Collimator layout and performance

B. Lindström

Thanks to A. Abramov, R. Bruce, R. De Maria, J. Molson, P. Hermes, S. Redaelli, F. Van der Veken

Introduction

- Continuous review of the collimation system performance is necessary to take ongoing changes to baseline and optics into account
- Main recent changes affecting collimation performance:
- No TCLD in the IR7 dispersion suppressor
- Impedance concerns driving a relaxation of collimator settings in RunIV
- Lack of HEL might also necessitate relaxation of collimator settings to limit loss spikes
- Inermet (W) decided to be used for new TCTs
- Scope of this talk:
- IR7 proton cleaning performance, without TCLD, comparing relaxed and tight settings throughout the beta* levelling
- Optics v1.5 have been used throughout

Run IV collimator layout

- IR3 (momentum cleaning) unchanged
- IR6 (dump protection) unchanged
- IR7 (betatron cleaning):
- TCP - H/V in MoGr, skew will remain C
- TCS - 9 will be inMoGr, 2 will remain C per beam
- TCLA - kept as is
- TCLD - planned for DS but seems unlikely to arrive
- Crystal - 1 per beam per plane for heavy ion runs
- TCTs:
- Set of H/V TCTs to be added in cell 6 around IR1/IR5
- TCTs in cell 4 IR1/IR5 to be replaced with new 2-in-1 design

Collimator Settings $\left(\epsilon_{n}=2.5 \mu m \cdot \mathrm{rad}\right)$

Loss map example

- B2H, 20cm, relaxed settings

TCLD in IR7 dispersion suppressor

Planned for Runlll to mitigate quench risk in DS
Replace one main dipole with two short 11T dipoles

- Production of 11T dipoles delayed - availability for HL-LHC is uncertain
- Forions, DS losses will be mitigated using crystal collimators
- Quench tests needed to conclusively determine necessity of TCLD or other mitigations, for proton operation
- TCLD assumed unavailable in the following results

Average inefficiency first DS cluster during levelling

- ~10 \% worse at 100 cm than 15 cm for horizontal lossmaps
- Relaxed settings lead to consistently worse performance, although difference is small
- Loss spikes throughout the ring are affected by collimator settings - smaller than the DS but need to be studied if they can add further limitations
- Simulations done with perfect machine - error models to be studied

Sum of TCT losses per IP - H/V loss maps

- Normalized cleaning inefficiency in the different TCTs
- Sum of all TCTs per IP
- 2015 low losses due to 80 cm beta* -> large TCT settings
- IR1/IR5 losses relatively stable during runll
- Worsening in runV, 15 cm , caused by relaxed settings - in particular b2 IP1 must be mitigated

RunV - large losses in IP1

TCP to IR1 TCT phase advance almost optimal with relaxed collimator settings

- Not a concern at 20 cm (run IV)

RunV - large losses in IP1

TCP to IR1 TCT phase advance almost optimal with relaxed collimator settings

- Not a concern at 20 cm (run IV)

Solutions if relaxed settings to be used at 15 cm ?

- Adjust phase advance?
- RetractTCTV in IR1 by 0.5 sigma (reduces margin in 15 cm optics)
- Insert TCP.D by 0.5 sigma (increases impedance)
- Insert TCS by 0.4 sigma (increases impedance)

more details: R. Bruce - https://indico.cern.ch/event/828666/\#17-

Collimator materials

- New TCSs in IR7:
- A set of Mo-coated MoGr TCSPMs were installed in LS2
- More will be installed in LS3, but might have Cu-coating instead
- This mainly concerns impedance, not the cleaning performance
- New TCTs in IR1/IR5:
- Will be Inermet (W) in RunIV as decided in Iast TCC
- Copper diamond (CuCD) still possible for later?
- CuCD is more robust, but leads to more leakage to the experiments
- Motivation for CuCD is to be safe against asynchronous beam dumps

For more details, M. Sabata Gilarte, Review of energy deposition simulations (next talk): https://indico.cern.ch/event/1161569/contributions/4921469/

Asynchronous beam dump (SMPFO)

- Out of asynchronous beam dump-related failures, single module prefire (SMPF) is the most critical
- One MKD fires spuriously - the rest triggers after a delay

Asynchronous beam dump (SMPFO)

- Out of asynchronous beam dump-related failures, single module prefire (SMPF) is the most critical
- One MKD fires spuriously - the rest triggers after a delay
- Loss location depends on bunch number (bunch 0 being the one present at MKD as it fires)

TCT impacts during SMPFO

- Horizontal TCTs are sensitive to this failure type
- TCT6 recieves factor of ~ 10 more losses than TCT4
- Losses above $\sim 0.05 \mathrm{e} 11$ protons can cause plastic deformation
- Impacts dominated by secondary halo, diffusing losses over larger volume
- Should be safe in terms of TCT losses
- need to be cross-checked with SixTrack-FLUKA

Summary

TCLD likely not available

Summary

TCLD likely not available

" \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD

- Mitigation strategies are under study - see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/

Summary

TCLD likely not available

- \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD
- Mitigation strategies are under study - see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 $\mu \mathrm{mrad}$)

Summary

TCLD likely not available

- \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD
- Mitigation strategies are under study - see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 $\mu \mathrm{mrad}$)
- These settings are likely feasible, but reduce cleaning performance
- Up to 14 \% larger DS losses at 100 cm
- Larger TCT losses, in particular IP1 for B2V at 15 cm \rightarrow potential solutions: retracting TCT by 0.5 sigma, inserting TCP/TCS by $0.5 / 0.4$ sigma
- TCT losses not expected to be an issue at 20 cm
- To validate relaxed settings, FLUKA simulations of power deposition in IR7 DS are under study (V. Rodin, FLUKA team)
- Tight settings still under consideration in case impedance / beam tail limitations less severe
(ERR)

Summary

TCLD likely not available

- \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD
- Mitigation strategies are under study - see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 $\mu \mathrm{mrad}$)
- These settings are likely feasible, but reduce cleaning performance
- Up to 14% larger DS losses at 100 cm
- Larger TCT losses, in particular IP1 for B2V at 15 cm \rightarrow potential solutions: retracting TCT by 0.5 sigma, inserting TCP/TCS by $0.5 / 0.4$ sigma
- TCT losses not expected to be an issue at 20 cm
- To validate relaxed settings, FLUKA simulations of power deposition in IR7 DS are under study (V. Rodin, FLUKA team)
- Tight settings still under consideration in case impedance / beam tail limitations less severe
- Cleaning performance varies by $\sim 10 \%$ over the levelling ($100 \mathrm{~cm} \rightarrow 15 \mathrm{~cm}$)

Summary

TCLD likely not available
" \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD

- Mitigation strategies are under study - see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 $\mu \mathrm{mrad}$)
- These settings are likely feasible, but reduce cleaning performance
- Up to 14 \% larger DS losses at 100 cm
- Larger TCT losses, in particular IP1 for B2V at 15 cm \rightarrow potential solutions: retracting TCT by 0.5 sigma, inserting TCP/TCS by $0.5 / 0.4$ sigma
- TCT losses not expected to be an issue at 20 cm
- To validate relaxed settings, FLUKA simulations of power deposition in IR7 DS are under study (V. Rodin, FLUKA team)
- Tight settings still under consideration in case impedance / beam tail limitations less severe
- Cleaning performance varies by $\sim 10 \%$ over the levelling ($100 \mathrm{~cm} \rightarrow 15 \mathrm{~cm}$)
- Asynchronous dump failures (single module prefire):
- Most losses on TCTs in cell 6
- IR5 is worst for both beams
- Relaxed settings are ~ 15 \% worse than tight, although there is margin until plastic deformation is expected
(ERR)

Summary

TCLD likely not available
" \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD

- Mitigation strategies are under study - see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 $\mu \mathrm{mrad}$)
- These settings are likely feasible, but reduce cleaning performance
- Up to 14 \% larger DS losses at 100 cm
- Larger TCT losses, in particular IP1 for B2V at 15 cm \rightarrow potential solutions: retracting TCT by 0.5 sigma, inserting TCP/TCS by $0.5 / 0.4$ sigma
- TCT losses not expected to be an issue at 20 cm
- To validate relaxed settings, FLUKA simulations of power deposition in IR7 DS are under study (V. Rodin, FLUKA team)
- Tight settings still under consideration in case impedance / beam tail limitations less severe
- Cleaning performance varies by $\sim 10 \%$ over the levelling ($100 \mathrm{~cm} \rightarrow 15 \mathrm{~cm}$)
- Asynchronous dump failures (single module prefire):
- Most losses on TCTs in cell 6
- IR5 is worst for both beams
- Relaxed settings are ~ 15 \% worse than tight, although there is margin until plastic deformation is expected
- Optics v1.6: no IR7 optics changes, but some changes to phase advances and TCT positions. Impact on collimation performance to be studied

Lossmaps - B1 tight settings

B1H - 15 cm - tight - no TCLD

B1V - 15 cm - tight - no TCLD

B1H - 20 cm - tight - no TCLD

B1V - 20 cm - tight - no TCLD

B1H - 64 cm - tight - no TCLD

B1V - 64 cm - tight - no TCLD

B1H - 100 cm - tight - no TCLD

HL-LHC PROJECT

B1V - 100 cm - tight - no TCLD

Lossmaps - B1 relaxed settings

B1H - 15 cm - relaxed - no TCLD

B1V - 15 cm - relaxed - no TCLD

B1H - 20 cm - relaxed - no TCLD

B1V - 20 cm - relaxed - no TCLD

B1H - 64 cm - relaxed - no TCLD

B1V - 64 cm - relaxed - no TCLD

B1H - 100 cm - relaxed - no TCLD

B1V - 100 cm - relaxed - no TCLD

Lossmaps - B2 tight settings

B2H - 15 cm - tight - no TCLD

B2V - 15 cm - tight - no TCLD

B2H - 20 cm - tight - no TCLD

B2V - 20 cm - tight - no TCLD

B2H - 64 cm - tight - no TCLD

B2V - 64 cm - tight - no TCLD

B2H - 100 cm - tight - no TCLD

HL-LHC PROJECT

B2V - 100 cm - tight - no TCLD

Lossmaps - B2 relaxed settings

B2H - 15 cm - relaxed - no TCLD

B2V - 15 cm - relaxed - no TCLD

B2H - 20 cm - relaxed - no TCLD

B2V - 20 cm - relaxed - no TCLD

B2H - 64 cm - relaxed - no TCLD

B2V - 64 cm - relaxed - no TCLD

B2H - 100 cm - relaxed - no TCLD

B2V - 100 cm - relaxed - no TCLD

TCLD

CERN

B1H - 20 cm - relaxed -TCLD

B1V - 20 cm - relaxed -TCLD

B2H - 20 cm - relaxed -TCLD

$\underset{\text { HLL-he Prooser }}{\mathrm{HiL}}$

B2V - 20 cm - relaxed -TCLD

