

LS3 Collimators: Design and Technical Choices

<u>F. Carra on behalf of WP5.2</u>, with additional inputs from many other WPs and colleagues

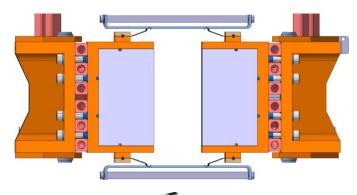
Special thanks to C. Accettura, L. Gentini, F.-X. Nuiry for material

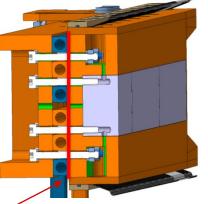
12th HL-LHC Collaboration Meeting Uppsala, Sweden 20 September 2022

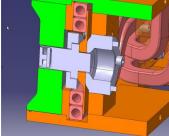
Outline

- LS3 collimators production
- General design considerations
- Design of housing-to-cooling interface
- Main technical choices for each collimator family
- Collimators optimization studies
- Summary of main calculations
- Conclusions

Production of LS3 collimators

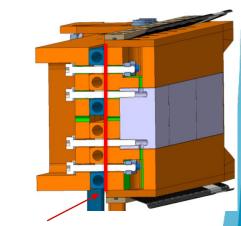

LS3 collimator production summarized in EDMS document: <u>LHC-TC-ER-0006 v.1</u>


Collimator Description	Names	LS2 installation					Design			
		Operational	Total Series Production	Spares	CERN Protos	Operational	Total series Production	Spares	CERN Protos	
	ТСТРХН	-	-	-	-	4	4*	1	1	LHCTCTPXH_000:
	TCTPXV	-	-	-	-	4	5	1	-	LHCTCTPXV_0001
Tertiary collimators	ТСТРМ	-	-	-	-	4	5	1	-	TCSPM Design
	(TCTP)	-	-	-	-	4 (re-used)	-	-	-	LHCTCTP_0001
Physics debris	TCLP	-	-	-	-	4	5	1	-	TCSPM design
collimators	TCLPX	-	-	-	-	4	5	2	1	LHCTCLPX_000
commators	(TCTP)	-	-	-	-	4 (re-used)	-	-	-	LHCTCTP_0001
Physics debris collimator Masks	TCLM	-	-	-	-	4 TCLM4 8 TCLM5/6	15	3	-	LHCTCLM_0001 at LHCTCLM_0002
DS collimators	TCLD	2 (point 2)	5	2	1	2 (point 7)?	-	-	-	LHCTCLDA0001
Low-Impedance secondary collimators	TCSPM	8	10	2	1	10 (point7)	12	2	-	LHCTCSPM0160



General design considerations

- Collimators to be installed during LS3 are newly designed. Even TCSPM, TCTPM, TCLP, which are based on the LS2 design, are made of updated materials.
- All LS3 collimators:
 - Feature RF fingers and no ferrite
 - Host in-jaw BPMs for fast alignment
 - Require EB welding and vacuum brazing technologies.
- However, in most of them, the critical housing / cooling circuit brazing interface is replaced by a bolted interface
- Brazing still needed in every collimator to achieve vacuum tightness between cooling pipes and tank



Housing / cooling circuit interface

Design of housing-to-cooling interface

Collimator Description	Names	LS2 installation					Design			
		Operational	Total Series Production	Spares	CERN Protos	Operational	Total series	Spares	CERN Protos	
	ТСТРХН	-	-	-	-	4	4*	1	1	LHCTCTPXH_0001
	TCTPXV	-	-	-	-	4	5	1	-	LHCTCTPXV 0001
Tertiary collimators	ТСТРМ	-	-	-	-	4	5	1	-	TCSPM Design
	(TCTP)	-	-	-	-	4 (re-used)	-	-	-	LHCTCTP_0001
Dhusias dabais	TCLP	-	-	-	-	4	5	1	-	TCSPM design
Physics debris collimators	TCLPX	-	-	-	-	4	5	2	1	LHCTCLPX_0001
commators	(TCTP)	-	-	-	-	4 (re-used)		. .	-	LHCTCTP_0001
Physics debris collimator Masks	TCLM	-	-	-	-	4 TCLM4 8 TCLM5/6	>15	3	-	LHCTCLM_0001 and LHCTCLM_0002
DS collimators	TCLD	2 (point 2)	5	2	1	2 (point 7)?		-	-	LHCTCLDA0001
Low-Impedance secondary collimators	TCSPM	8	10	2	1	10 (point7)	12	2	-	LHCTCSPM0160

What about these 5 collimator families? **Can we** replace brazed jaws with bolted ones?

Housing / cooling circuit interface

Jaw brazing needed: most loaded jaws ~ 10 kW, brazed jaws T~120°C and δ~50μm for 1h BLT (see *F. Carra, "TCSPM Compatibility* with HL-LHC Slow Loss Scenarios for CFC and MoGr jaws", <u>2nd Special Colusm on Material and Design Readiness for LS2 productions</u>)

From: EDMS 2595082

Steady-state power loads breakdown

Collimator Description	Names	Power load	ls contributo [V	Total power loss on most loaded jaw (steady-state)		
		p-p collision debris ¹	Beam halo (1h BLT) ²	Beam-gas ³	Desistive	[W]
	ТСТРХН*	25	< 1	<< 1	6	~ 30
Tertiary collimators	TCTPXV	16	< 1	<< 1	5	~ 20
	TCTPM*	< 1	< 1	<< 1	17	~ 20
	TCLP5	130	~ 0	~ 0	9	~ 140
Physics debris collimators	TCLP6	55	~ 0	~ 0	21	~ 75
	TCLPX	230	~ 0	~ 0	4	~ 235

References:

- 1. M. Sabaté-Gilarte, "HL-LHC beam-halo background at CMS", <u>LBS#114</u>.
- 2. R. Bruce et al., "Functional specification for TCL* Collimators", EDMS 2276600, Table 5.
- 3. M. Sabaté-Gilarte, "HL-LHC background simulations with FLUKA", <u>LBS#112</u>.
- 4. N. Mounet, "RF power on tertiary collimators", <u>8th August WP5.2 Technical Meeting</u>. note that loads presented there are for collimator, they have been divided by 2 here.

* Values given for IT180,

When do we need to braze a jaw?

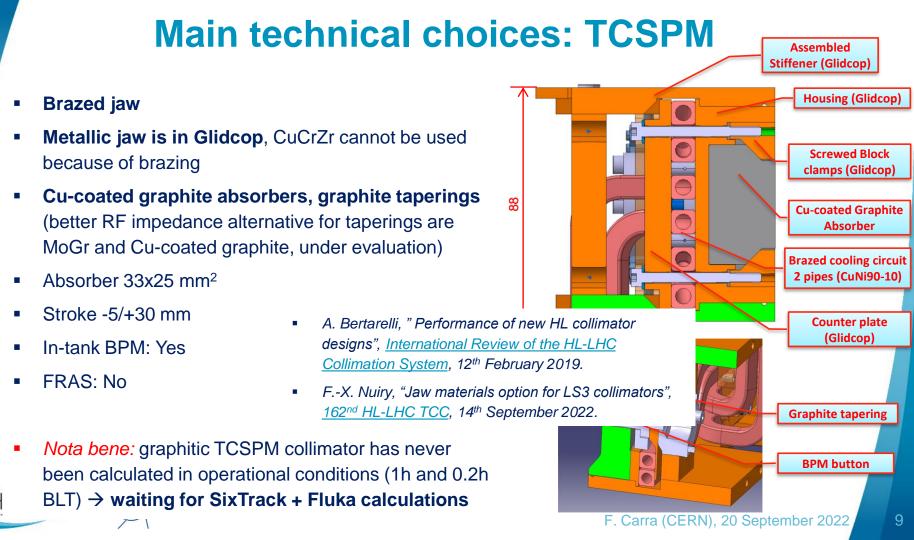
Examples of jaw solutions

Loads not changing from 1h to 0.2h BLT

Joining Solution	Jaw type	1h BLT losses on most loaded jaw [W]	Maximum peak temperature [°C]	Maximum beam- induced sagitta [um]		Collimator Description	Names	Total power loss on most loaded jaw (steady-state) [W]
Brazed jaws	HL-LHC TCSPM (MoGr) ¹	9400	127	55	ſ		ТСТРХН*	~ 30
	HL-LHC TCSP (CFC) ¹	2000	43	60		Tertiary collimators	TCTPXV	~ 20
Deltedieure	TCTP ²	420	40	50			TCTPM*	~ 20
Bolted jaws	TCLPX ³	230	34	15			TCLP5	~ 140
lso subjected to	power losses	increased by		Physics debris collimators	TCLP6	~ 75		
times during ac	cidental 0.2h E	BLT scenario			TCLPX	~ 235		

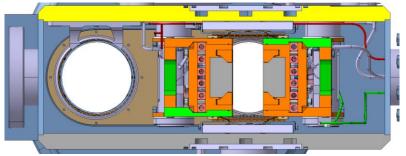
References:

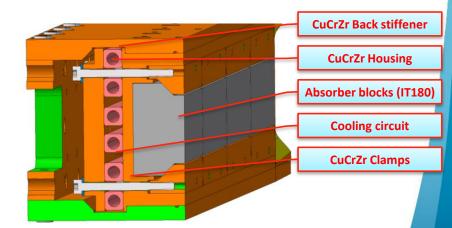
- 1. F. Carra, "TCSPM Compatibility with HL-LHC Slow Loss Scenarios for CFC and MoGr jaws", <u>2nd Special Colusm on Material</u> <u>and Design Readiness for LS2 productions</u>)
- 2. F. Carra, "Summary of calculations performed on TCTP collimators", EDMS n. <u>1212639</u>.
- 3. R. Key Sanchez, "TCLPX collimator jaw: Thermomechanical response under collision debris load", EDMS n. 2318440.



When do we need to braze a jaw?

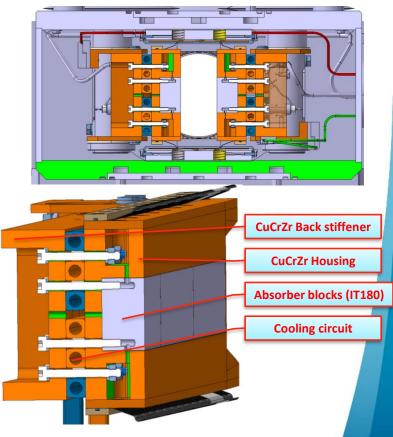
Examples o	f jaw soluti	0115	ected to power los uring accidental 0	sses increased by 2h BLT scenario	Loads not char	iging fro	om 1h to 0.2h BLT
Joining Solution	Jaw type	1h BLT losses on most loaded jaw [W]	Maximum peak temperature [°C]	Maximum beam- induced sagitta [um]	Collimator Description	Names	Total power loss on most loaded jaw (steady-state) [W]
	HL-LHC TCSPM	9400	127	55		ТСТРХН*	~ 30
Brazed jaws	(MoGr) ¹ HL-LHC TCSP	2000	43	60	Tertiary collimators	TCTPXV	~ 20
	(CFC) ¹ TCTP ²	420	40	50		TCTPM*	~ 20
Bolted jaws						TCLP5	~ 140
	TCLPX ³	230	34	15	Physics debris collimators	TCLP6	~ 75
						TCLPX	~ 235


- The acceptability of a bolted solution depends on the jaw design and material, however, the upper limit validated so far for a bolted solution is in the order of ~400 W / jaw steady state.
- Bolted TCLPX (230 W total jaw load) already verified by ad-hoc ANSYS calculation
- TCTPXH, TCTPXV, TCTPM have total losses lower than 40 W → we can consider the bolted solution validated without need of additional ANSYS calculations
- TCLP also seems on the safe side for a bolted jaw (~130 W), however, a dedicated ANSYS calculation, if a FLUKA energy density map is available, could be useful to re-assure us on the validity of the bolted solution



Main technical choices: TCTPXH

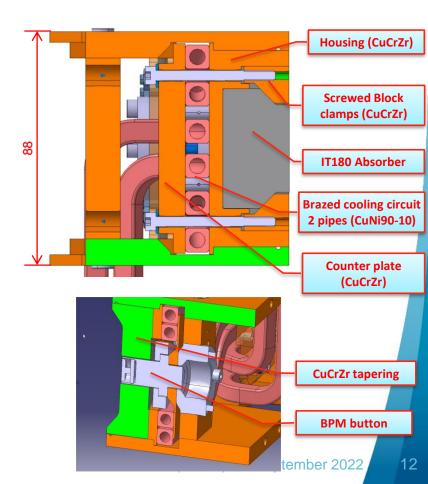
- 2-in-1
- Bolted jaw
- Metallic jaw is in CuCrZr
- Inermet180 absorbers, CuCrZr taperings
- Absorber 33x25 mm²
- Stroke -5/+35 mm
- In-tank BPM: No
- FRAS: Yes
- 2nd beam chamber: NEG coated
- L. Gentini, "Status of new IR collimator design", <u>IR Collimators</u> <u>Review</u>, 4th March 2020.
- F.-X. Nuiry, "Jaw materials option for LS3 collimators", <u>162nd HL-LHC</u> <u>TCC</u>, 14th September 2022.



Main technical choices: TCTPXV

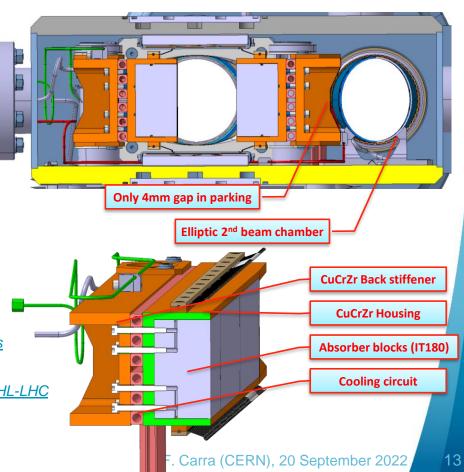
- Design similar to TCTP, except for RF fingers vs ferrite
- Bolted jaw
- Metallic jaw is in CuCrZr
- Inermet180 absorbers, CuCrZr taperings
- Absorber 34x20 mm²
- Stroke -5/+42 mm
- In-tank BPM: No
- FRAS: Yes

 L. Gentini, "Status of new IR collimator design", <u>IR Collimators</u> <u>Review</u>, 4th March 2020.

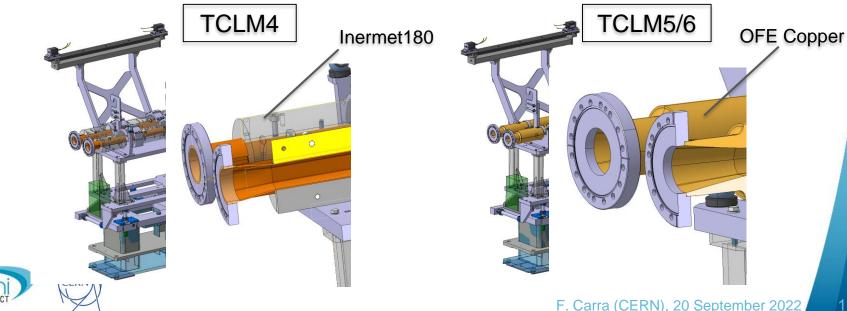

 F.-X. Nuiry, "Jaw materials option for LS3 collimators", <u>162nd HL-LHC</u> <u>TCC</u>, 14th September 2022.

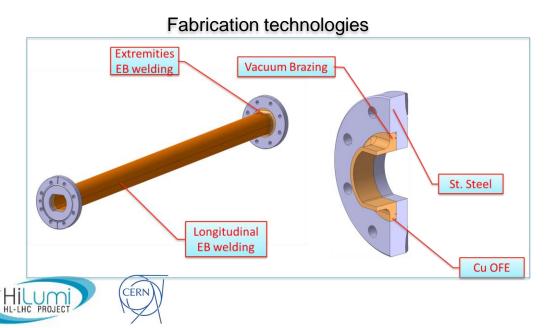
Main technical choices: TCTPM and TCLP

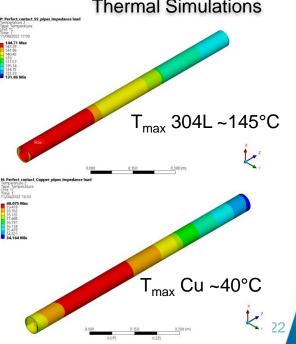
- Bolted jaw
- Metallic jaw is in CuCrZr
- Inermet180 absorbers, CuCrZr taperings
- Absorber 33x25 mm²
- Stroke -5/+30
- In-tank BPM: Yes
- FRAS: No


• *F.-X. Nuiry, "Jaw materials option for LS3 collimators", <u>162nd HL-</u> <u>LHC TCC</u>, 14th September 2022.*

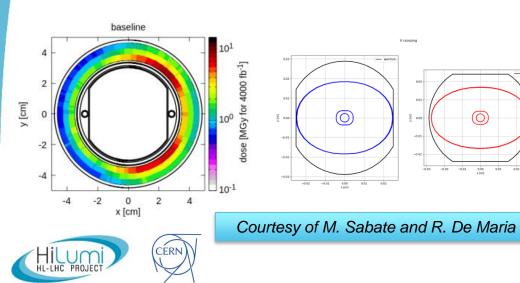
Main technical choices: TCLPX

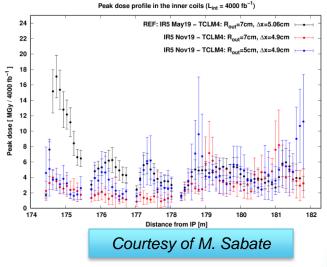

- 2-in-1
- Bolted jaw
- Metallic jaw is in CuCrZr
- Inermet180 absorbers, CuCrZr taperings
- Absorber 70x40 mm²
- Stroke -5/+40 mm
- In-tank BPM: No
- FRAS: Yes
- L. Gentini, "Status of new IR collimator design", <u>IR Collimators</u> <u>Review</u>, 4th March 2020.
- F.-X. Nuiry, "Jaw materials option for LS3 collimators", <u>162nd HL-LHC</u> <u>TCC</u>, 14th September 2022.


Main technical choices: TCLM


- Fixed beam intercepting-device with aperture shape matching the beam screen of the downstream dipole, needed in front of the MS magnets Q4, Q5 and Q6
- 15 TCLMs
 - $5x TCLM4 \rightarrow W$ shield
 - 10x TCLM5/6 \rightarrow Cu shield

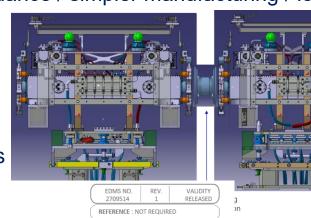
Main technical choices: TCLM

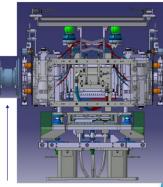

- Diverse fabrication technologies involved and tight tolerances to ensure the magnet protection
 → ongoing studies with WP2 and WP10 to optimize the design and reduce costs
- Stainless steel chamber evaluated, would have allowed to eliminate the brazing process → thermal simulation showed that is not compatible, because of significant increase of outgassing due to the high generated temperatures (T_{max}~150°C)
 Thermal Simulations



Main technical choices: TCLM

- FLUKA studies allowed material saving up to 80% of total cost for IT180 for TCLM4
 - Incoming beam absorber can be replaced by Cu
 - External radius of mask can be safely reduced from 7 to 5 cm
- WP2 & WP10 studies led to a better understanding the criticalities in terms of beam aperture and magnet protection, which will allow reviewing the chamber dimensions and better define (possibly relax) the machining tolerances.


Collimator's Design optimization studies

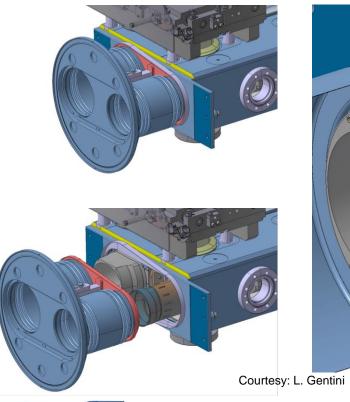

- Space between X series collimators is small
- Hydro-formed bellows welded to the vacuum vessel. In case of leak:
 - ~3 weeks of machine down time
 - Collimator cannot be re-used
- Study on collimator's shortening & Review on HL-LHC collimation system
- Less jaw deflection / better impedance / simpler manufacturing / lower thermal loads...

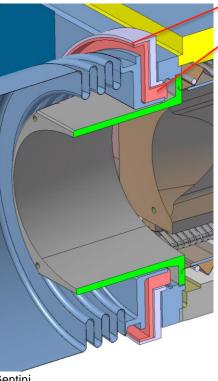
Cost ~400 kCHFNotDelay ~ 6 monthsimplemented

- Try implementing switches
- Bellow attachement modifications

+

17





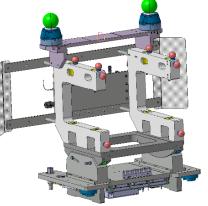
Discussion about optimisation of jaw lengths for IR collimators Meeting Minutes

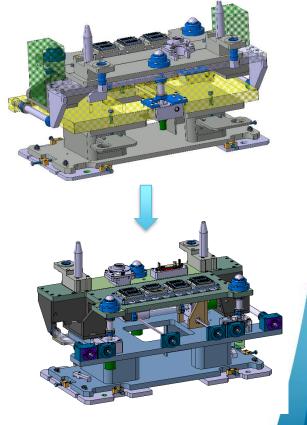
HL-LHC WP5

Collimator's Design optimization studies: Re-usable collimator

Lip to cut Intermediate flange

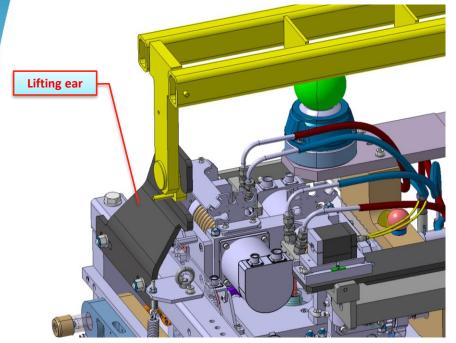
- In case of bellow's leak:
 Possibility to repair the collimator (Depending on activation)
- Solution for the prototype (because production was launched)
- Optimized solution (less welds) to be implemented for the series




Collimator's Design optimization studies: Support and adjustment platform

WP5.2 collaboration with WP15.4

Technical simplification and costs reduction:


- Longitudinal axis addition
- Rotation removal
- Improvement of the rigidity (alignment of components)

Collimator's Design optimization studies: Lifting hooks updates

Courtesy: L. Gentini

- Dedicated lifting hooks
- Re-use of existing spreader beams
- Structural validation completed (I. Tabian, Finite Element Analysis of the updated lifting support for the TCLPX Collimator, EDMS n. <u>2721306</u>)

Summary of LS3 collimators main calculations

RF FINGERS

- A. Lafuente, "Engineering evaluation of TCSPM RF contact fingers", EDMS <u>1721985</u>.
- R. Key, "Engineering evaluation of the RF Extremity fingers for TCLPX/TCTPXH/TCTPXV collimators", EDMS <u>2356208</u>.
- R. Key, "Engineering evaluation of the RF Longitudinal fingers for TCLPX/TCTPXH/TCTPXV collimators", EDMS <u>2356210</u>.

JAWS

- F. Carra, "Slow losses on TCSPM collimator", EDMS <u>1862278</u>.
- F. Carra, "Response of TCSPM when used as crystal absorber", EDMS <u>2596402</u>.
- F. Carra, "TCSPM scraping scenario & BLM thresholds", EDMS <u>2596407</u>.
- C. Fichera, "Numerical simulation of the brazing process on LHC collimator jaws", EDMS <u>1889123</u>.
- F. Corrales, "Study and optimization of thermally-induced deformation of HL-LHC Secondary Collimators", EDMS 2012377.
- R. Key, "TCLPX collimator jaw: Thermomechanical response under collision debris load", EDMS 2318440.

BPMs

- M. Pasquali, "Thermal analysis of the BPMs embarked in HL-LHC collimators", EDMS <u>1886273</u>.
- M. Pasquali, "Experimental and numerical studies of the BPMs embarked in the HL-LHC collimators", EDMS <u>1886533</u>.
- L. Bianchi, "BPM cables for TCLPX, TCTPXV and TCTPXH: Finite Element Analysis", EDMS 2215957.

Summary of LS3 collimators main calculations

BERCEAUX & SUPPORTS

- R. Key, "Calculation of the TCLPX cradle", EDMS <u>2430481</u>.
- C. Accettura, "Structural verification of modified support leg of TCLPX/TCTPXH collimators", EDMS 2752559.
- C. Accettura, "Structural validation of the new verticalized UAP support for X series collimators", EDMS <u>2778123</u>.

TANK

- A. Jaradat, "Upper plate deformation of the TCLPX", EDMS <u>2218125</u>.
- M. Holko, "Finite Element Analysis of the TCLPX Collimator Transport and Handling", EDMS <u>2518285</u>.
- I. Tabian, "Finite Element Analysis of the updated lifting support for the TCLPX Collimator ", EDMS <u>2721306</u>.
- C. Accettura, "Thermal analysis of TCLPX and TCTPXH vacuum tank with a downscaled cooling circuit", EDMS <u>2616208</u>.

MECHANICAL TABLE

A. Jaradat, "Structural analysis of moving shafts for the TCLPX collimator", EDMS <u>2215957</u>.

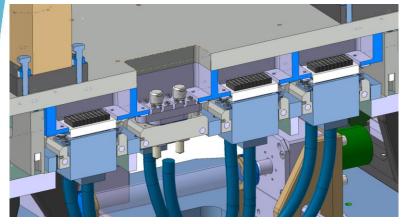
MASKS

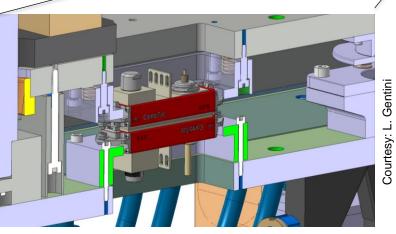
• C. Accettura, "Thermal simulation of TCLMs", <u>WP 5.2 Technical Meeting</u>, 13th April 2022.

Conclusions

- **36 collimators and 15 masks** must be produced during the LS3, in addition to **2 prototypes** currently under building in-house.
- On top of the significant quantity, one main challenge is given by the number of different collimator types and designs.
- Ahead of prototyping, many in-depth design studies and advanced computations have been performed to ensure an optimal collimator operation, improving the robustness of particular aspects.
- Design efforts and analyses were also done in order to simplify some technical solution, with the objective of cost & time savings.
- Although all aspects appear well defined, a few outstanding engineering studies might be very useful for a formal validation of the performance of:
 - **Cu-coated graphite TCSPM** (1h and 0.2h beam lifetime)
 - Inermet180 TCLP5 (steady state operation under debris thermal loads)

Thanks for your attention!


Backup slides


Collimator's Design Updates: Plug in studies for Ion pumps

Integration in the Hypertac

- New Hypertac automatic plug-in design done with 8x connector slots.
- One slot is dedicated to the high voltage Fischer connectors with special housings.

Dedicated plug-in connector Tentative to integrate a standard combitac connector.

Some cables (copper cables of WPS sensors) cannot be connected through the Hypertac requiring manual intervention from the survey team. WP5.2 collaboration

with WP12