

Collimator layout and performance

B. LindströmThanks to A. Abramov, R. Bruce, R. De Maria, J. Molson,P. Hermes, S. Redaelli, F. Van der Veken

20th September 2022 – 12th HL-LHC Collaboration Meeting

Introduction

- Continuous review of the collimation system performance is necessary to take ongoing changes to baseline and optics into account
- Main recent changes affecting collimation performance:
 - No TCLD in the IR7 dispersion suppressor
 - Impedance concerns driving a relaxation of collimator settings in RunIV
 - Lack of HEL might also necessitate relaxation of collimator settings to limit loss spikes
 - Inermet (W) decided to be used for new TCTs
- Scope of this talk:
 - IR7 proton cleaning performance, without TCLD, comparing relaxed and tight settings throughout the beta* levelling
 - Optics v1.5 have been used throughout

Run IV collimator layout

- IR3 (momentum cleaning) unchanged
- IR6 (dump protection) unchanged
- IR7 (betatron cleaning):
 - TCP H/V in MoGr, skew will remain C
 - TCS 9 will be inMoGr, 2 will remain C per beam
 - TCLA kept as is
 - TCLD planned for DS but seems unlikely to arrive
 - Crystal 1 per beam per plane for heavy ion runs
- TCTs:
 - Set of H/V TCTs to be added in cell 6 around IR1/IR5
 - TCTs in cell 4 IR1/IR5 to be replaced with new 2-in-1 design

Collimator Settings ($\epsilon_n = 2.5 \mu m \cdot rad$)

	Run V		Run IV	
	TDR Baseline (tight settings)		Relaxed Sett	ings
	15 cm β*	15 cm β*	20 cm β*	100 cm β*
TCP IR7	6.7	8.5	8.5	8.5
TCS IR7	9.1	10.1	10.1	10.1
TCLAIR7	12.7	14.0	13.7	13.7
TCLD IR7	16.6	n/a**	n/a**	n/a**
TCP IR3	17.7	17.7	17.7	17.7
TCSIR3	21.3	21.3	21.3	21.3
TCLAIR3	23.7	23.7	23.7	23.7
TCSIR6	10.1	11.1	11.1	11.1
TCDQ IR6	10.1	11.1	11.1	11.1
TCLIR1/5	14.2	14.2*	16.4*	38 – 44*
TCT IR1/5	10.4	11.4*	13.2*	23 – 35*
Prot. Aperture IR1/5	11.8	12.8	14.6	>24.4
TCT IR2	43.8	43.8	43.8	43.8
TCT IR8	17.7	17.7	17.7	17.7
TDIS	park	park	park	park
TCLDIR2	park	park	park	park
CERN)	* gap in mm is set to final (15 cm) value and kept constant throughout squeeze			

* gap in mm is set to final (15 cm) value and kept constant throughout squeeze

** likely n/a for runIV, status for runV to be confirmed

HL-LHC PROJEC

Loss map example

B2H, 20cm, relaxed settings

TCLD in IR7 dispersion suppressor

Planned for RunIII to mitigate quench risk in DS

Replace one main dipole with two short 11T dipoles

- Production of 11T dipoles delayed – availability for HL-LHC is uncertain
- For ions, DS losses will be mitigated using crystal collimators
- Quench tests needed to conclusively determine necessity of TCLD or other mitigations, for proton operation
- TCLD assumed unavailable in the following results

Average inefficiency first DS cluster during levelling

- ~10 % worse at 100 cm than 15 cm for horizontal lossmaps
- Relaxed settings lead to consistently worse performance, although difference is small
- Loss spikes throughout the ring are affected by collimator settings
 - smaller than the DS but need to be studied if they can add further limitations
- Simulations done with perfect machine error models to be studied

Sum of TCT losses per IP – H/V loss maps

- Normalized cleaning inefficiency in the different TCTs
- Sum of all TCTs per IP
- 2015 low losses due to 80 cm beta* -> large TCT settings
- IR1/IR5 losses relatively stable during runll
- Worsening in runV, 15cm, caused by relaxed settings – in particular b2 IP1 must be mitigated

* 2015-2018 data from: E. Belli: Simulations of proton cleaning performance in Run 2, https://indico.cern.ch/event/828666/#17-simulations-of-cleaning-per

RunV – large losses in IP1

- TCP to IR1 TCT phase advance almost optimal with relaxed collimator settings
- Not a concern at 20 cm (run IV)

RunV – large losses in IP1

- TCP to IR1 TCT phase advance almost optimal with relaxed collimator settings
- Not a concern at 20 cm (run IV)

Solutions if relaxed settings to be used at 15 cm?

- Adjust phase advance?
- Retract TCTV in IR1 by 0.5 sigma (reduces margin in 15 cm optics)
- Insert TCP.D by 0.5 sigma (increases impedance)
- Insert TCS by 0.4 sigma (increases impedance)

more details: R. Bruce – https://indico.cern.ch/event/828666/#17simulations-of-cleaning-per

Collimator materials

- New TCSs in IR7:
 - A set of Mo-coated MoGr TCSPMs were installed in LS2
 - More will be installed in LS3, but might have Cu-coating instead
 - This mainly concerns impedance, not the cleaning performance
- New TCTs in IR1/IR5:
 - Will be Inermet (W) in RunIV as decided in last TCC
 - Copper diamond (CuCD) still possible for later?
 - CuCD is more robust, but leads to more leakage to the experiments
 - Motivation for CuCD is to be safe against asynchronous beam dumps

For more details, M. Sabata Gilarte, Review of energy deposition simulations (next talk): https://indico.cern.ch/event/1161569/contributions/4921469/

Asynchronous beam dump (SMPFO)

- Out of asynchronous beam dump-related failures, single module prefire (SMPF) is the most critical
- One MKD fires spuriously the rest triggers after a delay

Asynchronous beam dump (SMPFO)

- Out of asynchronous beam dump-related failures, single module prefire (SMPF) is the most critical
- One MKD fires spuriously the rest triggers after a delay
- Loss location depends on bunch number (bunch 0 being the one present at MKD as it fires)

TCT impacts during SMPFO

- Horizontal TCTs are sensitive to this failure type
- TCT6 recieves factor of ~10 more losses than TCT4
- Losses above ~0.05e11 protons can cause plastic deformation
- Impacts dominated by secondary halo, diffusing losses over larger volume
- Should be safe in terms of TCT losses
 - need to be cross-checked with SixTrack-FLUKA

TCLD likely not available

- TCLD likely not available
 - \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD
 - Mitigation strategies are under study see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/

- TCLD likely not available
 - \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD
 - Mitigation strategies are under study see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 µmrad)

- TCLD likely not available
 - \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD
 - Mitigation strategies are under study see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 µmrad)
 - These settings are likely feasible, but reduce cleaning performance
 - Up to 14 % larger DS losses at 100 cm
 - Larger TCT losses, in particular IP1 for B2V at 15 cm
 → potential solutions: retracting TCT by 0.5 sigma, inserting TCP/TCS by 0.5/0.4 sigma
 - TCT losses not expected to be an issue at 20 cm
 - To validate relaxed settings, FLUKA simulations of power deposition in IR7 DS are under study (V. Rodin, FLUKA team)
 - Tight settings still under consideration in case impedance / beam tail limitations less severe

- TCLD likely not available
 - \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD
 - Mitigation strategies are under study see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 µmrad)
 - These settings are likely feasible, but reduce cleaning performance
 - Up to 14 % larger DS losses at 100 cm
 - Larger TCT losses, in particular IP1 for B2V at 15 cm
 → potential solutions: retracting TCT by 0.5 sigma, inserting TCP/TCS by 0.5/0.4 sigma
 - TCT losses not expected to be an issue at 20 cm
 - To validate relaxed settings, FLUKA simulations of power deposition in IR7 DS are under study (V. Rodin, FLUKA team)
 - Tight settings still under consideration in case impedance / beam tail limitations less severe
- Cleaning performance varies by ~10 % over the levelling (100 cm \rightarrow 15 cm)

- TCLD likely not available
 - \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD
 - Mitigation strategies are under study see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 µmrad)
 - These settings are likely feasible, but reduce cleaning performance
 - Up to 14 % larger DS losses at 100 cm
 - Larger TCT losses, in particular IP1 for B2V at 15 cm
 → potential solutions: retracting TCT by 0.5 sigma, inserting TCP/TCS by 0.5/0.4 sigma
 - TCT losses not expected to be an issue at 20 cm
 - To validate relaxed settings, FLUKA simulations of power deposition in IR7 DS are under study (V. Rodin, FLUKA team)
 - Tight settings still under consideration in case impedance / beam tail limitations less severe
- Cleaning performance varies by ~10 % over the levelling (100 cm \rightarrow 15 cm)
- Asynchronous dump failures (single module prefire):
 - Most losses on TCTs in cell 6
 - IR5 is worst for both beams
 - Relaxed settings are ~15 % worse than tight, although there is margin until plastic deformation is expected

- TCLD likely not available
 - \rightarrow quench tests necessary to conclusively determine the impact of a lacking TCLD
 - Mitigation strategies are under study see talk: B. Lindstrom, New IR7 optics for improved cleaning and impedance, https://indico.cern.ch/event/1161569/contributions/4921582/
- Relaxed colimator settings have been requested for RunIV to avoid limitations due to impedance (2.3e11 ppb, 2.0/1.7 µmrad)
 - These settings are likely feasible, but reduce cleaning performance
 - Up to 14 % larger DS losses at 100 cm
 - Larger TCT losses, in particular IP1 for B2V at 15 cm
 → potential solutions: retracting TCT by 0.5 sigma, inserting TCP/TCS by 0.5/0.4 sigma
 - TCT losses not expected to be an issue at 20 cm
 - To validate relaxed settings, FLUKA simulations of power deposition in IR7 DS are under study (V. Rodin, FLUKA team)
 - Tight settings still under consideration in case impedance / beam tail limitations less severe
- Cleaning performance varies by ~10 % over the levelling (100 cm \rightarrow 15 cm)
- Asynchronous dump failures (single module prefire):
 - Most losses on TCTs in cell 6
 - IR5 is worst for both beams
 - Relaxed settings are ~15 % worse than tight, although there is margin until plastic deformation is expected
- Optics v1.6: no IR7 optics changes, but some changes to phase advances and TCT positions. Impact on collimation performance to be studied

Lossmaps – B1 tight settings

B1H – 15 cm – tight – no TCLD

B1V – 15 cm – tight – no TCLD

CERN

B1H – 20 cm – tight – no TCLD

CERN

B1V – 20 cm – tight – no TCLD

B1H – 64 cm – tight – no TCLD

B1V – 64 cm – tight – no TCLD

B1H – 100 cm – tight – no TCLD

B1V – 100 cm – tight – no TCLD

Lossmaps – B1 relaxed settings

B1H – 15 cm – relaxed – no TCLD

B1V – 15 cm – relaxed – no TCLD

B1H – 20 cm – relaxed – no TCLD

B1V – 20 cm – relaxed – no TCLD

CERN

B1H – 64 cm – relaxed – no TCLD

B1V – 64 cm – relaxed – no TCLD

B1H – 100 cm – relaxed – no TCLD

B1V – 100 cm – relaxed – no TCLD

Lossmaps – B2 tight settings

B2H – 15 cm – tight – no TCLD

B2V – 15 cm – tight – no TCLD

B2H – 20 cm – tight – no TCLD

B2V – 20 cm – tight – no TCLD

B2H – 64 cm – tight – no TCLD

B2V – 64 cm – tight – no TCLD

B2H – 100 cm – tight – no TCLD

B2V – 100 cm – tight – no TCLD

Lossmaps – B2 relaxed settings

B2H – 15 cm – relaxed – no TCLD

B2V – 15 cm – relaxed – no TCLD

B2H – 20 cm – relaxed – no TCLD

B2V – 20 cm – relaxed – no TCLD

B2H – 64 cm – relaxed – no TCLD

B2V – 64 cm – relaxed – no TCLD

B2H – 100 cm – relaxed – no TCLD

B2V – 100 cm – relaxed – no TCLD

TCLD

B1H – 20 cm – relaxed –TCLD

B1V – 20 cm – relaxed –TCLD

B2H – 20 cm – relaxed –TCLD

B2V – 20 cm – relaxed –TCLD

