Same for multi-year contracts with gaps in between contracts phases. Strategies are to be discussed with the management well in advance. Hold Points and Testing Deadline should be clear defined. Check that Contractor understands schedule impact Bidders conference are useful in complex cases to solve general concerns and clarify the main points of the specifications
PRICING	 High-requirements and small series production are not a very good combination (low interest) Mainly small contracts for HL-LHC (low risk for companies and low priority) Competition leads to better prices New markets are now involved. Lack of previous experience
FIRMS	 Single Source Tenders have a high risk and should be avoided whenever possible Qualification of new suppliers is costly (time, budget and resources) and it is not always easy. Nevertheless to open the market is in the end very well paid off (Strategy at Organizational level) Even if we invest for suppliers to meet a CERN need, if this doesn't address a broader market, there is no guarantee they will maintain that capability in the long-term for the next time we need it Rely on single companies in close markets is not recommended. In SMEs mainly but not only, changes in availability of a key resource over time can make a huge difference (do not assume that a company can make something just because they did in the past) Sourcing is an important activity. IPT, Requests to ILOs, etc can be very helpful if needed
	HI -I HC Procurement Strategy and Risk - 12th HI -I HC Collaboration Meeting, Uppsala (Sweden)

F

Lessons Learned

PROCESS

SOME LESSONS LEARNED

CONTRACT SIGNATURE & FOLLOW-UP	 Organize a kick-off meeting upon Contract signature to clarify well the scope, discuss any details, and avoid any misunderstanding from the beginning Industrialization and transfer of knowledge takes time. We are mostly buying non-standard industrial products and ramping-up will require time Pre-series Phase of utmost importance to settle the full production Major changes during series production are not easy-handling (slow-down the production, extra-costs, etc.) Industrial contracts for non-mature technologies does not give the required flexibility. Strategy to be widely discussed before starting the procurement process The role of the CERN Technical Officer is very important for the correct execution of the contract. Close follow-up and steering of decisions during the production. The Technical Officer to have full knowledge of the field On-site visits at Contractor's facilities are required to unblock situations and get first-hand information about the production
SUPPLY ACCEPTANCE	 We should not only rely on the documentation provided by companies (QC Tests during production, FAT Reports). Counterchecks upon arrival (SAT) are recommended whenever possible. Testing (or at least some % randomly) of some critical sub-components upon reception is advisable even if the Supplier provides the conformity certificates and full documentation According to the General Conditions of CERN Contracts, we have 3 months by default to perform the acceptance tests upon delivery. If you believe this time is too short for your specific case, add a clause in the Invitation to Tender to extend this deadline

lessons learned

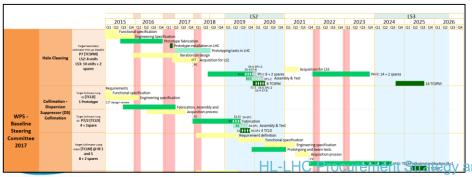
	DR		SOME LESSONS LEARNED								
		PROCESS SOME LESSONS LEARNED									
D	:11		 Organize a kick-off meeting upon Contract signature to clarify well the scope, discuss any details, and avoid any misunderstanding from the beginning. 								
		Challeng Open the Changes Visits du Site Acce	n time for tendering should be accommodated in the planning je for small series production (less attractive, less interest) e Market – Single Tenders are a huge risk (Organizational strategy) a during series production not easy to handle (delays, extra costs) aring the Contract execution are fundamental (COVID-19 situation) eptance Tests (do not rely only in documentation provided by Vendors) in industry ≠ Timeline CERN Projects								

We should not only rely on the documentation provided by companies (QC Tests during production, FAT Reports). Counterchecks upon arrival (SAT) are recommended whenever possible. Testing (or at least some % Slfi randomly) of some critical sub-components upon reception is advisable even if the Supplier provides the SUPPLY conformity certificates and full documentation ACCEPTANCE According to the General Conditions of CERN Contracts, we have 3 months by default to perform the acceptance tests upon delivery. If you believe this time is too short for your specific case, add a clause in the Invitation to Tender to extend this deadline

M

HL-LHC Procurement Plan – Modus Operandi

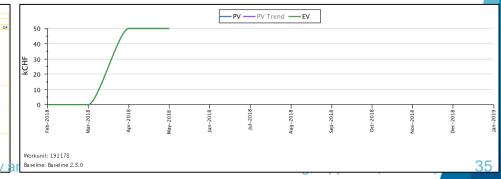
Based on the **expenditure profile**, the **Project Schedule** and together with the Bill of Materials (**BOM**), the acquisition of each of the main components of the equipment is assessed and planned (**bottom-up approach**)


Package Name	Work Package Referenc →	Detailed Description	Foreseen Cost Range	Current Tender Status 🖵	Department Request No	Tender Reference	Starting Date for Tendering (PE, MS or IT) v	Financial Committee (when c>750k)	Contract Required	Manufacturing time	Required On Site
							1				

How much is the **cost estimation**?

This triggers the process to be followed according to CERN Procurement Rules

It also has impact on the time required (next slide)


- When is the Supply required on Site?
- How much time will the production take?
- **Competitive** Tender? Limited Market?
- Does the order have any link to others? Deliverables

Best Strategy to be followed:

Industrial Procurement / Framework Contract / In-house

- If outsourcing, based on the deadline to award the contract we can already determine the date to start the tendering process
- Milestones in the Master Schedule and EVM Workunits (link to Cost and Schedule)

Make or Buy plan – Collaborations (Who does what)

LHC DQW CRYOMODULES		RIES DQW (1	-	-		S DQW (4 cr			I HE RED CRYUMUUULES		RIES RFD (1		· ·		ES RFD (4 cry		<i>.</i>
	DESIGN	FABRICATION	ASSEMBLY	VERIFICATION	DESIGN	FABRICATION	ASSEMBLY	VERIFICATION		DESIGN	FABRICATION	ASSEMBLY	VERIFICATION	DESIGN	FABRICATION	ASSEMBLY	VERIFICATION
Bare Cavity 🐁	CERN	CERN - Industry (RI)	-	CERN	CERN	CERN - Industry (RI)	-	CERN	Bare Cavity 🔦	AUP / CERN	AUP - Industry (Zanon)	-	AUP	AUP / CERN	AUP - Industry (Zanon)		AUP
Jacketed Cavity	CERN	CERN - Industry (RI)	CERN - Industry (RI)	CERN	CERN	CERN - Industry (RI)	CERN - Industry (RI)	CERN	Jacketed Cavity	AUP / CERN	AUP - Industry (Zanon)	AUP - Industry (Zanon)	AUP	AUP / CERN	AUP - Industry (Zanon)	AUP - Industry (Zanon)	AUP
Pick-ups 🍯 🐧 🀧	CERN	CERN	CERN	CERN	CERN	CERN	CERN		HOMs & 🕊 🐧 🏌 Pick-ups	AUP / CERN	AUP (JLab)	AUP (JLab)	AUP (JLab)	AUP / CERN	AUP (JLab)	AUP (JLab)	AUP (JLab)
Cold Magnetic Shield	UK	UK - Industry (-)	CERN - Industry (RI)	-	UK	UK - Industry (-)	CERN - Industry (RI)		Cold Magnetic Shield	AUP / CERN	AUP - Industry (-)	AUP - Industry (Zanon)	-	AUP / CERN	AUP - Industry (-)	AUP - Industry (Zanon)	-
Tuning System 🎄	CERN	CERN	CERN	CERN	CERN	CERN	CERNIUK	CERN <i>I</i> UK	Tuning System 🎄	CERN	CERN <i>I</i> CANADA	CANADA	CANADA	CERN	CERN <i>I</i> CANADA	CANADA	CANADA
· ·	CERN	CERN	CERN	CERN	CERN	CERN	CERNIUK	CERN <i>I</i> UK	FPC 🚏	CERN	CERN	CERN <i>I</i> CANADA	CERN <i>I</i> CANADA	CERN	CERN	CERN/ CANADA	CERN <i>I</i> CANADA
Dressed Cavity	CERN	CERN	CERN	CERN	CERN	CERN	CERNIUK	CERN <i>I</i> UK	Dressed Cavity 藆	AUP / CERN	AUP	AUP <i>I</i> CANADA	AUP / CANADA	AUP / CERN	AUP	AUP / CANADA	AUP7 CANADA
Vessel 💻	CERN <i>I</i> UK	CERN - Industry (-)	CERN - Industry (-)	CERN - Industry (-)	CERN 7 UK	UK	UK	UK	Vacuum Vessel	CERN/ UK	CANADA	CANADA	CANADA	CERN <i>I</i> UK	CANADA	CANADA	CANADA
Warm Magnetic Shield	CERN/ UK	CERN - Industry (-)	CERN	CERN	CERN 7 UK	UK - Industry (-)	UK	UK	Warm Magnetic Shield	CERN/ UK	CANADA - Industry (-)	CANADA	CANADA	CERN <i>I</i> UK	CANADA - Industry (-)	CANADA	CANADA
Thermal Shield	CERN <i>I</i> UK	CERN	CERN	CERN	CERN 7 UK	UK	UK	UK	Thermal Shield	CERN/ UK	CANADA	CANADA	CANADA	CERN <i>I</i> UK	CANADA	CANADA	CANADA
Cryogenic Circuits	CERN	CERN	CERN	CERN	CERN	UK	UK	UK	Cryogenic Circuits	CERN	CANADA	CANADA	CANADA	CERN	CANADA	CANADA	CANADA
Coaxial RF Lines	CERN	CERN	CERN	CERN	CERN	CERN	UK	CERN <i>I</i> UK	Coaxial RF Lines	CERN	CERN	CANADA	CERN <i>I</i> CANADA	CERN	CERN	CANADA	CERN <i>I</i> CANADA
Beam Screen	CERN	CERN	CERN	CERN	CERN	CERN	UK	CERN <i>I</i> UK	Beam Screen	CERN	CERN	CANADA	CERN <i>I</i> CANADA	CERN	CERN	CANADA	CERN <i>I</i> CANADA
Instrumentation	CERN	CERN	CERN	CERN	CERN	CERN/UK	CERNIUK	CERN <i>I</i> UK	Instrumentation	CERN	CANADA	CANADA	CERN <i>I</i> CANADA	CERN	CANADA	CANADA	CERN <i>I</i> CANADA
Assembly	CERN	CERN	CERN	CERN	CERN	UK	UK	CERN <i>I</i> UK	Cryomodule Assembly	CERN	CANADA	CANADA	CERN <i>I</i> CANADA	CERN	CANADA	CANADA	CERN <i>I</i> CANADA
	-																

-LHC PROJECT

HL-LHC Procurement Strategy and Risk - 12th HL-LHC Collaboration Meeting, Uppsala (Sweden)