

MKI Cool

Miguel Diaz Zumel

Acknowledgements:

M.J. Barnes, C. Bracco, W. Bartmann, O. Bjorkqvist, L. Ducimetière, B. Goddard, T. Kramer, T. Maurin, V. Namora, A. Porret, T. Stadlbauer, P. Trubacova, L. Vega Cid, V. Vlachodimitropoulos, W. Weterings

Uppsala – September 19th to 22nd 2022

Outline

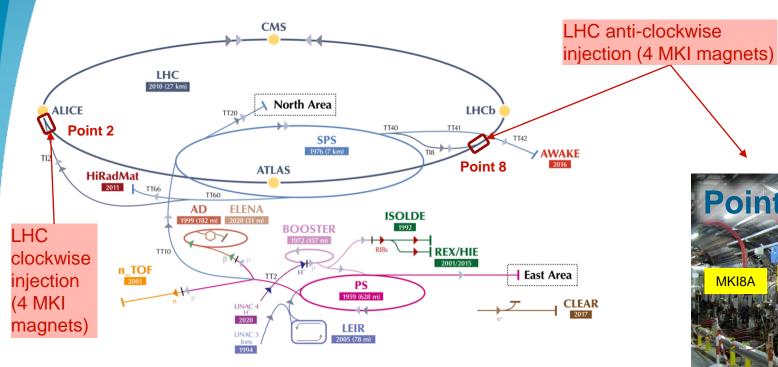
1. Context

- MKI purpose and design
- Cr_2O_3 coating
- Damping element and MKI cool

2. Issues – now solved

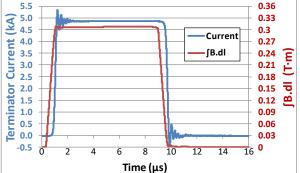
- HV breakdowns
- Unsuccessful conditioning

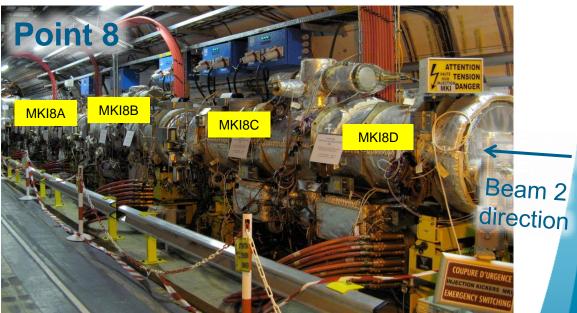
3. Issue – understood


- Mis-manufactured alumina tubes
- Present work
- 4. Status of first MKI cool to be installed in LHC

5. Conclusions

1. Context

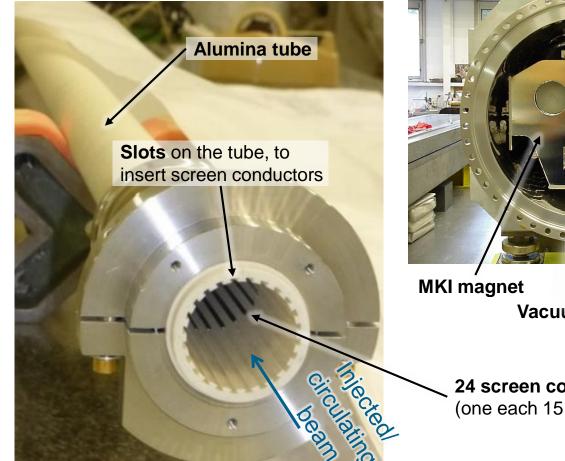

MKI: Injector kicker magnets for the LHC

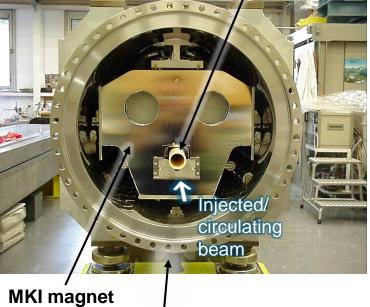


Planning of MKI cool installation

1 MKI cool (proto)	2 MKI cools	2 MKI cools	2 MKI cools	1 MKI Cool
YETS 22/23	YETS 23/24	YETS 24/25	Start of LS3	During LS3

C Typical MKI pulse

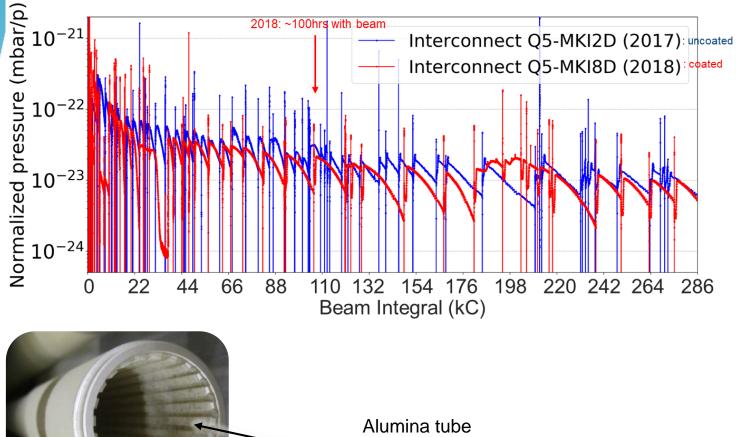




1. Context Screen conductors inside MKI

Alumina tube (installed in MKI)

- Screen conductors **carry image current** of **circulating beam** U
- Lower beam induced heating
- Conductors are supported and electrically insulated by alumina tube (high SEY)
- 2017-18 YETS upgrade of MKI8D: Alumina tube is coated on the inside with Cr₂O₃: has a low SEY, does not produce UFOs and is high voltage compatible



Vacuum tank

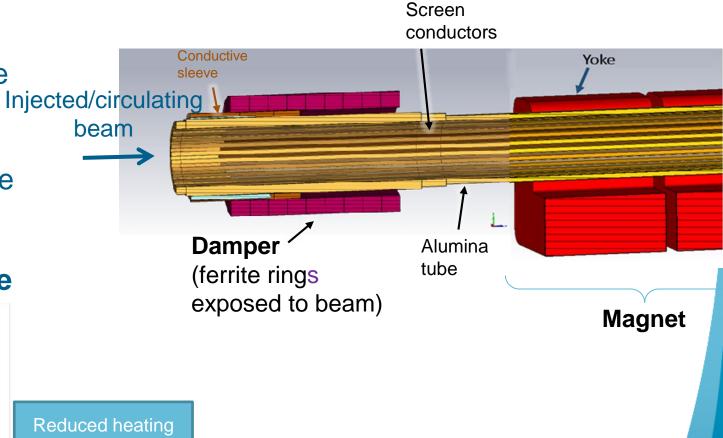
24 screen conductors (one each 15 degrees, since LS1)

1. Context Cr_2O_3 coating in MKI8D, installed in YETS 17-18

with **Cr₂O₃ coating** on the inside Before:

Pressure in **MKI8D** interconnect used to be a factor of \sim **3** (2012, 2015 and 2017) and \sim **12** (2016) **higher than** that of **Q5-MKI2D**

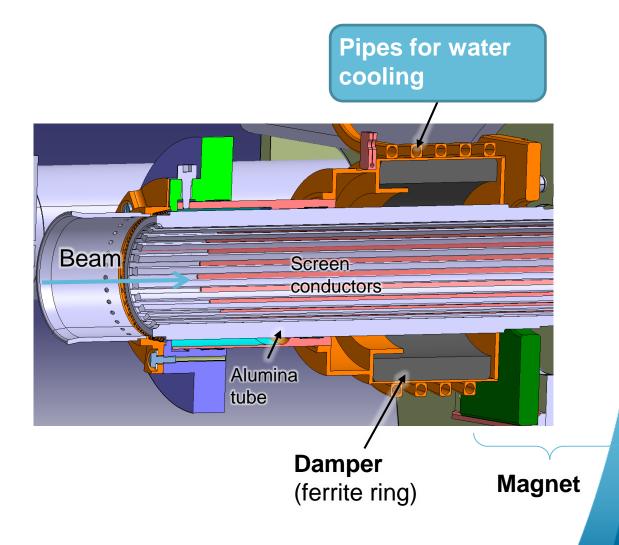
After:


This **factor** is **not observed** anymore.

No other vacuum modifications were done, so pressure reduction is attributed to Cr_2O_3 coating

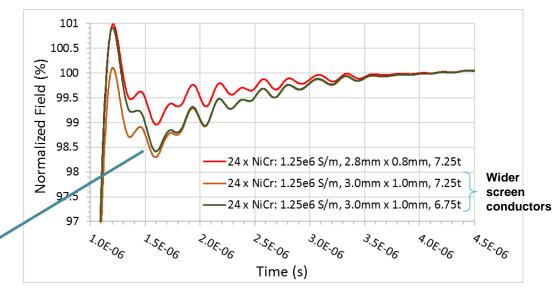
1. Context Damping element: the origin of MKI cool

- Redesigned ferromagnetic rings


 (damper), placed on the alumina tube
 outside of the magnet aperture, re Inject
 locates beam induced power
 deposition from the ferrite yoke to the
 damper
 - Damper is **not at** pulsed **high voltage** Post-LS1 45 Temperature [C] design 40 35 30 25 Upgraded, MKI8D, design of ferrites 20 07/05/2018 17/05/2018 ^{06/06/2018} 17/04/2018 27/04/2018 ^{27/05/2018} 16/06/2018 26/06/2018 Date

1. Context <u>MKI cool = damping</u> element + water <u>cooling</u>

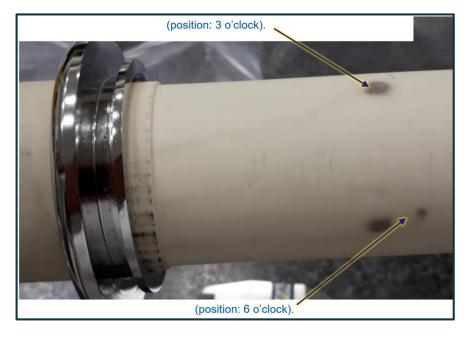
- Damping element fulfils the function of re-locating beam induced power
- **BUT, with HL-LHC beam**, it would reach the Curie temperature, and (temporarily) **stop working**
- The idea of the **MKI cool** is to cool the damper with **water** to remove heat



2. Issues – now solved During 2019

Non-conformity of slots in alumina tubes purchased during 2017: slots were too wide. Thus, it was necessary to use screen conductors with a small zig-zag

[HL-NCR: https://edms.cern.ch/document/2440015/1.0]



Using wider screen conductors was discarded due to influence on magnetic field (eddy currents)

HV pre-conditioning of MKI cool failed:

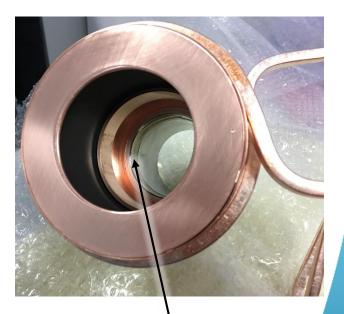
[HL-NCR: https://edms.cern.ch/document/2440015/1.0]

- 18 strong sparks occurred over two weeks
 Conditioning plateaued at ~45kV (goal=56.1kV)
- Three **black marks** from HV **breakdowns to** alumina tube

2. Issues – now solved During 2019. Actions carried out

RF damper structure was modified to mitigate HV breakdowns:

1. Metal **supports** for **tube** replaced by **macor**

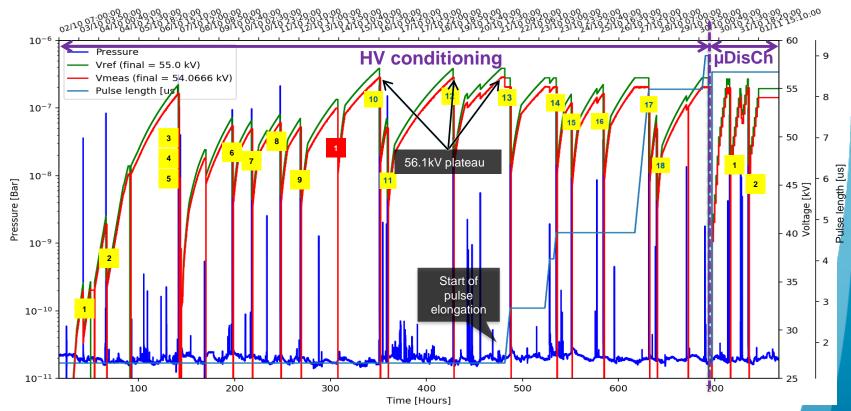

Cooling pipes

for RF damper

- 2. RF damper end cap inside diameter enlarged (from 56mm to 60mm), to increase distance to alumina tube
- RF damper

 End-cap
 1 mm radius

3. Sharp edge on stainless steel short eccentric tube removed (manufacturing error)

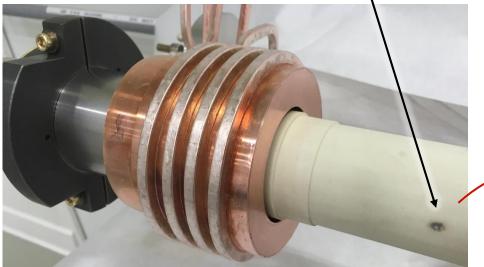

Sharp edge chamfered

2. Issues – now solved During 2020. HV conditioning

Conditioning **completed** and **target** of 56.1kV* and 8.8µs flattop **reached**, **BUT:**

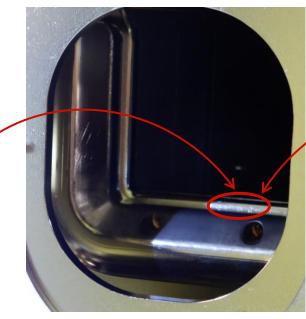
- Conditioning required 230k
 pulses (usually 50k to 100k)
- 18 strong sparks were observed (usually <6)
- For the first time, two strong sparks during microdischarge test
- Hence, magnet was not installed, but opened and inspected instead

*: 56.1kV is ~10 % above Point 8 operational voltage (51.3kV)

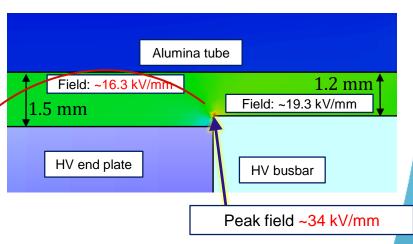


System reset

Strong spark

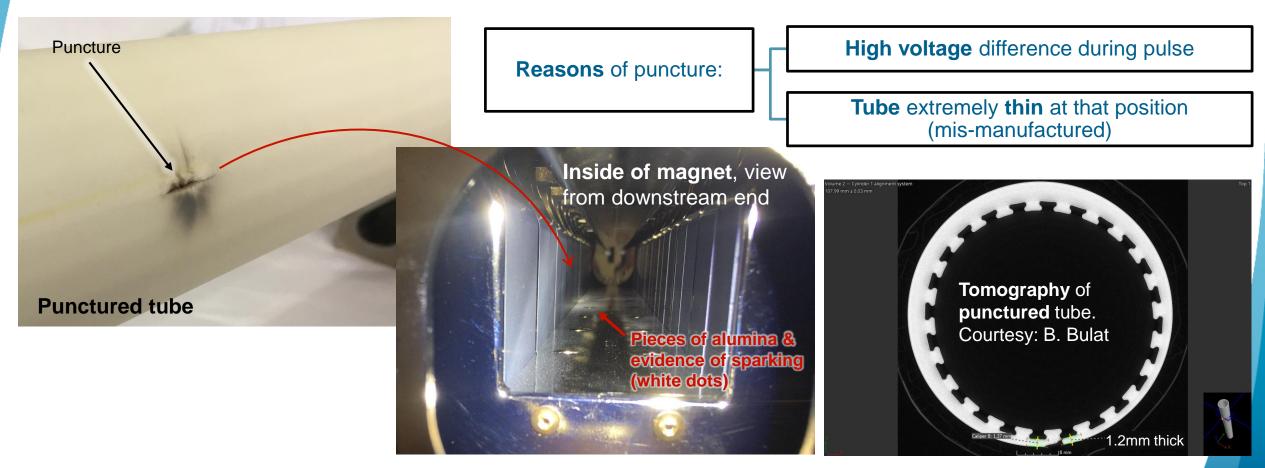

2. Issue – now solved Inspection after conditioning (November 2020)

First observation: Still one black mark seen on the tube, at the end (3 marks in 2019)


Alumina tube outside of magnet

The reason was a sharp edge due to misalignment of HV busbar of the magnet

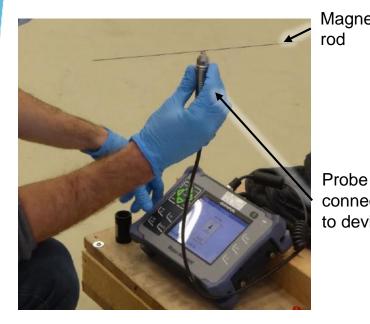
End of magnet, without tube

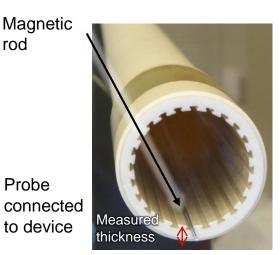


Enhanced electric field (~doubled) due to dealignment of HV busbar

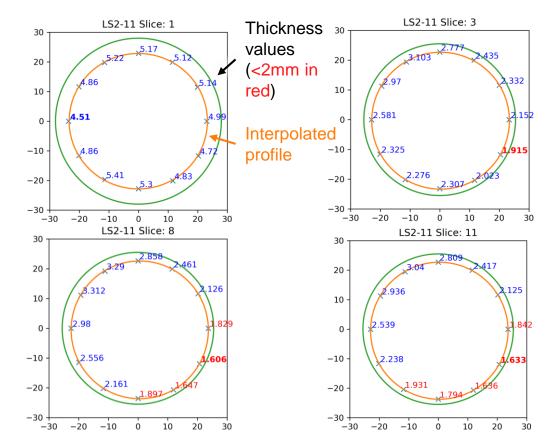
3. Issue – understood Inspection after conditioning (November 2020)

Second observation: alumina tube was punctured, inside of the magnet (52cm from downstream end)



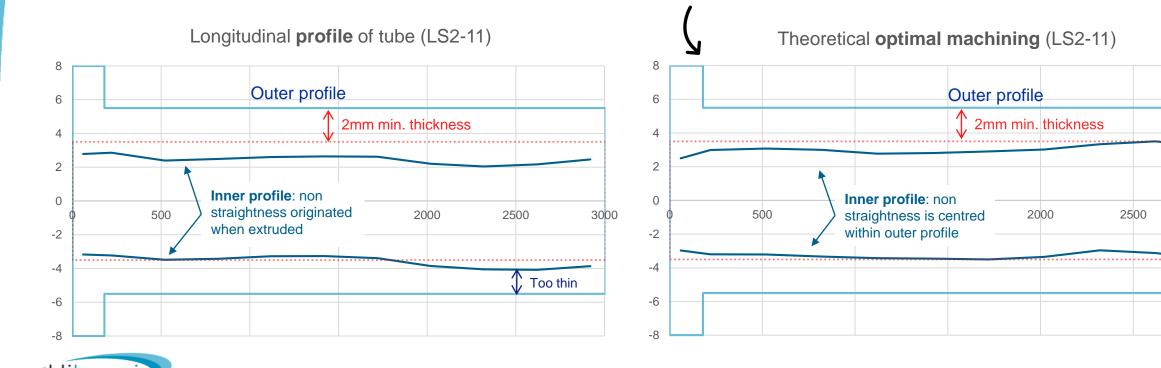


3. Issue – understood: mis-manufactured alumina tubes Puncture triggered study of tube thickness of 2017 batch


All 2017 tubes were measured

Magnetic gauge measures wall thickness all along the tube

A dedicated **Python programme** was developed, to **show the inner profile** of the **tubes**


MKI Cool - M. Diaz Zumel - 12th HL-LHC Collaboration Meeting 13

3. Issue – understood: mis-manufactured alumina tubes Discussions with manufacturer + conclusions of study

For manufacturing, tube is **extruded with final inner profile**, but larger outer diameter

Afterwards, the outside surface is machined

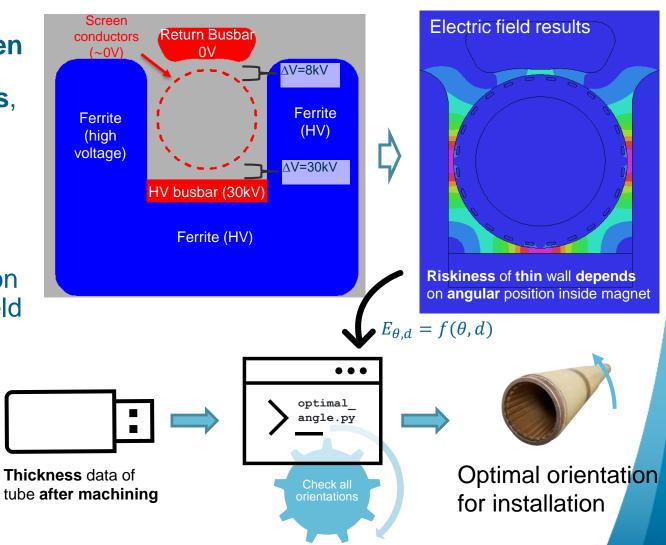
- No tubes, from 2017 batch, with required minimum wall thickness (2mm)
- 2. Axis for machining the tube could be better chosen, to have more uniform wall thickness

3000

3. Issue – understood: mis-manufactured alumina tubes Current work: determining the optimal machining axis

Shape of tube after extrusion is imperfect

(before machining) -uture Outer profile characterisation Before Machined tube Optimal axis for machining optimal axis machining.py $= \{x_1, y_1, x_2, y_2\}$



Extruded tube exaggerated deformation) Wall thickness measurement

3. Issue – understood: mis-manufactured alumina tubes Optimization of tube rotational angle for installation

- Angle for installing of the tube can be chosen
- Electric field data, predicted by simulations, depends on:
 - Wall **thickness** of the tube (*d*)
 - Angular position of screen conductor (θ)
- **Python** programme to check every orientation (0, 15, ... 345 deg.) and calculate electric field
- **Orientation** with lowest E field is chosen for installation

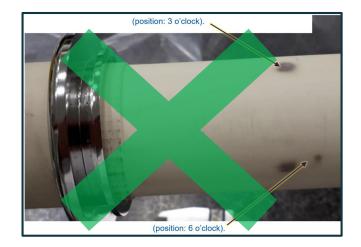


4. Status of first MKI cool to be installed in LHC

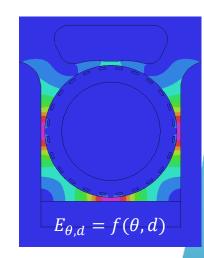
Installation planned for YETS 22/23

Successful HV pre-conditioning

Planning has been delayed due to a vacuum leak.
 The seal is being replaced.
 But still in schedule, for YETS 22/23, at location MKI8C



MKI cool in test cage



5. Conclusions

- High voltage issues during 2019 and 2020 have been successfully solved
- The remaining issue is the risk of puncture due to non-conforming alumina tubes:
 - The issue is well **understood** and a there is good **collaboration** with the manufacturer
 - **Detailed measurements** of the tubes <u>prior</u> to machining will result in achieving minimum of 2mm wall **thickness**
 - Remeasuring the tubes <u>after</u> machining will validate correct machining, and therefore thickness
 - **Optimizing angular** position, for installation in an MKI, will serve as an extra **protection** against HV breakdowns through the tube wall

18

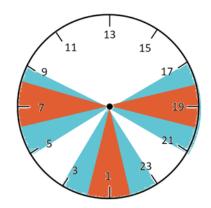
Thanks for your attention !

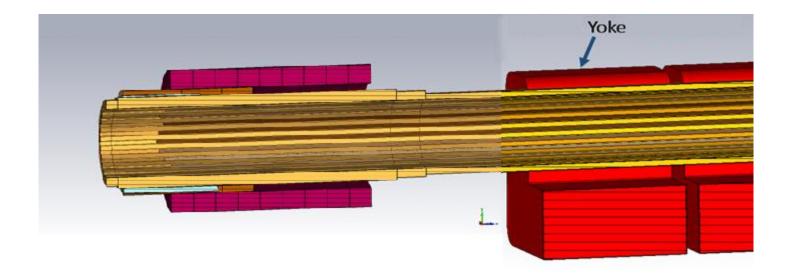
Spare slides

MKI Cool - M. Diaz Zumel - 12th HL-LHC Collaboration Meeting

Context MKI conditioning information

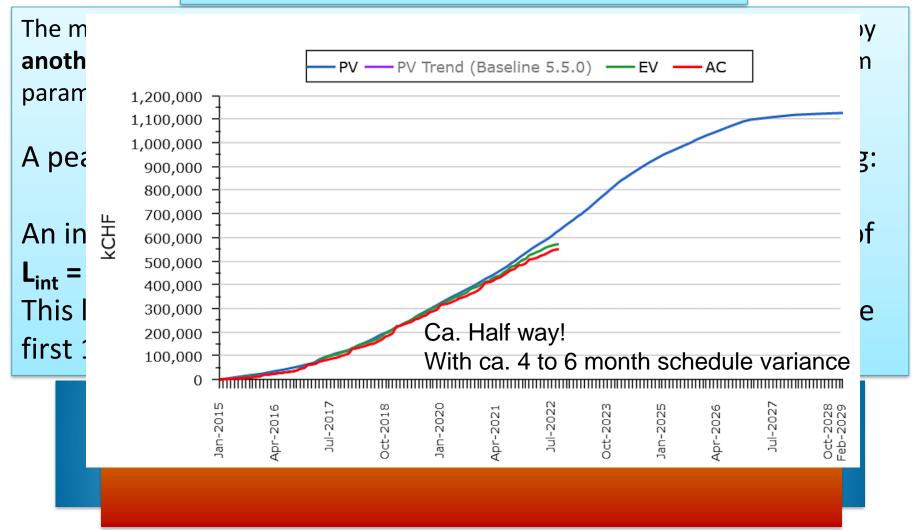
Simplified conditioning schematic


- Operational voltage of MKIs is 49.6 kV at Point 2 and 51.3 kV at Point 8
- All MKIs are conditioned to ~10 % above Point 8 voltage = 56.1 kV
- During HV conditioning:
- Voltage is ramped up to 56.1kV at a fixed pulse length of 1.5µs;
- Ramping is followed by a plateau (1.5µs at 56.1kV for 1200 pulses);
- Plateau is followed by enlarging mode (1.5µs to 8.8µs) at 55.1kV;
- Finally, a plateau with 8.8µs at 55.1kV for 1200 pulses
- HV conditioning is followed by a micro-discharge test, for validating the MKI:
- Voltage is quickly ramped up to 55kV* at a fixed pulse length of 8.6µs, 500 pulses per step
- Notes:
- *: 1 kV above the maximum SoftStart PFN voltage at Point 8
- A pressure rise is considered a micro-discharge (energy dissipated in the magnet or beam screen is relatively low) when the pressure takes a few minutes (e.g. 3 minutes) to recover to its pre-breakdown level.


Alumina tube measurements summary

	Absolute	Longitudinal position				
mininum (cm) of the minimum		Average	Average offset	Relaxed criteria	Exigent criteria	
thickness thickness (starting		hole radius	of centre of	Thinnest point on critical angles (±	Thinnest point on critical angles (±	
Tube	(mm)	from Ø56mm end)	(mm)	hole (mm)	15° inc.) after optimization (mm)	30° inc.) after optimization (mm)
s MKI2B	1.98	112	22.85	0.43	2.24	2.24
LS1-1 LS1-2	1.75	22	22.93		2.25	1.955*
- LS1-2	1.36	202	22.96		1.75	1.48
L31-5	2.04	112	22.86			
LS2-1	1.23	52	23.12		1.79	1.65
LS2-2	0.95	202	23.23			
LS2-3	1.44	232	23.11	0.42	1.72	1.72
LS2-4	1.42	232	23.09	0.57	1.82	1.82
LS2-5	1.68	82	23.12	0.52	1.84	1.84
សូ LS2-6	1.15	262	23.08	0.51	1.85	1.56
ទួ LS2-6 ក្នា LS2-7	1.04	262	23.08	0.91	1.32	1.18
≩ LS2-8	0.78	262	23.08	0.61	2.06	1.36
Ž LS2-9	0.93	202	23.08	1.06	1.21	1.00
LS2-10	1.34	262	23.07	0.65	1.62	1.34
LS2-11	1.43	262	23.12	0.49	2.04	1.61
LS2-12	0.82	262	23.08	0.59	1.93	1.45
LS2-13	0.70	262	23.13	0.91	1.16	1.16
LS2-14	0.98	262	23.11	0.52	2.06	1.35
				(2 of 3 2013 + 3 of 14 2017)	(2 of 3 2013 + 0 of 14 2017)	
Number of good tubes					= 5	=2

Notes: LS1-? = 2013 batch LS2-? = 2017 batch



Reminder of the HL-LHC Goals

From FP7 HiLumi LHC Design Study application in 2010

