

## **Review of energy deposition simulations**

Marta Sabaté-Gilarte, Francesco Cerutti



HL-LHC PROJE

WP10 Energy deposition & R2E

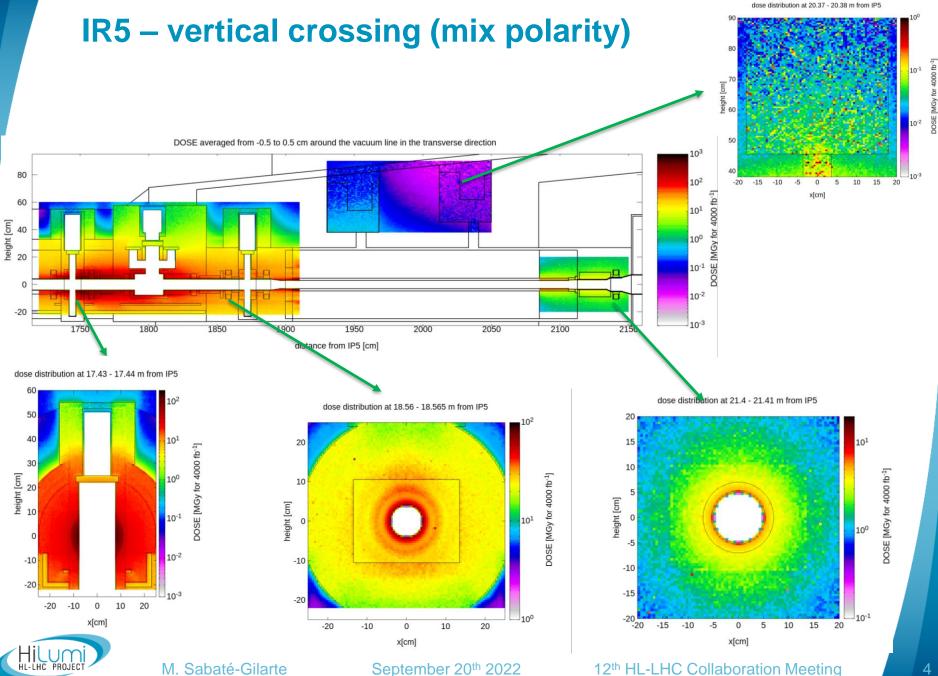
12<sup>th</sup> HL-LHC Collaboration Meeting

Uppsala

September 20th 2022

#### OUTLINE

- 1. Dose evaluation on the TAXS region.
- 2. Dose distribution in the entire magnets of IT+D1 from cryogenics studies.
- 3. TCLMB design optimization studies.
- 4. LSS1:
  - Dose evaluation for vacuum components in the line.
  - Roman Pots in IR1.
- 5. Background in CMS: beam-gas interaction and beam-halo contribution.
- 6. Perspectives for HL-LHC optics v1.6: flat optics.

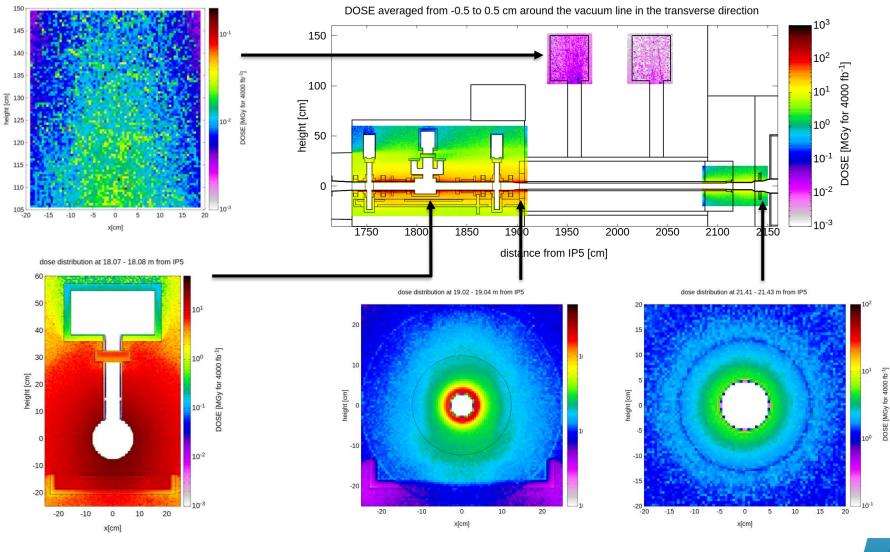



# Dose evaluation on the TAXS region IR1 – horizontal crossing IR5 – vertical crossing (mix polarity)

- HL-LHC optics version 1.5 (Nov.19).
- p-p collisions ( $\sigma$  = 85 mb) at 7+7 TeV.
- Horizontal / Vertical crossing with fixed half crossing angle 250 μrad.
- Integrated luminosity: ultimate conditions 4000 fb<sup>-1</sup>
  - Dose values scale linearly with the integrated luminosity.








M. Sabaté-Gilarte

September 20<sup>th</sup> 2022

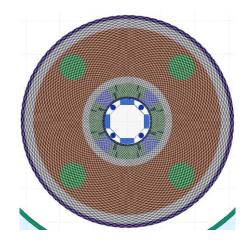
#### **IR1** – horizontal crossing

dose distribution at 19.33 - 19.71 m from IP5





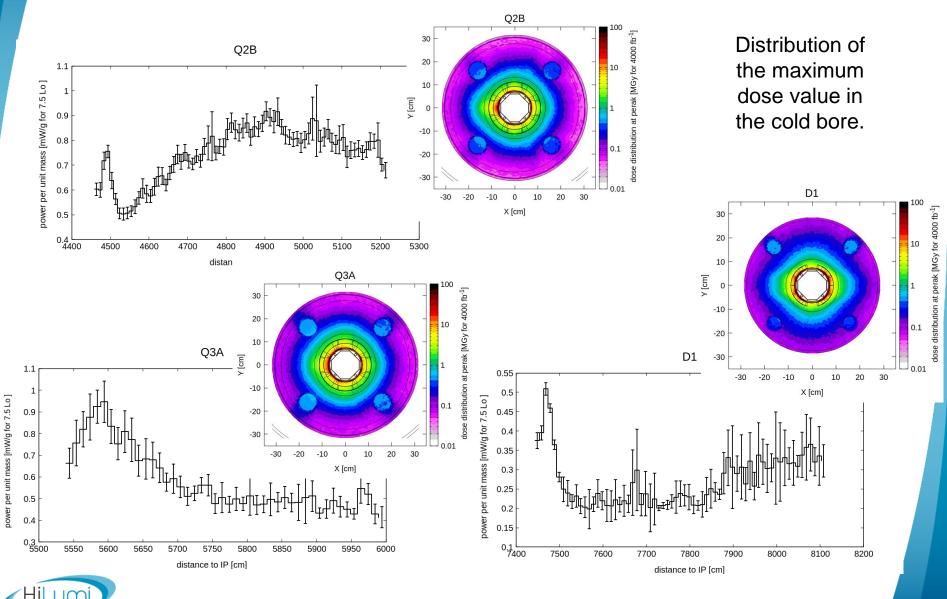
M. Sabaté-Gilarte


#### **Dose evaluation on the TAXS region**

- On the non-IP side of the TAXS the maximum dose in the flanges goes from 300 MGy (right downstream the TAXS) to 6 MGy (the closest to Q1A), depending on the respective aperture.
- Regarding the elements close to the beam line upstream the TAXS, the maximum dose values rises up to 300 - 400 MGy at the entrance of the TAXS.
- For the equipment inside the shielding, the dose values are below 0.5 MGy in IR1 and from 1-2 MGy up to 5 MGy in IR5.
- In the rest of the components, the strong gradient in the dose distribution shows a variation between < 1 MGy and 30 MGy in IR1 or 200 MGy in IR5 depending on the distance to the beam line.

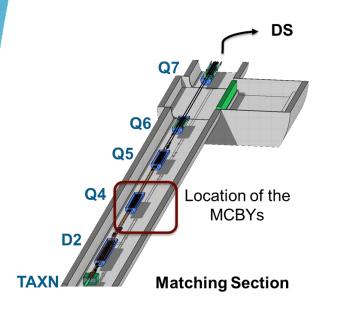


# Dose distribution in the entire magnets of the inner triplet and the D1 for cryogenics studies

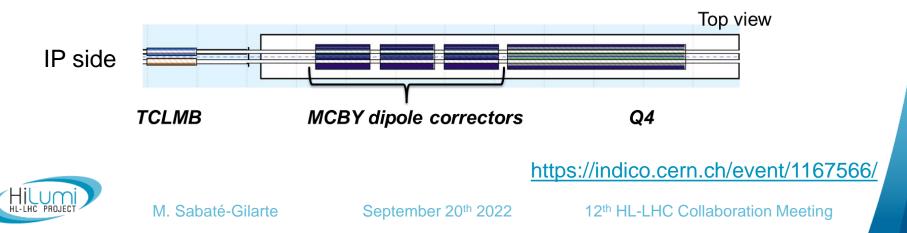

- Purpose: input for thermal stability calculations.
- HL-LHC optics version 1.5 (May/Nov.19).
- Horizontal / Vertical (up) crossing with fixed half crossing angle 250 μrad.
- p-p collisions ( $\sigma$  = 85 mb) at 7+7 TeV.
- Integrated luminosity:
  - Ultimate conditions: 4000 fb<sup>-1</sup> integrated luminosity and 7.5x10<sup>34</sup> cm<sup>-2</sup> s<sup>-1</sup> instantaneous luminosity.
  - These values scale linearly with the luminosity.






September 20<sup>th</sup> 2022

#### IR1 – horizontal crossing




M. Sabaté-Gilarte

## **TCLMB design optimization studies**



- MCBYs: correctors in Q4-assembly.
- Less radiation resistant than Q4.
- TCLMB mask designed to reduce the radiation due to p-p collision debris.
- HL-LHC optics version 1.5 (Nov.19) for IR1/5.
- Fixed half crossing angle +250 μrad.
- p-p collisions ( $\sigma$  = 85 mb) at 7+7 TeV.
- Integrated luminosity: ultimate conditions 4000 fb<sup>-1</sup>



#### **TCLMB model: considered modifications**





Limit situation of baseline configuration plus mechanical/alignment tolerances

There is room (up to the baseline configuration) to allocate mechanical/alignment tolerances

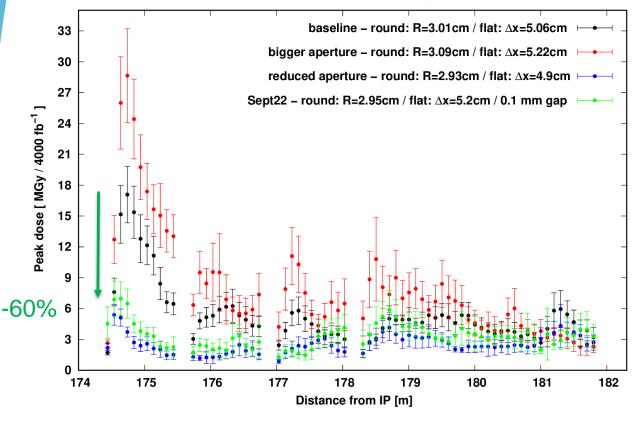
#### Peak dose distribution for the different configurations: IR5 – VC with +250 μrad half crossing angle

Peak dose profile in the inner coils ( $L_{int} = 4000 \text{ fb}^{-1}$ ) baseline - round: R=3.01cm / flat:  $\Delta x$ =5.06cm + 33 bigger aperture – round: R=3.09cm / flat: ∆x=5.22cm 30 reduced aperture – round: R=2.93cm / flat:  $\Delta x$ =4.9cm 27 Peak dose [ MGy / 4000 fb<sup>-1</sup> ] +70%24 21 18 15 12 9 -65% 6 3 0 174 175 176 177 178 181 182 179 180 Distance from IP [m]

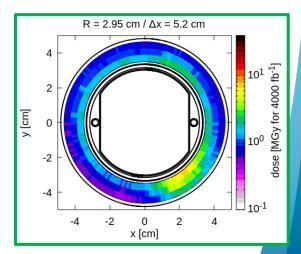
baseline y [cm] 10<sup>0</sup> x [cm] big aperture y [cm] -2 x [cm] reduced aperture y [cm]

-2

0 x [cm] 2



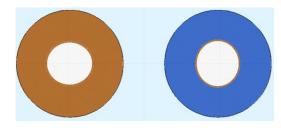

September 20<sup>th</sup> 2022


12<sup>th</sup> HL-LH

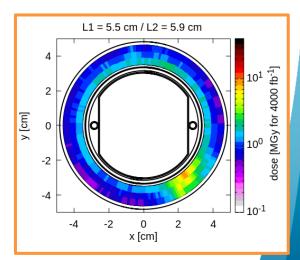
#### Peak dose distribution for the different configurations: IR5 – VC with +250 μrad half crossing angle

Peak dose profile in the inner coils ( $L_{int} = 4000 \text{ fb}^{-1}$ )




- Increase of the flat part to better allocate the beam from: Dx = 5.06 to Dx = 5.2 cm.
- Reduction of the round part to increase the protection from: R=3.01 cm to R = 2.95 cm.
- Inclusion of the 0.1 mm gap between the Cu-vacuum chamber and the inermet block

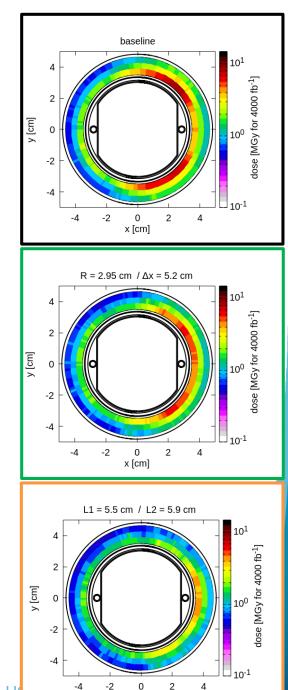





#### Peak dose distribution for the different configurations: IR5 – VC with +250 μrad half crossing angle

Peak dose profile in the inner coils ( $L_{int} = 4000 \text{ fb}^{-1}$ ) baseline - round: R=3.01cm / flat:  $\Delta x$ =5.06cm + 33 bigger aperture – round: R=3.09cm / flat: ∆x=5.22cm ⊢•• 30 reduced aperture – round: R=2.93cm / flat: ∆x=4.9cm ⊢---27 Sept22 – round: R=2.95cm / flat:  $\Delta x$ =5.2cm / 0.1 mm gap Peak dose [ MGy / 4000 fb<sup>-1</sup> ] 24 Sept22 - ellipse: R1=2.95cm / R2=2.75cm / 0.1 mm gap 21 18 15 12 9 -33% 6 3 0 174 175 176 177 178 179 180 181 182 Distance from IP [m]




- Replace the rectellipse by an elliptical shape with:
  - $L1 = 5.5 \, cm$
  - L2 = 5.9 cm
- Inclusion of the 0.1 mm gap between the Cu-vacuum chamber and the inermet block





#### Peak dose distribution for the different configurations: IR1 – HC with 250 μrad half crossing angle

Peak dose profile in the inner coils ( $L_{int} = 4000 \text{ fb}^{-1}$ ) 15 baseline Nov19 – round: R=3.01cm / flat: ∆x=5.06cm ⊢ -40% Sept22 - round: R=2.95cm / flat: Ax=5.2cm / 0.1 mm gap + Sept22 – ellipse: R1=2.95cm / R2=2.75cm / 0.1 mm gap 12 -58% Peak dose [ MGy / 4000 fb<sup>-1</sup> ] 9 6 3 ٥ 174 175 176 177 178 180 182 179 181 Distance from IP [m]



x [cm]



September 20<sup>th</sup> 2022

12<sup>th</sup> HL-LH

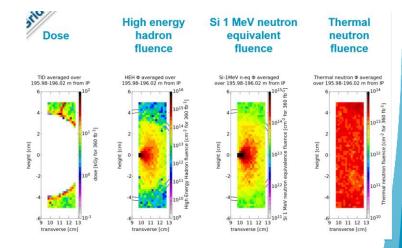
## **TCLMB design review: conclusions**

- Possible new design of the TCLMB increasing the flat part of the aperture and reducing the round part in order to mitigate the impact on the 1<sup>st</sup> MCBY hot spot. An alternative is to replace the rectellipse by an elliptical shape.
- This calculations include the mechanical tolerances associated to the proposed aperture as well as a 0.1 mm gap between the Cu-vacuum chamber and the inermet block.
- The improvement with respect to the baseline configuration is:

| Cumulated dose<br>for<br>3000 / <b>4000</b> fb <sup>-1</sup> | Baseline<br>$\Delta x = 5.06 \text{ cm}$<br>$\Phi = 6.02 \text{ cm}$ | Rectellipse<br>$\Delta x = 5.2 \text{ cm}$<br>$\Phi = 5.9 \text{ cm}$ | Ellipse<br>L1 = 5.5 cm<br>L2 = 5.9 cm |
|--------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------|
| HC                                                           | 8.0 / <b>10.6</b>                                                    | 4.7 / <b>6.2</b>                                                      | 3.3 / <b>4.4</b>                      |
| improvement                                                  |                                                                      | - 40 %                                                                | - 58 %                                |
| VC Up/Down                                                   | 6.4 / <b>8.6</b>                                                     | 3.5 / <b>4.6</b>                                                      | 4.3 / <b>5.7</b>                      |
| Improvement                                                  |                                                                      | - 45 %                                                                | - 33 %                                |



## LSS1

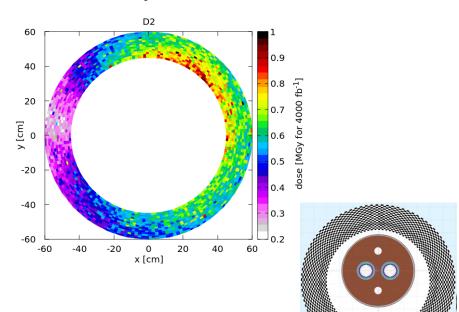

#### Dose evaluation in vacuum components Roman pots in IR1

- HL-LHC optics version 1.5 (Nov.19).
- p-p collisions ( $\sigma$  = 85 mb) at 7+7 TeV.
- Horizontal crossing with fixed half crossing angle 250 μrad.
- Integrated luminosity per year 360 fb<sup>-1</sup> or for the ultimate HL-LHC scenario: 4000 fb<sup>-1</sup>.
  - Dose values scale linearly with the integrated luminosity.



#### **Roman Pots in IR1**

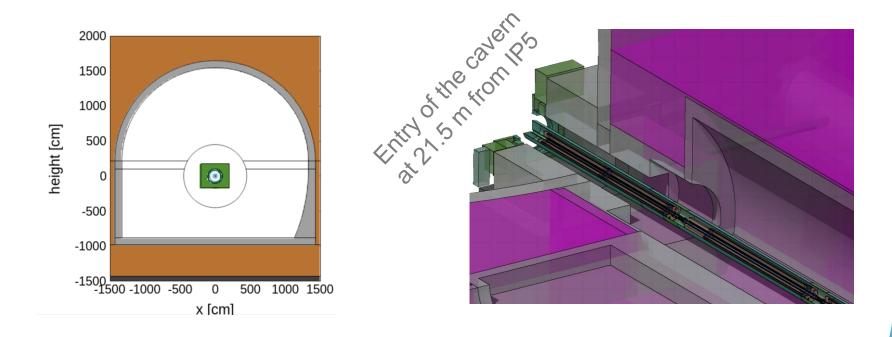
- Calculation of the maximum radiation levels in LSS1 at the expected location of the roman pots in the HL-LHC machine.
- In this calculation the model of these elements is not included.
- For 360 fb<sup>-1</sup> integrated luminosity per year in the vicinity of the outgoing beam vacuum chamber\*:
  - Total ionizing dose: 50 kGy.
  - Thermal neutron fluence: 5x10<sup>13</sup> cm<sup>-2</sup>.
  - High energy hadron fluence: 10<sup>14</sup> cm<sup>-2</sup>.
  - Silicon 1 MeV neutron equivalent fluence: 5x10<sup>13</sup> cm<sup>-2</sup>.




\* Since the dose cannot be estimated in a vacuum region, these values are obtained at the vacuum chamber for all quantities.



#### **Dose evaluation in vacuum components**


- Maximum dose values in the O-rings of the LSS1 cryostats and various vacuum interconnections.
- Values are given for 4000 fb<sup>-1</sup> integrated luminosity.



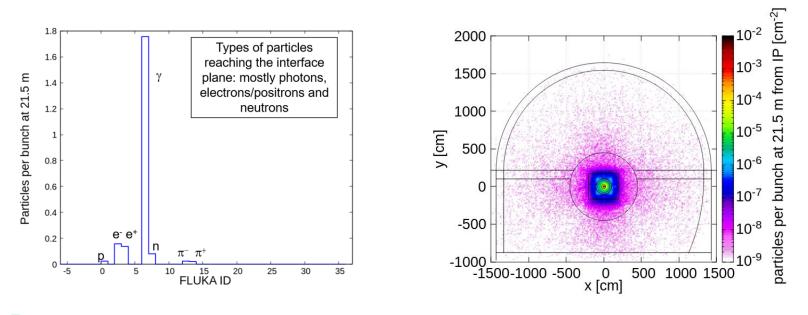
|                  | Distance to IP<br>(m) | Max dose<br>(MGy) |
|------------------|-----------------------|-------------------|
| Q1 - IP side     | 21.4 - 21.5           | 0.6               |
| Q1B – Q2A inter  | 33.4 - 33.5           | 0.5               |
| Q2A – Q2B inter  | 44.3 - 44.4           | 0.3               |
| Q2B – Q3A inter  | 55.1 – 55.2           | 0.45              |
| Q3B – CP inter   | 66.85 - 66.95         | 0.45              |
| CP – D1 inter    | 74 – 74.1             | 0.3               |
| D1 – non IP side | 82.6 - 82.7           | 0.5               |
| D2 – IP side     | 137.3 – 137.4         | 1                 |
| Q4 – IP side     | 173 – 173.1           | 0.15              |
| Q5 – IP side     | 202.6 - 202.7         | 0.35              |
| Q6 – IP side     | 223.93 - 224.03       | 0.15              |
| Q7 – IP side     | 256.7 – 256.8         | < 0.01            |



# **IR5: background studies for CMS** Local beam gas interaction **Beam-halo contribution**

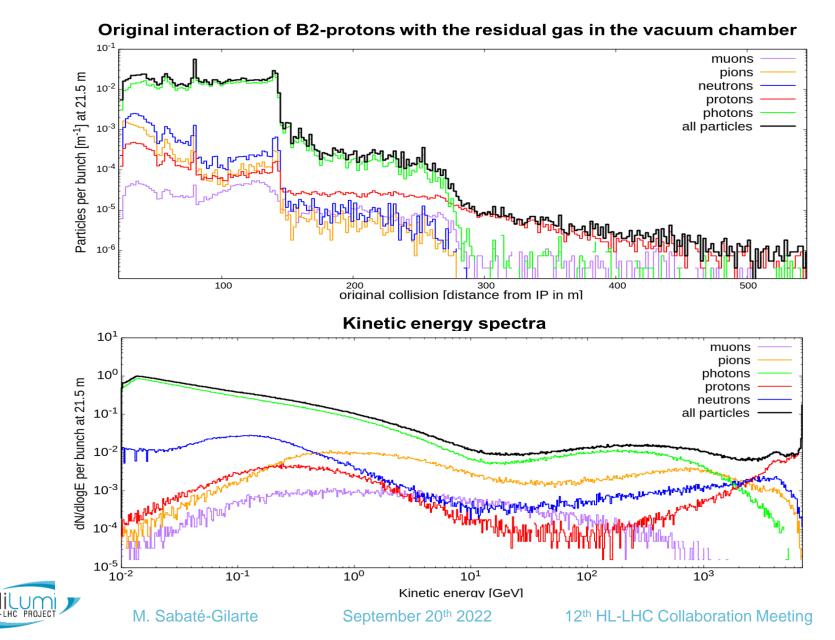


https://indico.cern.ch/event/1145479/ /


#### https://indico.cern.ch/event/1195003/

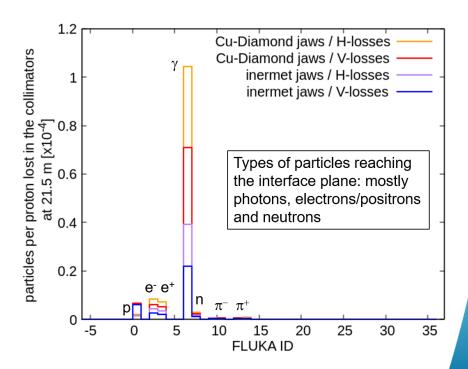


M. Sabaté-Gilarte


#### Local beam-gas interaction (I)

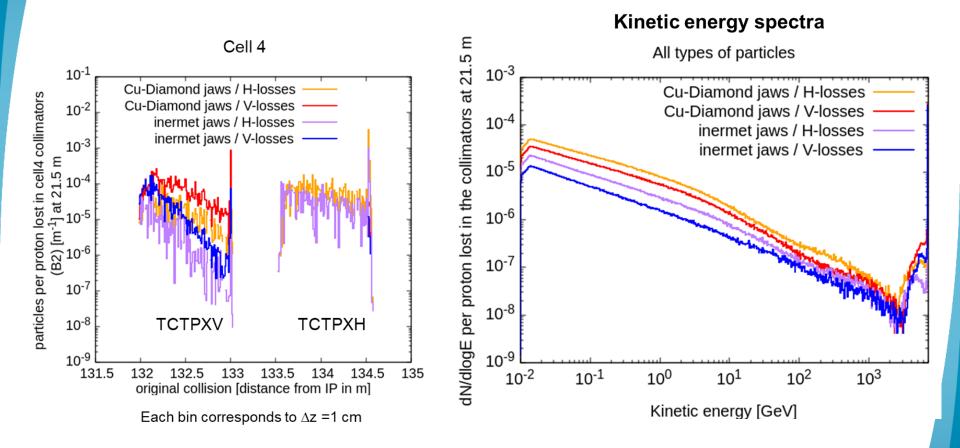
- HL-LHC IR5-CMS right side. Optics v1.5 Nov19.
- Gas composition: pure H<sub>2</sub> assuming an homogenous gas density of 10<sup>14</sup> H<sub>2</sub>/m<sup>3</sup>.
- Incoming 7 TeV proton beam. The proton beam size is included in this study.
- A cut of 10 MeV is applied to all types of particles.
- Bunch population 2.2-10<sup>11</sup> protons per bunch.






#### Local beam-gas interaction (II)



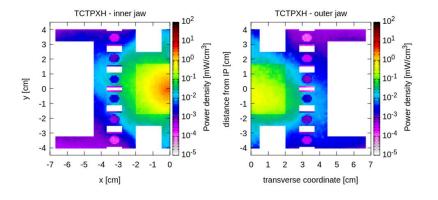

#### Beam-halo from the betatron collimation in IR7 (I)

- HL-LHC IR5-CMS right side. Optics v1.5 Nov19.
- Energy cut of 10 MeV is applied for all types of particles.
- HL-LHC touches input:
  - Relaxed conditions: new collimator settings with TCPs at 8.5 σ.
  - Losses in the vertical and the horizontal plane.
  - Optics: β\* = 20 cm.
- Two material for the TCTPs jaws:
  - Inermet.
  - Copper-diamond.

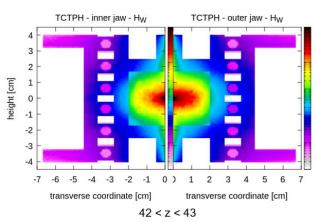




## Beam-halo from the betatron collimation in IR7 (II)







#### **Power deposition in TCTP/Xs**

 The thermal loads in the tertiary collimators due to beam-gas interaction (< 100 mW) and beam halo contributions (< 3 W) are negligible compared with the loads due to collision debris in the TCLPX (~230 W in the most exposed jaw for 7.5 Lo).

Power deposition in the most exposed tertiary collimators due to:







#### beam-halo



# **Perspectives for HL-LHC optics v1.6**

- Implementation of the layout modifications.
- Evaluation of the impact of the new layout in terms of energy deposition and machine protection.
- Inclusion of the Roman Pots: impact of its presence in the rest of the machine.
- Comparison between round and flat optics.



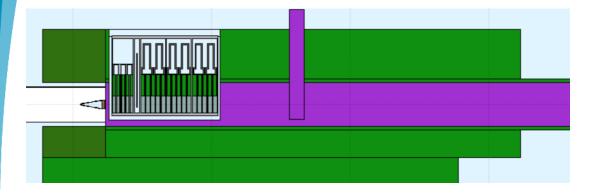
# Thank you for your attention

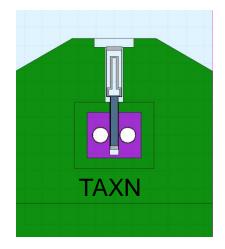
Important input from:

R. De Maria, P. Fessia, R. Longo, P. Tavares,

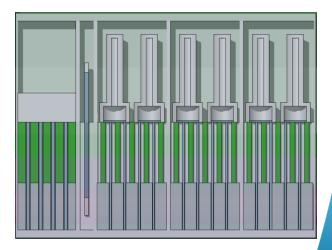
J. Perez Espinos, R. Perez Martinez, F. Sanchez Galan,

R. Bruce, D. Calzolari, A. Lechner, B. Lindström,


C. Accettura, F. Carra, F-X Nuiry, S. Redaelli







#### **TAXN region:**

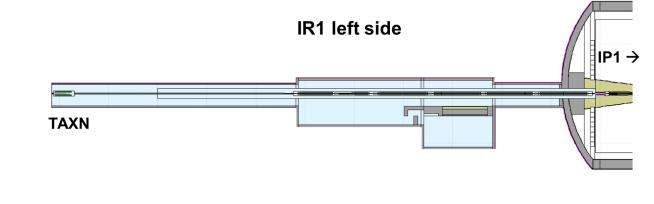
## **ZDC experimental conditions**





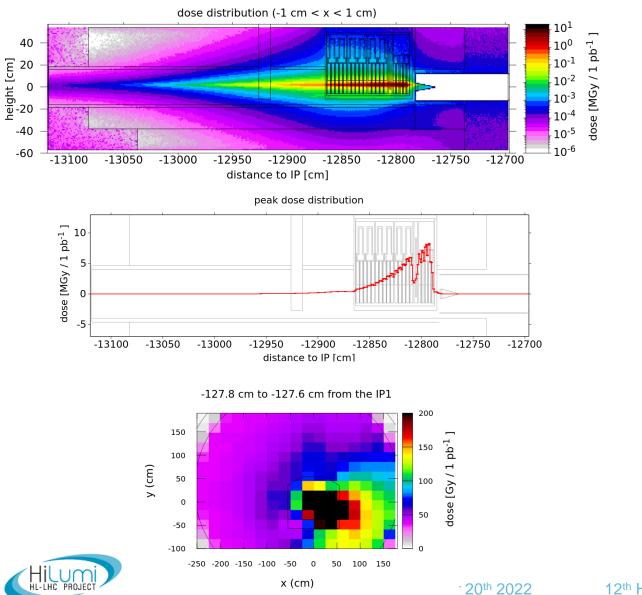
#### ZDC detector for HL-LHC

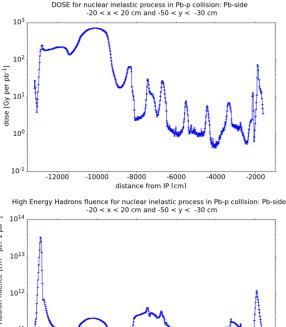


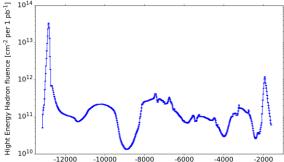



M. Sabaté-Gilarte

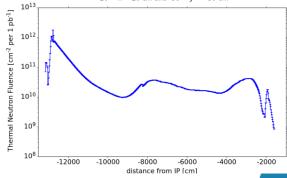
September 20<sup>th</sup> 2022


## **Pb-p collisions : Pb-side**


- HL-LHC machine. Optics v1.5 (May 2019). IR1 ATLAS.
- Vertical Crossing  $\rightarrow$  +170  $\mu$ rad half crossing angle.
- Left side of the IP. Results can be extrapolated to IR1-right side.
- β\*=15 cm at IP.
- 7 TeV energy per charge per beam:  $\sqrt{S_{NN}} = 8.8$  TeV.
- Inelastic Nuclear Interactions (2.11 b Pb-p cross section).
- Integrated luminosity for normalization: **1 pb<sup>-1</sup>**.
- Instantaneous luminosity for Pb-p run **10<sup>30</sup> cm<sup>-2</sup> s<sup>-1</sup>**.

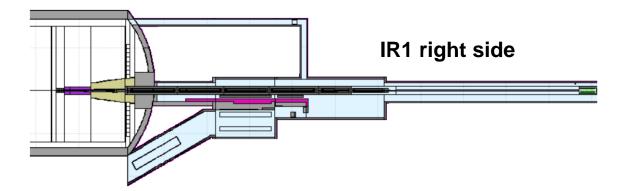






#### **Pb-p collisions : Pb-side**

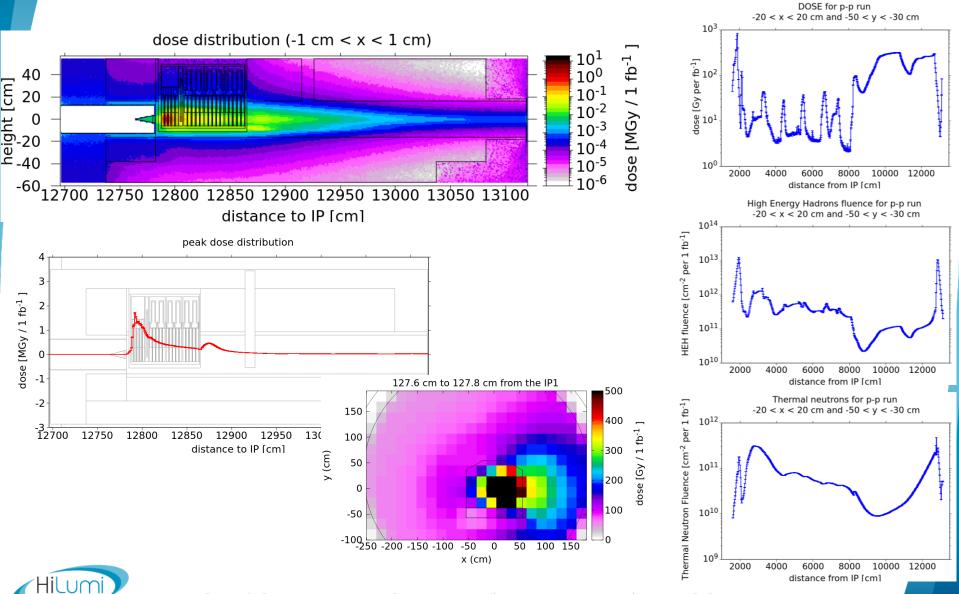







distance from IP [cm] Thermal neutrons for nuclear inelastic process in Pb-p collision: Pb-side -20 < x < 20 cm and -50 < y < -30 cm




#### p-p collisions at 14 TeV in IR1

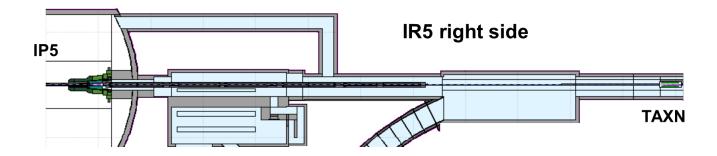
- p-p collisions.
- HL-LHC machine. Optics v1.5 (May 2019).
- IR1 ATLAS: right side of the IP1.
- Horizontal Crossing  $\rightarrow$  250  $\mu$ rad half crossing angle.
- 7 TeV energy per p-beam.
- Integrated luminosity for normalization: **1 fb<sup>-1</sup>**.





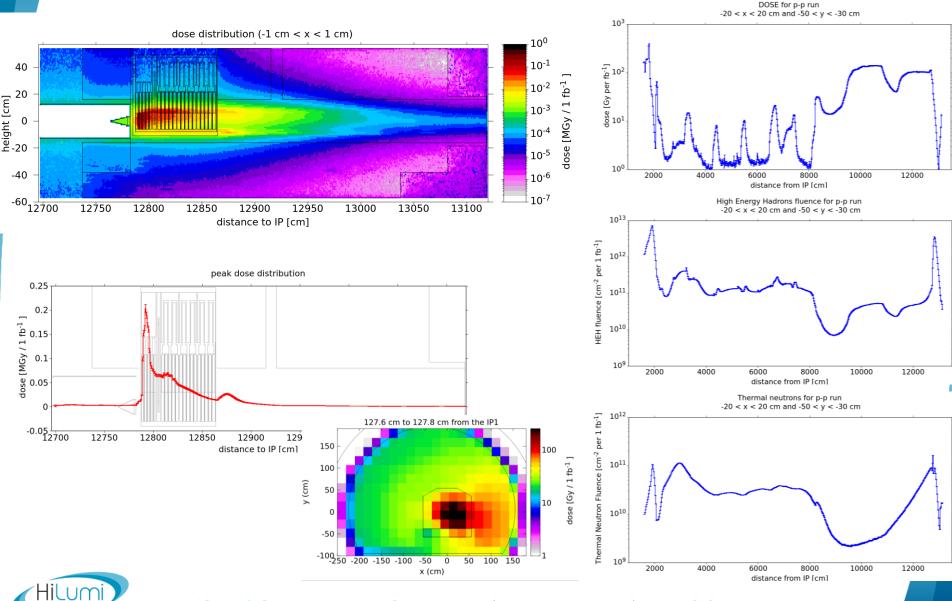
#### p-p collisions at 14 TeV in IR1




M. Sabaté-Gilarte

September 20th 2022

12<sup>th</sup> HL-LHC Collaboration Meeting


#### p-p collisions at 11 TeV in IR5

- p-p collisions.
- HL-LHC machine. Optics v1.5 (May 2019).
- **IR5 CMS**: right side of the IP5.
- Vertical Crossing  $\rightarrow$  250  $\mu$ rad half crossing angle.
- **5.5 TeV energy center of mass** (2.25 TeV per proton beam).
- p-p cross section for 5.5 TeV c.o.m. p-p: **70 mb**.
- Integrated luminosity for normalization: **1 fb<sup>-1</sup>**.





#### p-p collisions at 11 TeV in IR5



September 20<sup>th</sup> 2022

12th HL-LHC Collaboration Meeting