

Radiation protection aspects for HL-LHC

<u>A. Infantino</u> & P. Dyrcz

On behalf of HSE-RP

With contributions from: HSE-RP management and colleagues, HL-LHC project management, PSO and WPs! 12th HL-LHC collaboration meeting – Plenary session 6 (Indico) EDMS 2773490

Context and outline

A number of studies delivered in the last years, covering LS3, HL-LHC operation, new HL-LHC galleries, specific components (e.g. TAXN, QXL, etc).

□ RP studies disseminated in a number of *ad-hoc* presentations in WP meetings & HL-LHC TCC + dedicated HSE-RP Technical Notes → reference list in the backup slides.

□ Key EDMS documents highlighted throughout the talk (released, in-work, to be done)

□ Today's talk:

EDMS 2773490

Radiation Areas classification

Area		Area	Annual dose limit	Ambient dose equivalent rate		Sign RADIATION		
EDMS 810149			(year)	permanent occupancy	low occupancy	8		Low-occupancy: < 20% working time
		Non-designated	1 mSv	0.5 µSv/h	2.5 µSv/h			
		Supervised	6 mSv	3 μSv/h	15 µSv/h	Dosimeter obligatory Dosimètre obligatoire		
	Area	Simple Controlled	20 mSv	10 µSv/h	50 µSv/h	SIMPLE CONTROLLED / CONTRÔLÉE SIMPLE Dosimeter obligatory Dosimétre obligatoire	a	-
	Radiation Area	Limited Stay	20 mSv	-	2 mSv/h	LIMITED STAY / SÉJOUR LIMITÉ Dosimeters obligatory Dosimètres obligatoires	ed Are	
	Radi	High Radiation	20 mSv	-	100 mSv/h	HIGH RADIATION / HAUTE RADIATION Dosimeters obligatory Dosimètres obligatoires	Controlled Area	
		Prohibited	20 mSv	-	> 100 mSv/h	NO ENTRY DÉFENSE D'ENTRER	U	_

The CERN RP group has reviewed the signage used in radiation areas, by introducing a new colour code for better visualizing the radiological risk level
 The RP rules determining the area classification were not changed

Group 1 Criteria:

EDMS 1751123

Individual dose equi.		100 μSv	Level II	1 mSv	Level III
Collective dose equi.	Level I	500 μSv	Levern	5 mSv	Leverm

Group 2 Criteria:

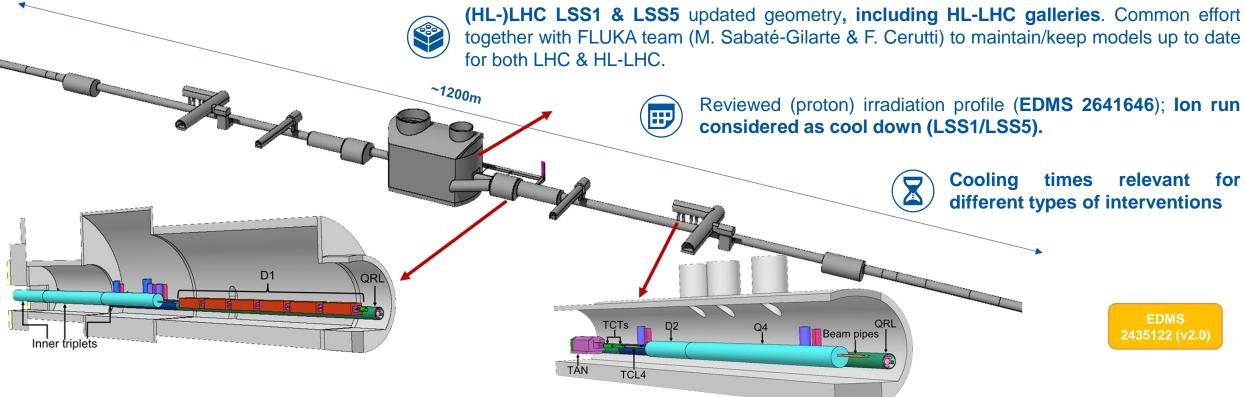
base of a radiological risk assessment

Ambient dose equivalent rate		50 μSv/hr		2 mSv/hr	
Airborne activity in CA	Level I	5 CA	Level II	200 CA	Level III
Surface contamination in CS		10 CS		100 CS	

Note: 1 mSv = 100 *mrem*

	Level		DIMR-1	DIMR-2	DIMR-3				
	Own	er	Applicant (i.e. equipment owner, work coordinator, contract or activity responsible)						
	_	WDP template	OptionalMandatoryApplicant2Applicant2		Mandatory Applicant ² '3				
	Preparation (iterative)	Provides dose rates	RP	RP	RP				
		Sets DIMR level	RP and RSSO	RP and RSSO ³	RP and RSO				
	II J	Documented work optimization process	<i>Optional</i> RSSO	<i>Mandatory</i> RP and RSSO	Mandatory Applicant and RSSO, RP and RSO				
	Inform PCR (if applicable)		on request	Yes	Yes				
	Approval Veto rights		RSSO and RP	Dept. GL and RP4 and RSO	Complex manager (ALARA-c) Director General				
Ι			RP Group leader	Leader of the HSE unit					
	dn w	Retour d'expérience	<i>Optional</i> RSSO	<i>Mandatory</i> RP and RSSO	Mandatory RSO and RP and intervention supervisor				
	ollow	Closure of WDP	<i>Optional</i> : RSSO	Mandatory: RP	Mandatory: RP				
	Fc	Closure of intervention (DIMR)	RSSO₅	RSO	ALARA-committee responsible₀				
	Cont	rols	<i>Optional</i> RSSO	Mandatory RSSO7	<i>Mandatory</i> RP and RSO				

- \succ ALARA level \rightarrow Radiological risk assessment based on different criteria
- \blacktriangleright WDP/optimization mandatory for ALARA II & III \rightarrow early planning is crucial
- ➤ ALARA III approval by "ALARA committee" (complex manager, GL responsible for the equipment, RSO, RP GL, and more) → early planning is crucial

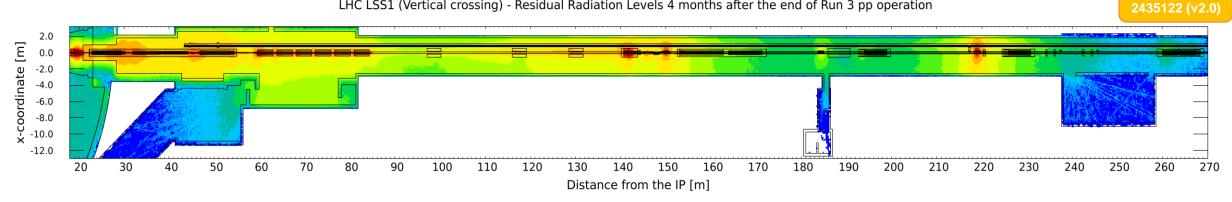


6

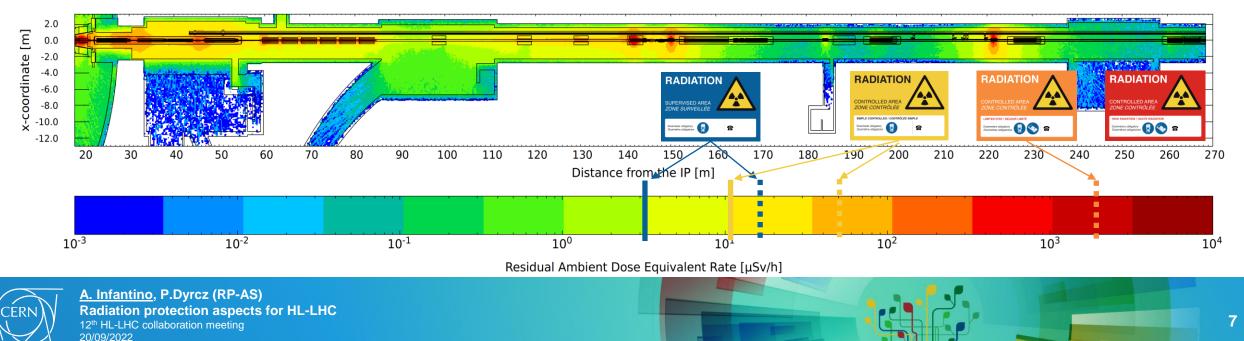
HSE-RP preliminary LS3 estimates in **EDMS 2435122 (v1.0)** + *ad-hoc* studies within different HL-LHC WPs such as WP8, WP15, WP17. EDMS 2435122 v2.0 in-work following the extension of Run 3 up to 2025.

Example: FLUKA model of LHC Point 1; cores highlighted just for visualization purposes

LS3: Residual H*(10)

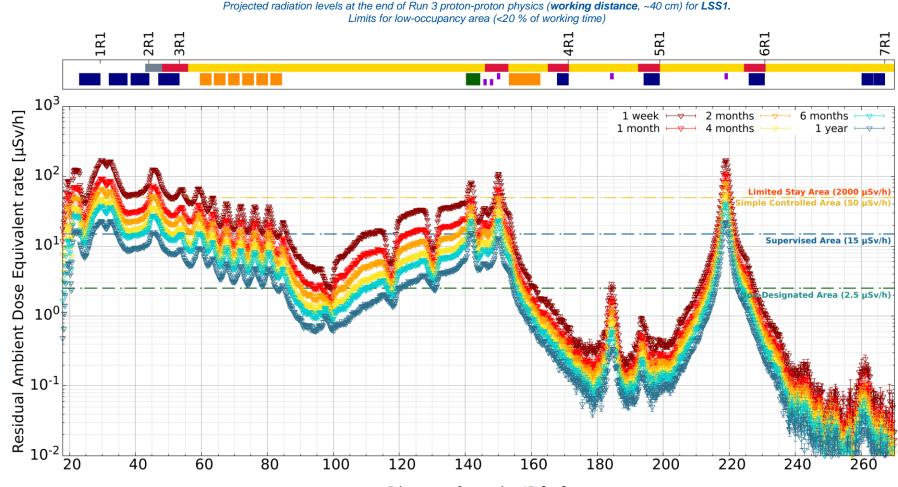

EDMS 2773490

Low-occupancy area (<20 % of working time)


HI-IHC PROJEC

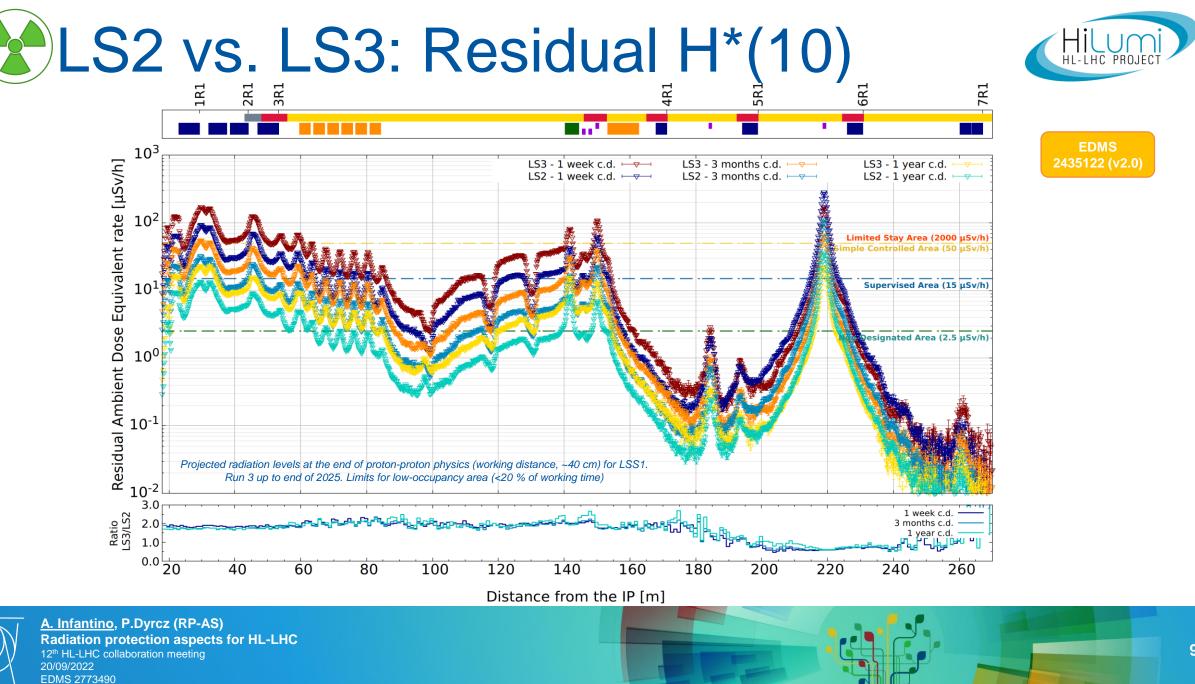
Permanent workplace

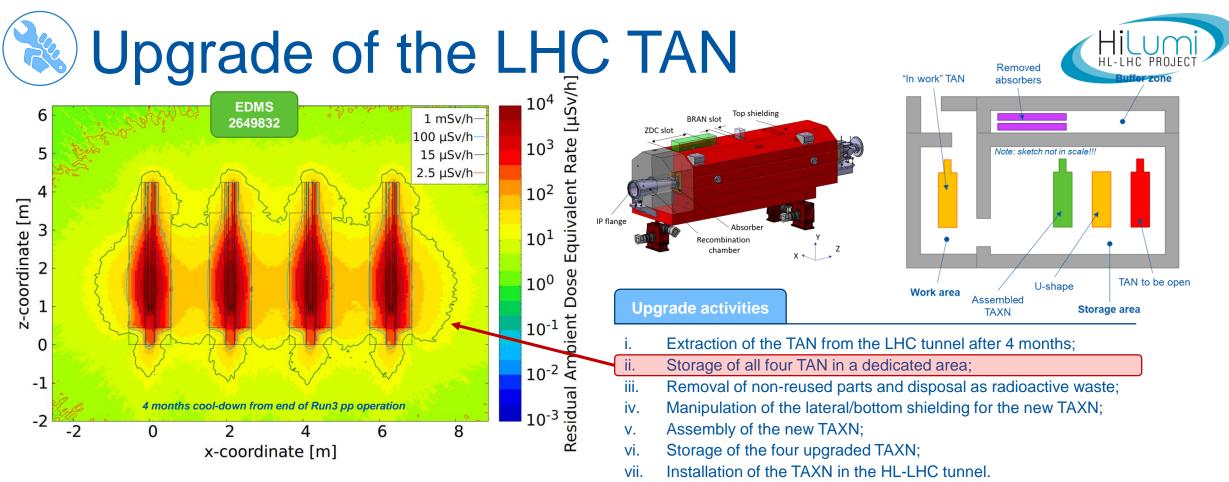
LHC LSS1 (Vertical crossing) - Residual Radiation Levels 4 months after the end of Run 3 pp operation



LHC LSS5 (Horizontal crossing) - Residual Radiation Levels 4 months after the end of Run 3 pp operation

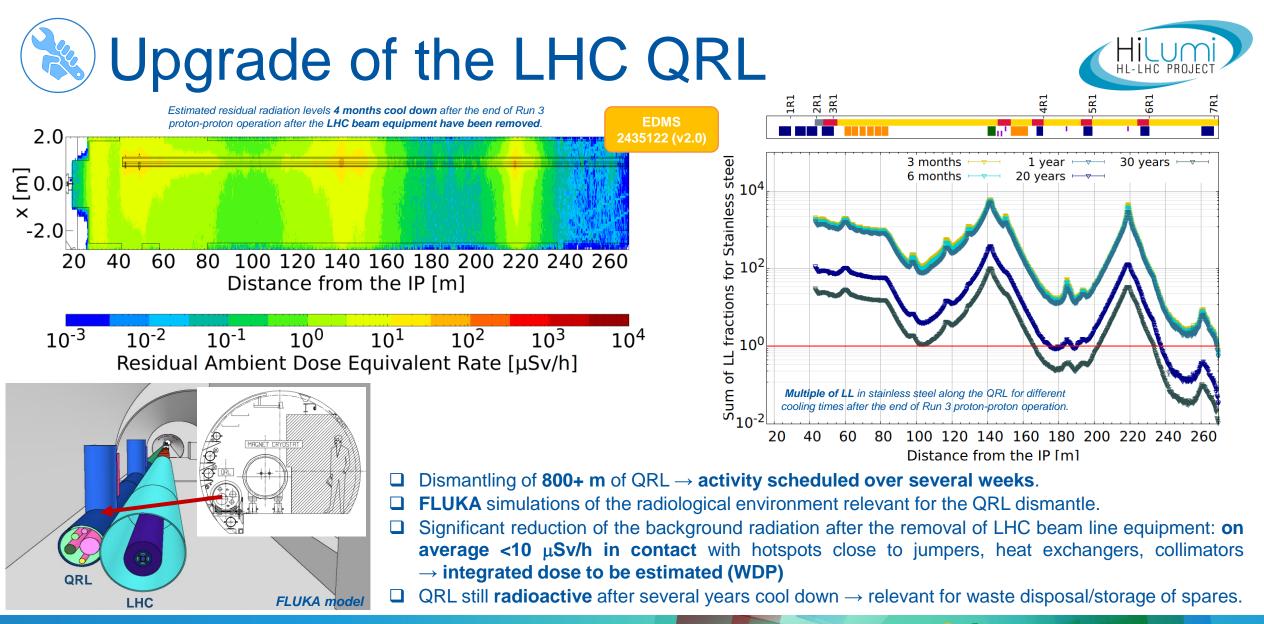
LS3: Residual H*(10) LSS1


Distance from the IP [m]

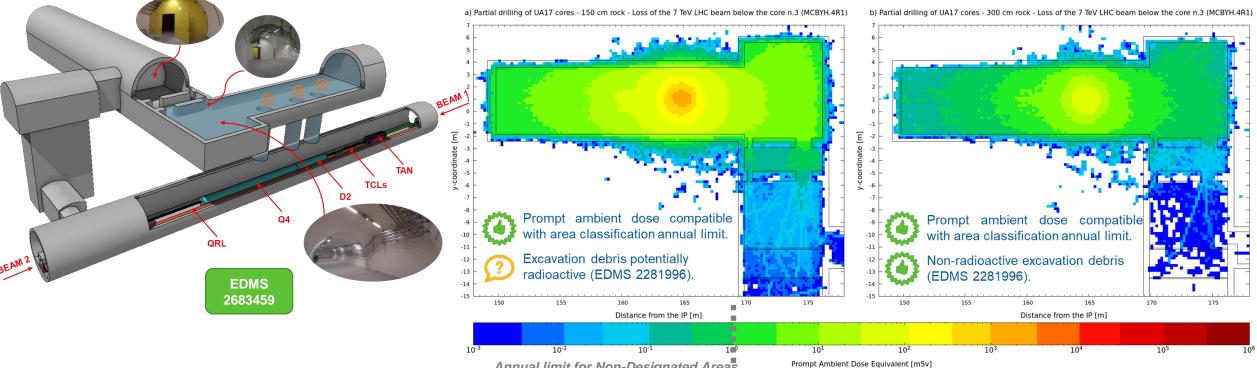

EDMS 2435122 (v2.0)

 \checkmark

- Hotspots still present in the tunnel even after several months cool downs (e.g., inner triplet quadrupoles, absorbers, collimators) with expected dose rate up to few **mSv/h** at contact.
- Early begin of the dismantle activities currently scheduled after
 4 months cool down from the end of Run 3 proton-proton physics.
- ✓ Difference between LSS1 & LSS5 mainly due to the different crossing scheme → TCL4 (see backup)



- **Complex manipulation** on highly activated equipment
- □ FLUKA (+ SESAME) simulations allow to estimate the residual radiation environment at different stages of the upgrade activities and in different configuration/geometries → "2-steps" method.
- Estimates used for: defying the worksite and its radiological area classification, producing WDPs, optimizing the intervention and minimizing of the radiological risk, pre-characterizing radioactive waste.



Core excavation: EYETS vs LS3

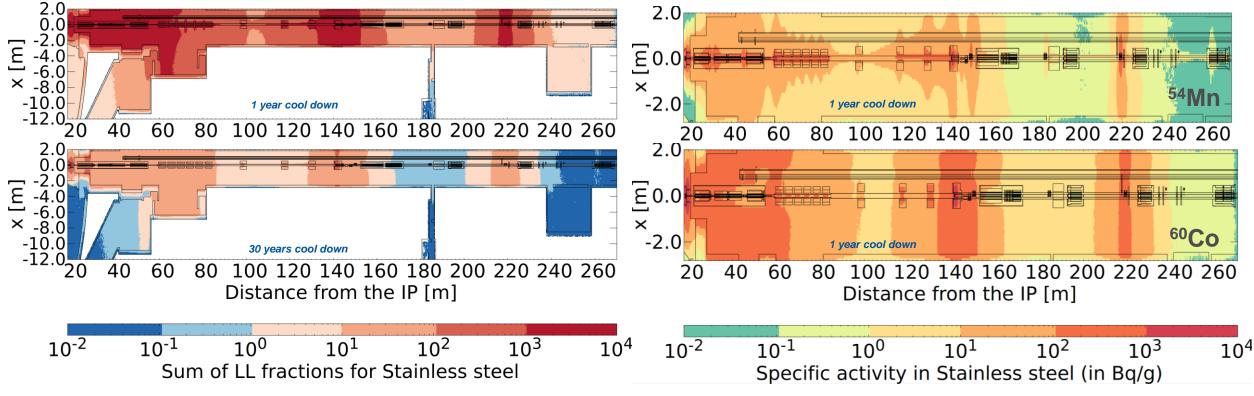
Annual limit for Non-Designated Areas

- Different (pre-)excavation options under discussion \rightarrow detailed study presented in Chamonix 2022
- FLUKA simulation to check potential RP constrains in UAs (and ULs) if cores pre-excavated during the EYETS 24/25
- Beam loss in the LHC machine (MBRC.4R1 or MCBYH.4R1), Run 3 operational conditions and different soil thickness in the cores
- Expected integrated dose due to the accidental scenario <1 mSv; Expected prompt ambient dose rate in Run 3 operation condition <<1 μ Sv/h at the sector door location (transmission factor ~10⁻⁸, EDMS 2212147)

HL-LHC/LS3 RW forecast

- RW waste at CERN: From 2010, tripartite agreement between CERN and Host States; "Fair Share" principle revised in March 2022.
- LS3: Dedicated meetings (as from May 2021) coordinated by WP15 and devoted to collect data regarding RW and gathering contact persons & RP.
- > WPs with significant RW quantities identified.
- HSE-RP-AS (A. Infantino/P. Dycrz) support to WPs to identify RW wastes + HSE-RP-RWM (C. Celce) collecting and registering the estimates.
- Missing WPs are encouraged to provide data as soon as possible to keep forecasts up-to-date.

Rad. Waste description	Dep-Grp	Contact person
HL-LHC - WP3 Magnets	TE-MSC	Ezio Todesco
HL-LHC - WP5 Collimation	TE-ABT	Stefano Redaelli
HL-LHC - WP7: Machine protection	TE-MPE	Daniel Wollmann
HL-LHC - WP8: LHC-Experiment interface	BE-EA	Francisco Sanchez Galan
HL-LHC - WP9: Cryogenics	TE-CRG	Serge Claudet
HL-LHC - WP12: Vacuum & beam screen	TE-VSC	Vincent Baglin
HL-LHC - WP14 TDE LHC	SY-STI	Marco Calviani
HL-LHC - WP15 De-cabling LSS1/5	EN-EL	Georgi Minchev Georgiev
HL-LHC - WP15 cable fibre and duct	EN-EL	Jeremy Blanc



Radioactive material/waste

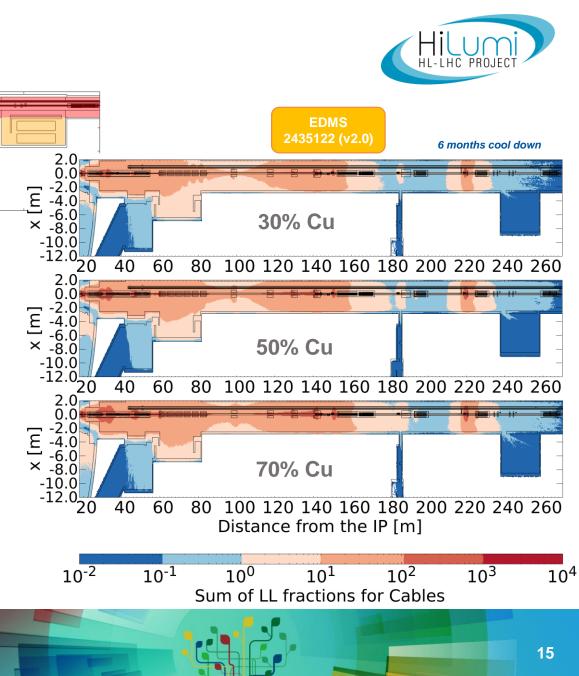
- FLUKA simulations allow to estimate the activation levels of LHC equipment by targeting quantities such as multiple of Swiss clearance limits (LL) and/or specific key-radionuclides.
- > Detailed radiological characterization for radioactive waste pre-characterization and for determining the most suitable elimination path.

Note: considered max 0.3 wt% Co in steel

De-cabling

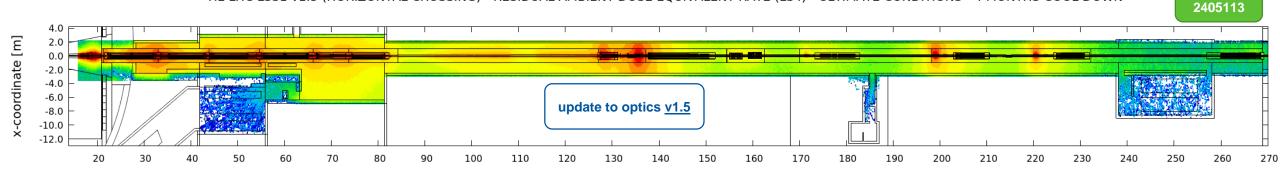
Radioactive cables Potentially radioactive (samples recommended) Non-radioactive (samples suggested)

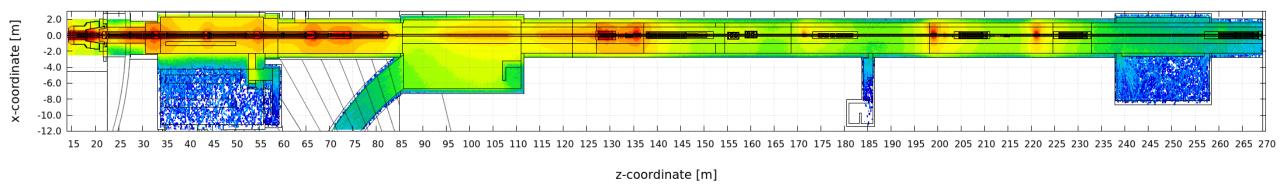
EDMS


2725658

Note: similar zoning for LSS5

- > Ongoing ad-hoc discussions within WP15 Friday meetings.
- New FLUKA simulations of multiple of the Swiss clearance levels in cables, assuming different ratio between conductor (Cu) and insulator.
- Tentative zoning for the de-cabling campaign at LHC Point 1; similar approach for LHC Point 5.
- Samples strategy: shared with CARE project (sample deployment to be discussed).

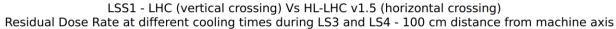


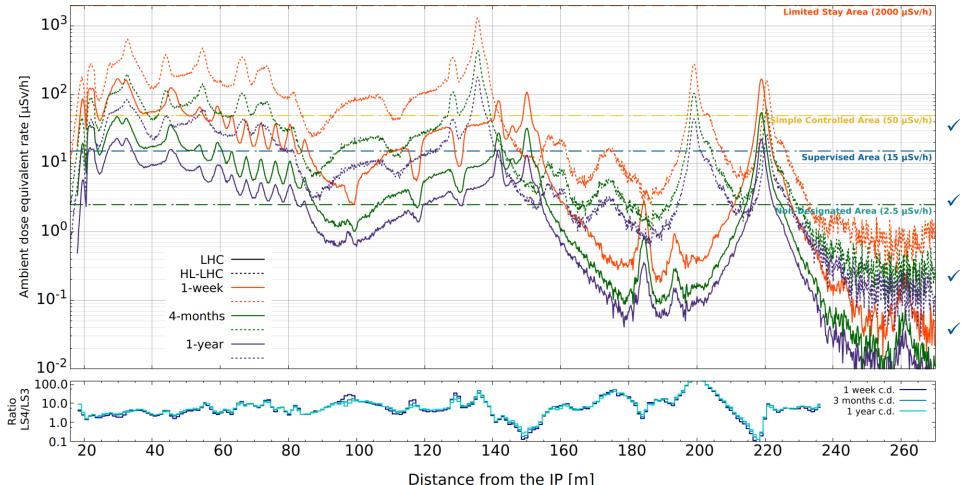


HL-LHC LSS1& LSS5 – RDR LS4

HL-LHC LSS1 v1.5 (HORIZONTAL CROSSING) - RESIDUAL AMBIENT DOSE EQUIVALENT RATE (LS4) - ULTIMATE CONDITIONS - 4 MONTHS COOL DOWN

HL-LHC LSS5 v1.5 (VERTICAL CROSSING) - RESIDUAL AMBIENT DOSE EQUIVALENT RATE (LS4) - ULTIMATE CONDITIONS - 4 MONTHS COOL DOWN


Residual Ambient Dose Equivalent Rate [µSv/h]



A. Infantino, P.Dyrcz (RP-AS) Radiation protection aspects for HL-LHC 12th HL-LHC collaboration meeting 20/09/2022 EDMS 2773490 EDMS

HL-LHC LSS1& LSS5 – RDR LS4

HILUMI HL-LHC PROJECT

EDMS 2405113

- **Crossing scheme** LHC/HL-LHC is swapped: HL-LHC Pt.1 horizontal, Pt.5 vertical.
- Peaks in different position due to the **different optics & crossing scheme**.
- Significant increase of radiation levels due to **luminosity boost**
- More challenging access
 conditions → impact on
 interventions.

CERN

<u>A. Infantino</u>, P.Dyrcz (RP-AS) Radiation protection aspects for HL-LHC 12th HL-LHC collaboration meeting 20/09/2022 EDMS 2773490

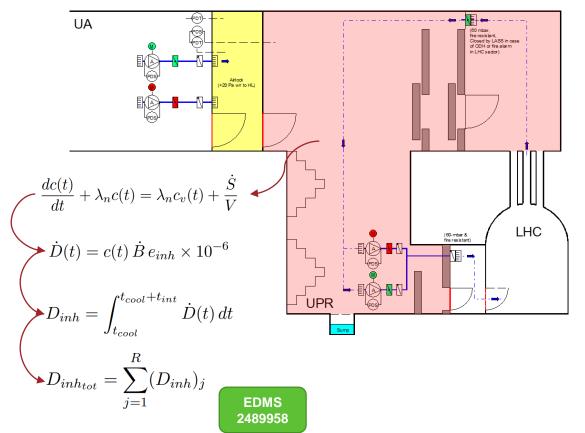
New HL-LHC galleries

UPR13

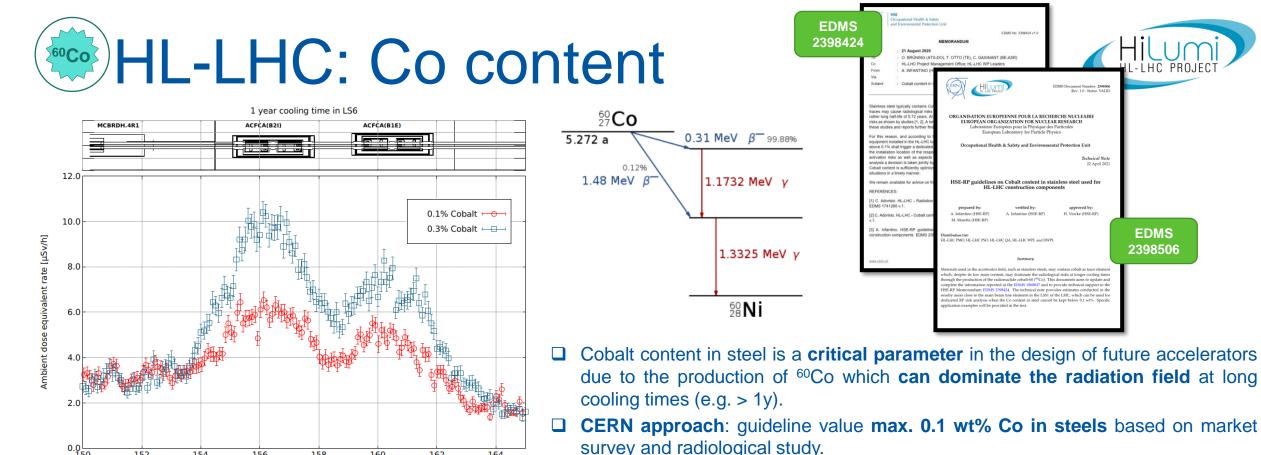
UL1x & UA1x

Accurate FLUKA geometry of the "as-built" HL-LHC galleries at Pt.1 and Pt. 5.

A number of studies developed for the new HL-LHC galleries at Pt. 1 & 5 such as **air activation**, **shielding requirements**, **dose during an emergency** evacuation via the LHC tunnel, and more \rightarrow List in backup.


		Run	n 3 operati				[m/s]		,
							1.5		
		1 min	49	24	15	12	8	4	EDMS 2719989
	Je	2 min	45	22	14	11	7	4	2719909
UL1x	tin	5 min	38	19	12	9	6	3	
	ng	10 min	33	17	10	8	6	3	
	iloc	15 min	31	16	10	8	5	3	
UPR1x	Ŭ	30 min	28	14	9	7	5	2	
		60 min	23	11	7	6	4	2	_
UPR17									
						T			
						Ę			

FLUKA model of HL-LHC infrastructure at Pt. 1 (right) <u>Highlighted</u>: new HL-LHC underground infrastructure, as built during LS2. Sketch of the escape path in right LSS1 (UPR17 via PM15) as implemented in Flair's WDP planner.


Air activation in the HL-LHC galleries

- Final ventilation configuration (HL-LHC): complex ventilation model (loop) with radioactive air injected in a activation-free area (EDMS 2416918).
- Optimization criteria: 1 μSv inhalation dose per 1 hour intervention.
- Access requirements to be revised
 → solution of the ventilation model (considering effective decay constant, i.e. ventilation + physical decay) in the UA/UPR volume.
- ➤ Assuming HL-LHC ultimate conditions, 1-week of operation, t_{int}=60 min and t_{cool}=30 min → D_{inh}~1.3 µSv.
- > Waiting time before access from 30 min \rightarrow 60 min to match the optimization criteria.

- Purchased steel quantity and retrieval through international collaborators are limiting factors. In addition Co content typically not indicated in the product specifications (minor impurity for the industry).
 - □ HSE-RP conducts **dedicated risk analyses** in case Co > 0.1 wt%.
 - Final decision taken together with hilumi management, evaluating cost-benefit aspects (ALARA).

2.0	1997 P			T ARA-I	
0.0 150	152 154	156 158	160	162	164
		Distance from the IP	[m]		
		0.3% Cobalt			
Coolingtime	H*(10) @ 1m	Co-60 contribution	$\sum_{n=1}^{i=1} \frac{a_i}{LL_i}$	Co-60 contributio	
Cooling time	$[\mu Sv/h]$	to H*(10) [%]	$\sum n \overline{LL_i}$	tol	L L [%]
1 week	6.27E+00	33	1.52E+03		37
1 month	4.65E+00	44	1.41E+03		40
6 months	2.85E+00	68	1.04E+03		51
1 year	2.27E+00	80	8.08E+02		62

Take home message

Number of studies deployed by HSE-RP in the context of LS3 preparation and HL-LHC operation.

LS3 will be **challenging** from RP point of view: working in a **high residual dose rate** environment, **multiple coactivities** to be carried out in the LHC tunnel, **radioactive waste** estimate/sorting.

LS3 ALARA optimization:

- Ensuring adequate cool down, considering the general LS3 planning/coordination & ion operation;
- Preparation and optimization of high-dose activities (WDP);
- ALARA Level 3 interventions (such as triplet exchange, etc.) need approval from the ALARA committee. Approval has to be received (well) in advance of the start of the work (as for LS2);
 Remote handling when possible;
- \circ Integration of **radioactive waste** aspects into shutdown planning is essential \rightarrow ad-hoc WP15 integration meetings including link persons and RP (AS and RWM) ongoing.
- Waste treatment should be considered at the source (e.g. TDE autopsy) for reducing dose to personnel and minimize costs for CERN.

HL-LHC operation will further challenge RP aspects

- Expected higher radiation levels
- **New underground galleries** (partially) accessible during operation
- LHC tunnel possibly used as emergency/escape path
- Ventilation between HL-galleries and LHC tunnel
- $\circ~$ Other ongoing studies on TDE, collimators, etc

HSE Occupational Health & Safety and Environmental Protection unit

ANGELO INFANTINO

CERN HSE-RP-AS @ angelo.infantino@cern.ch

HSE Occupational Health & Safety and Environmental Protection unit

BACKUP SLIDES

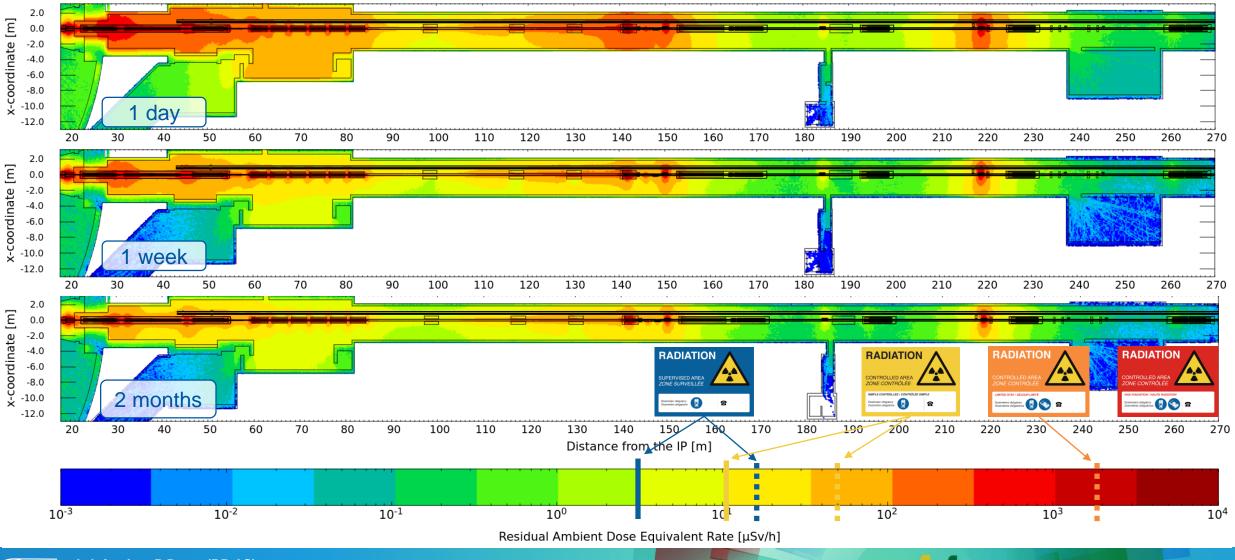
Reference list (Technical Notes)

EDMS Id	HSE-RP Technical Notes relevant for HL-LHC
2159991	HL-LHC TDIS: Evaluation of the residual dose rates in accidental scenarios
2212147	HL-LHC UPR underground galleries: review of the ambient dose equivalent rate during operation
2212244	HL-LHC TAXN: shielding requirements verification
2339490	List of RP-related HL-LHC Technical Notes (in-work)
2489958	Ventilation model for the LHC and HL-LHC operation
2719989	Estimate of the individual effective dose during the evacuation from the HL-LHC underground galleries via the UPR and LHC tunnel
2435122	Radiation Protection estimates for LS3 activities in LHC LSS1 and LSS5
2649832	Radiation protection studies relevant for the LS3 TAN upgrade: usage of the existing shielding and preliminary considerations on the worksite
2398506	HSE-RP guidelines on Cobalt content in stainless steel used for HL-LHC construction components
2405113	Radiation levels in HL-LHC LSS1 and LSS5: update to optics v1.5
2641646	LHC and HL-LHC luminosity and irradiation profiles for Radiation Protection studies
2773825	Radiation Protection assessment of the activated collimators in the LHC Upgrade (in-work)

Reference list (Presentations)

EDMS Id	HSE-RP Presentations relevant for HL-LHC
2195180	HL-LHC TDIS: Residual Dose Rate Estimation
2216246	HL-LHC UPR underground galleries: review of the ambient dose equivalent rate during operation
2220425	HL-LHC alignment: preliminary RP considerations
2248866	Overview of the radiation levels (RP and R2E) in the HL-LHC UPRs/UAs underground galleries
2256546	HL-LHC TAXN: RP considerations on shielding requirements
2331769	RP-recap of the residual dose rates in the HL-LHC LSS 1 and 5
2339827	List of RP-related HL-LHC presentations
2403936	New TAXN shielding design for ZDC operation: radiation levels and preliminary considerations
2467997	Radiation protection studies on the HL-LHC TAXN design and optimization
2683459	HL-LHC LS3 Radiation protection aspects in IP1 and IP5
2748377	Expected residual dose rates in LSS1/LSS5 during HL-LHC
2749148	Radiation levels relevant for the HL-LHC TCLM in LSS1 and LSS5
2725658	RP considerations on the LS3 decabling: activities and samples to be taken during RUN3
2411858	Preliminary RP considerations for LS3 activities
2367047	Overview of radiation levels in the LHC dump area (UD6x) during LS2, RUN3 and LS3
2574668	Preliminary RP considerations on the QRL dismantling during LS3
2435416	Update on Radiation Protection estimates for the HL-LHC project
2513434	Preliminary considerations on collimators dismantling during LS3
2596841	Preliminary RP considerations on the TAN dismantle, storing and upgrade during LS3
2744737	Radiation protection challenges for the Large Hadron Collider upgrade
2513055	RP risk analysis on the Co content for the Crab Cavities cryostat
2416918	Air activation in the new HL-LHC galleries
2773490	Presentation HSE-RP 12th HL-LHC collaboration meeting
2355222	RP considerations on the air activation in the LHC experiments and IT region
2406245	Radiation Levels in HL-LHC UPRs & UAs due to industrial radiographies
0700405	Undeted DD studies on the LUL LUC LU, shielding requirements

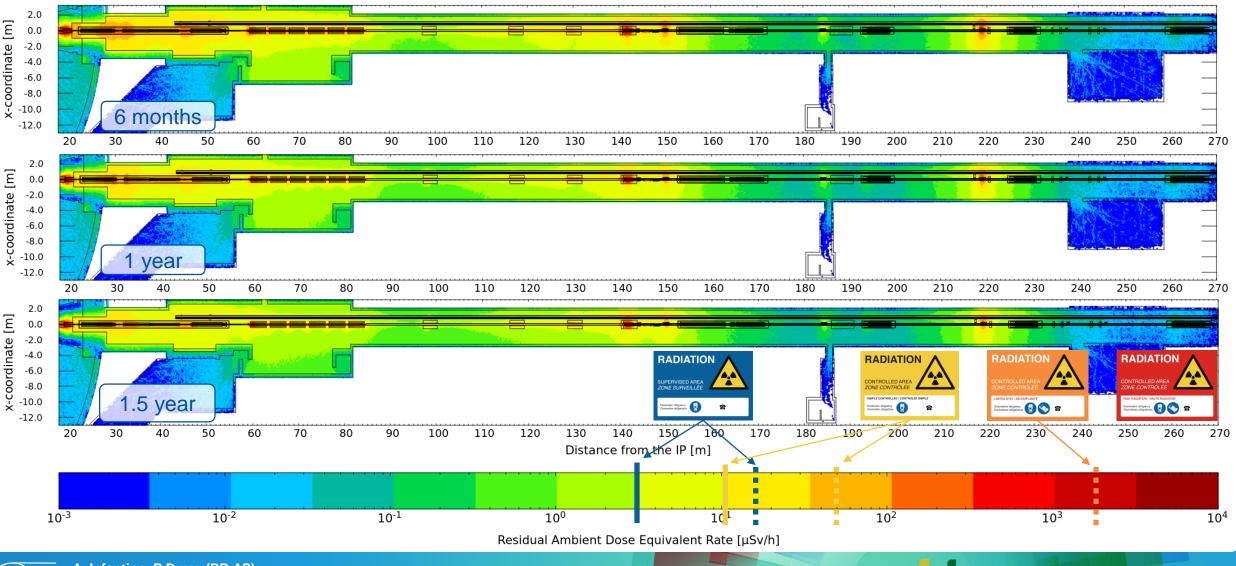
2780135 Updated RP studies on the HL-LHC UL shielding requirements



LS3: LSS1 Residual H*(10)

Permanent workplace

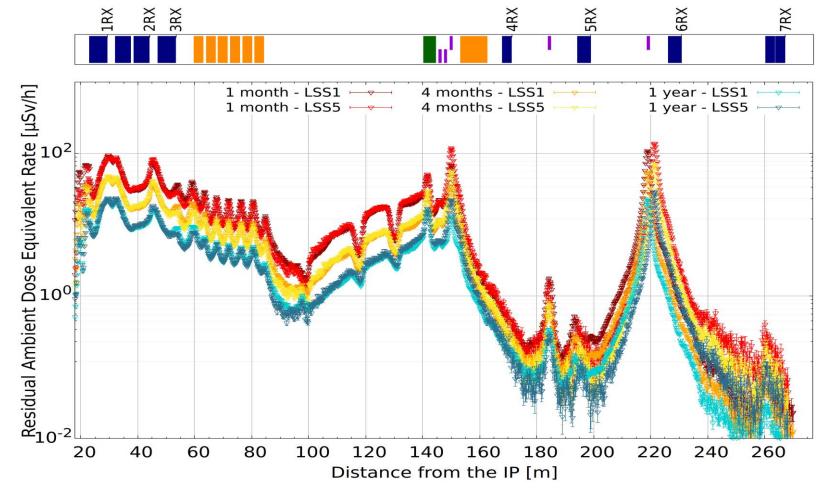
Low-occupancy area (<20 % of working time)</p>



<u>A. Infantino</u>, P.Dyrcz (RP-AS) Radiation protection aspects for HL-LHC 12th HL-LHC collaboration meeting 20/09/2022 EDMS 2773490 HL-LHC PRO.

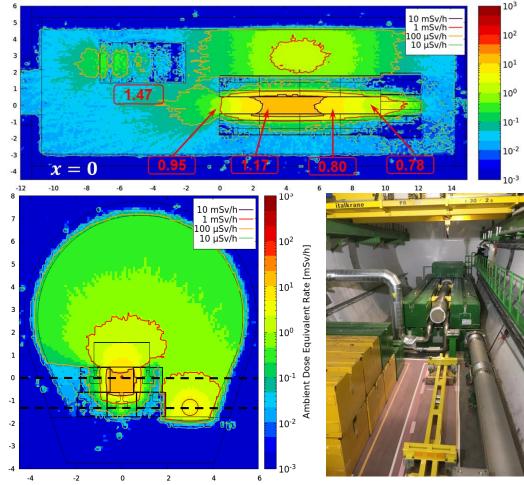
LS3: LSS1 Residual H*(10)

Permanent workplace


Low-occupancy area (<20 % of working time)</p>

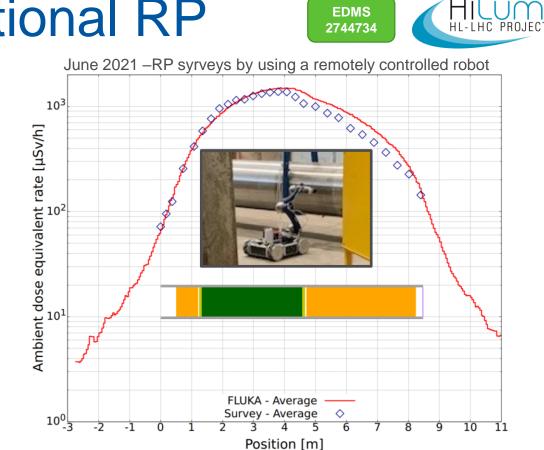
<u>A. Infantino</u>, P.Dyrcz (RP-AS) Radiation protection aspects for HL-LHC 12th HL-LHC collaboration meeting 20/09/2022 EDMS 2773490 HL-LHC PRO

LS3: Residual H*(10) LSS1 vs. LSS5



- Comparison of LSS1 and LSS5
- Slight difference due to the different crossing scheme
- Similar results in terms of residual radiation levels

Projected radiation levels at the end of Run 3 proton-proton physics (working distance, ~40 cm) for LSS1 and LSS5

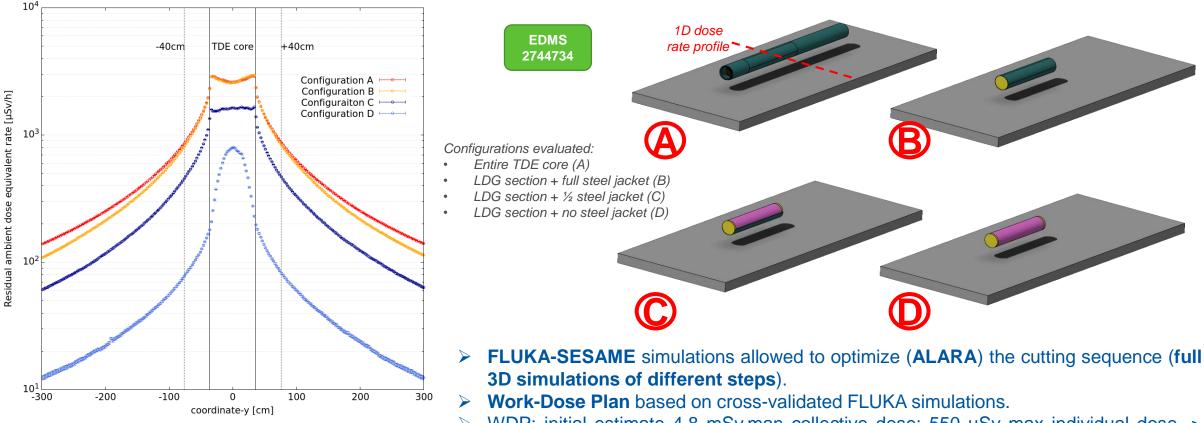


FLUKA simulations: operational RP

y-coordinate [m]

February 2020 – opening of the > TDE shielding and RP surveys.

- Combination of FLUKA-SESAME, FLUKA-FCC simulations to extend built-in FLUKA capabilities and to study residual dose field and activation in complex geometries.
- Cross-validation with measurements within ± 20% (average).



y-coordinate [m]

x-coordinate [m]

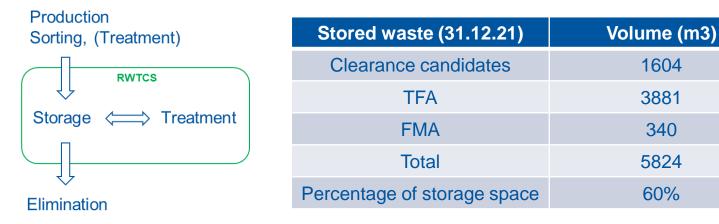
FLUKA simulations: TDE autopsy sequence

LHC TDE PIE - 1D Residual dose rate profile (Dec. 2021) - Average over z=110/430cm; x=-/+36

WDP: initial estimate 4.8 mSv.man collective dose; 550 µSv max individual dose -> after intervention 4884 µSv.person & 508 µSv (final 2920 µSv.person; 255 µSv).

Radioactive Waste Management

1604


3881

340

5824

60%

- The Radioactive Waste (RW) management at CERN is led by the **Radioactive Waste Management (RWM)** section within the Radiation Protection (RP) group.
- CERN operates a Radioactive Waste Treatment Centre (RWTCS) inside the former accelerator tunnel of ISR which is also used as interim-Storage for Radioactive Waste pending disposal.
- **Waste pre-conditioning** (sorting, etc) is needed \rightarrow e.g. LHC TDE 0
- Radioactive Waste produced from CERN activities are sent to the RWTCS to get 0 processed, packed, characterized and finally disposed.

A. Infantino, P.Dyrcz (RP-AS) **Radiation protection aspects for HL-LHC** 12th HL-LHC collaboration meeting EDMS 2773490

31

CERN Radioactive Waste disposal pathways

- ✓ From 2010, tripartite agreement between CERN and Host States, represented by Swiss Federal Office of Public Health (OFSP) and the French Nuclear Safety Authority (ASN) -> link
- ✓ "Fair Share" principle revised in March 2022, with three indicators: the volume eliminated, radiotoxicity and elimination costs.
- ✓ With these indicators, it will now be possible to better compare and measure the share between the two Host States

CERN RW classification	Disposal pathway
Clearance candidates – CL (Candidats à la Liberation Inconditionelle)	Release from regulatory control in Switzerland (clearance ↔ "free release")
•	Surface disposal in France , as defined by the acceptance criteria of the ANDRA CIRES repository.
(Faibles et Moyennes Activités a Vies	Short-lived intermediate and low level waste, half-life <30 years. Surface disposal in France as defined by acceptance criteria in ANDRA CSA repository.
	Intermediate and low-level waste which does not fulfil the FMA-VC criteria and disposal in Switzerland (PSI).

Context and FLUKA modelling

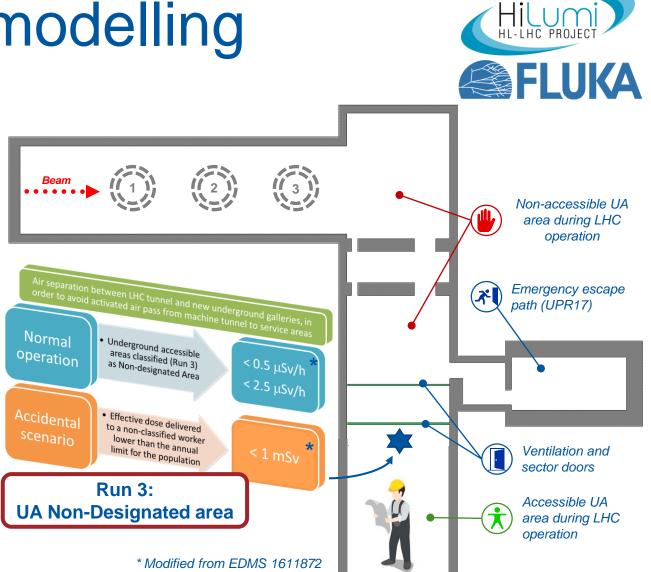
Several RP studies in the past considering HL-LHC conditions and different cores layout \rightarrow 2x80 cm shielded doors. **RP memo EDMS 2281996** on activated excavation spoils.

Aim: verify RP constraints if the **cores are partially excavated during Run 3** (e.g. EYETS).

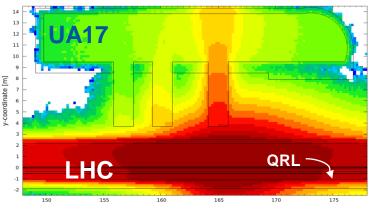
LHC Point 1 geometry: **UA17 + LHC tunnel** from 130m to 190m from IP1. Main outcome applicable to all UAs.

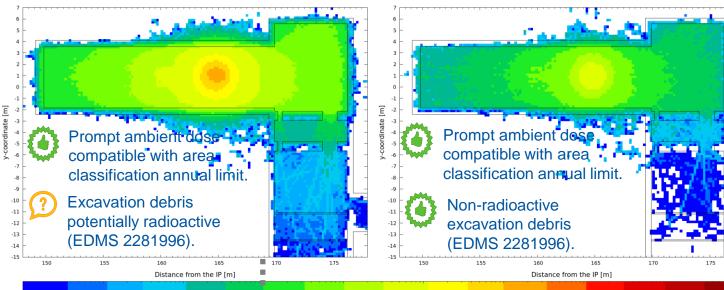
Run3 beam conditions: Beam 1, $E_{beam} = 7$ TeV protons, 2748 bunches, 1.8E11 ppb.

Excavation scenarios: average rock thickness from the LHC vault of 150/300 cm \rightarrow preliminary assumptions.



Accidental scenario: **loss of the LHC beam** below the 2nd or the 3rd core (i.e. on the MBRC.4R1 or MCBYH.4R1).

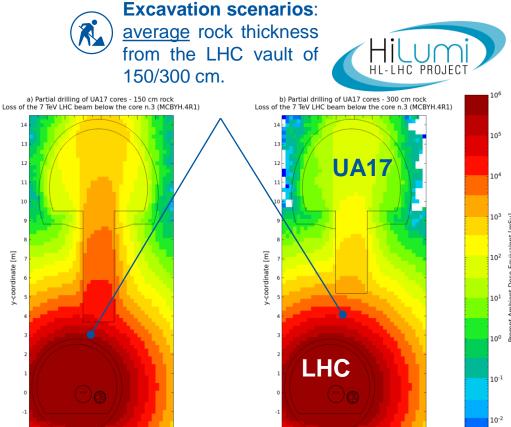

No shielded doors in the UA \rightarrow The presence of the shielded doors ensure the respect of the dose limits when the cores are fully excavated (see EDMS 1611872).



Prompt H*(10)

) Partial drilling of UA17 cores - 150 cm rock - Loss of the 7 TeV LHC beam below the core n.3 (MCBYH.4R1)

a) Partial drilling of UA17 cores - 150 cm rock - Loss of the 7 TeV LHC beam below the core n.3 (MCBYH.4R1)


b) Partial drilling of UA17 cores - 300 cm rock - Loss of the 7

10³

 10^{4}

Annual limit for Non-Designated Areas

Prompt Ambient Dose Equivalent [mSv]

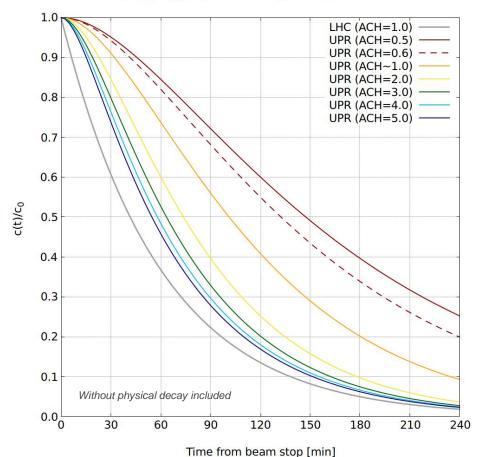
-2 -1 0 1 2 3 4 5 x-coordinate [m] -2 -3 -2 -1 0 1 2 3 4 5 x-coordinate [m]

Note:

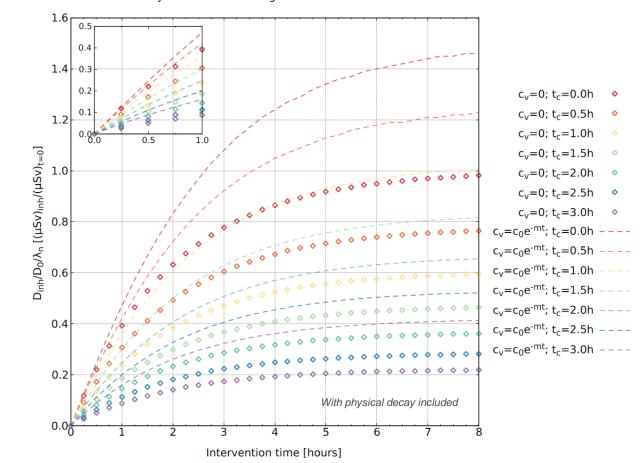
Loss of the 7 TeV LHC beam below the core n.3 (MCBYH.4R1)

TeV LHC beam below the core n.3 (MCBYH.4R1)

- Expected prompt ambient dose rate <<1 μSv/h at the sector door location (transmission factor ~10⁻⁸)
- Similar considerations can be made for the ULs (based on UL shielding simulations not presented here)



Air activation in the HL-LHC galleries



Ventilation loop from LHC to HL-LHC after beam stop

Assuming $c_{LHC} = c_{UPR} = c_0$ at t=0 and $c_G = 0$ (no generation in the UPR)

Ventilation loop from LHC to HL-LHC beam stop/access Dose by inhalation assuming different ventilation models

CERN

<u>A. Infantino</u>, P.Dyrcz (RP-AS) Radiation protection aspects for HL-LHC 12th HL-LHC collaboration meeting 20/09/2022 EDMS 2773490

HL-LHC collimators: **EDMS** 3D rendering of the TCT 2773825 collimator using FLAIR 15 Update of EDMS 2280338 1 day 1 week ---FLUKA-RP simulations to compare different materials for collimators, \geq RATIO Dose Rate at contact for ICT, Inerm180(CuCrZr)/CuCD(MoGr) considering a generic loss term \rightarrow impact of a 7 TeV proton beam tungsten alloy (Inermet180), 0 10 copper-diamond (CuCD), 0 molybdenum alloy containing Ti and Zr (TZM), 0 molybdenum carbide – graphite (MoGr). 0 Work ongoing \geq 100 100 Inerm180 1 year — Inerm180 1 month CuCD 1 month CuCD 1 year 0.1 TZM 1 month TZM 1year -100 -80 -60 -40 -20 0 20 40 60 80 100 Residual Ambient Dose Equivalent rate at contact [pSv/s per 1primary/s] 0 6 6 6 7 6 7 6 15 6 months 1 year 🛏 RATIO Dose Rate at contact for CT, Inerm180(CuCrZr)/CuCD(MoGr) 10 10^{-4} 10^{-4} 20 -100 -80 -60 -40 -20 0 80 0.1 40 60 100 80 100 -20 20 60 -100 -80 -60 -40 0 40 -80 -60 -40 -20 -100 20 40 60 80 100 0 Distance [cm] Distance [cm] Distance [cm]

<u>A. Infantino</u>, P.Dyrcz (RP-AS) Radiation protection aspects for HL-LHC 12th HL-LHC collaboration meeting 20/09/2022 EDMS 2773490