

RFD Testing & HOM Status

Naeem Huque – Jefferson Lab

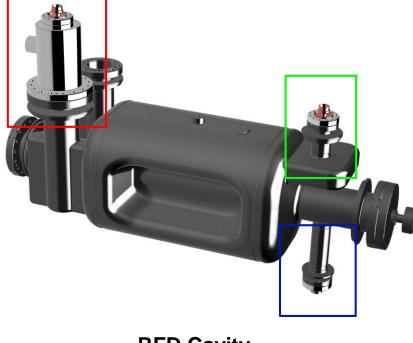
12th HL-LHC Collaboration Meeting. – Sep. 19th–22th 2022

Outline

- Scope
- Interfaces
- Prototype Fabrication
- RFD Cavity Testing
- Prototype Validation
- Procurement Status
- Schedule
- QA/QC
- Summary

JLab Scope of Work

- Fabricate sets of RFD Cavity Ancillaries
 - Prototype: 3 sets (FY21/FY22)
 Complete
 - Pre-Series: 3 sets (FY22/FY23)
 - Series: 8 sets (FY23/FY24)
- RF design is provided by AUP
- All activities are in full compliance with CERN Engineering Specification Document (EDMS 1389669 v2.6)
- Develop manufacturing drawings and strategy
- Develop brazing and welding processes and formal documents
- Share production information with the CERN MTF



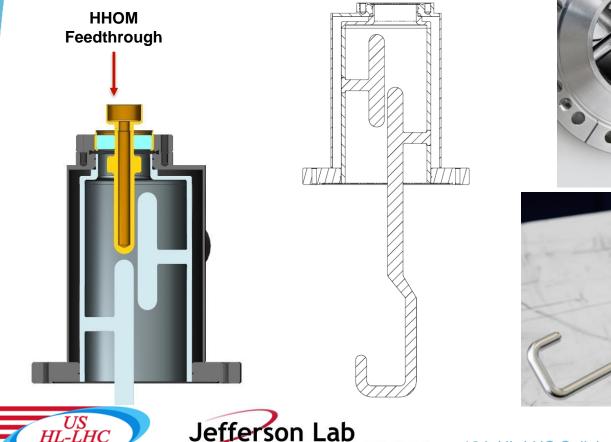
JLab Scope of Work: Interfaces

- Interfaces are defined in LHCACFDC0001 CERN EDMS 2420659
- Drawings for JLab scope have been approved by CERN

HHOM-FT DN40 CF

VHOM DN40 CF

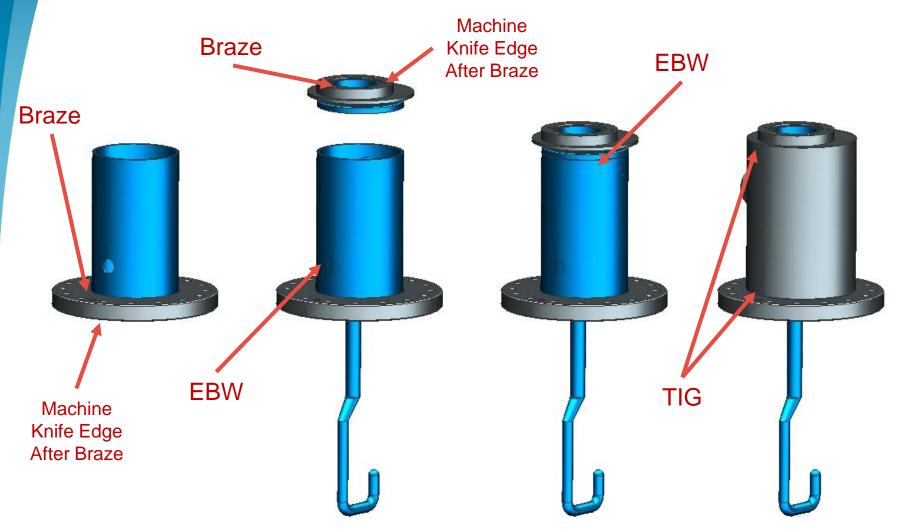
HHOM DN100 CF


RFD Cavity

Pick-Up DN40 CF

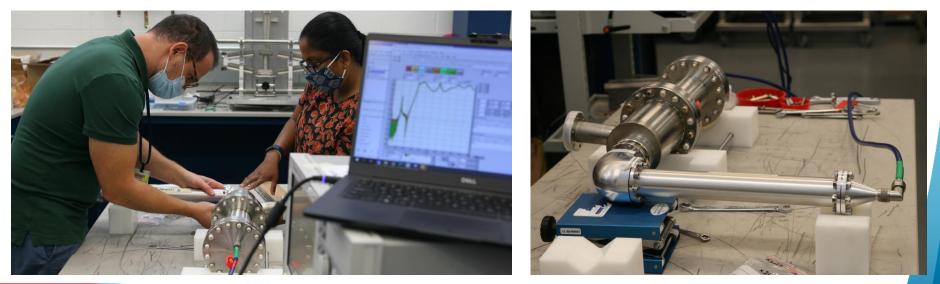
Prototype Fabrication: HHOM

- The HHOM Damper is constructed primarily of Nb, with 316LN Stainless Steel flanges brazed on, and a 316LN helium jacket
- The full assembly also includes a feedthrough installed on the top flange



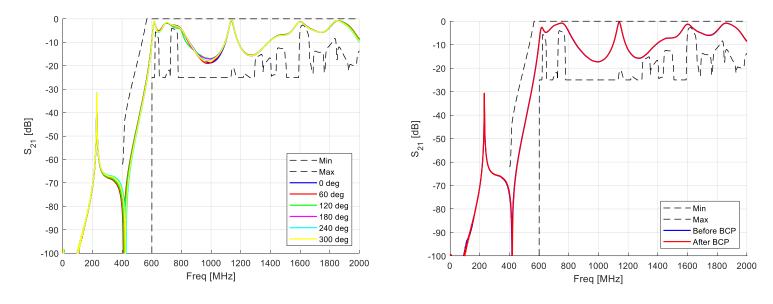
Thomas Jefferson National Accelerator Facility

Prototype Fabrication: HHOM



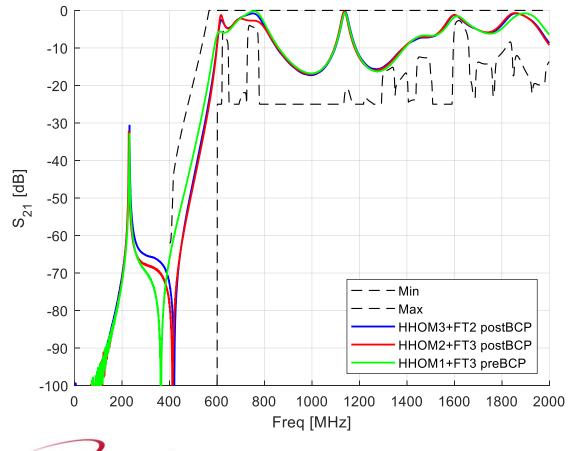
Prototype Validation: HHOM RF Tests

- Warm RF measurements are used to validate the HHOM fabrication
- A test box designed in collaboration with ODU, SLAC, and CERN was used to take the measurements
- The S21 curve must meet the following requirements:
 - S_{21} in the 390 410 MHz range must be below < -61 dB
 - S₂₁ in the 0.1 2000 MHz must be within CERN and AUP mask



Prototype Validation: HHOM RF Tests

- The three HHOMs were tested using the test box before and after final BCP
 - BCP was not found to affect the results greatly
 - Several rotations of the HHOM-FT were tested to account for manufacturing deviations
- The HHOM-FT (originally oversized) was trimmed to improve results
 - Trimming was not required for HHOM-2, but it further improved the results

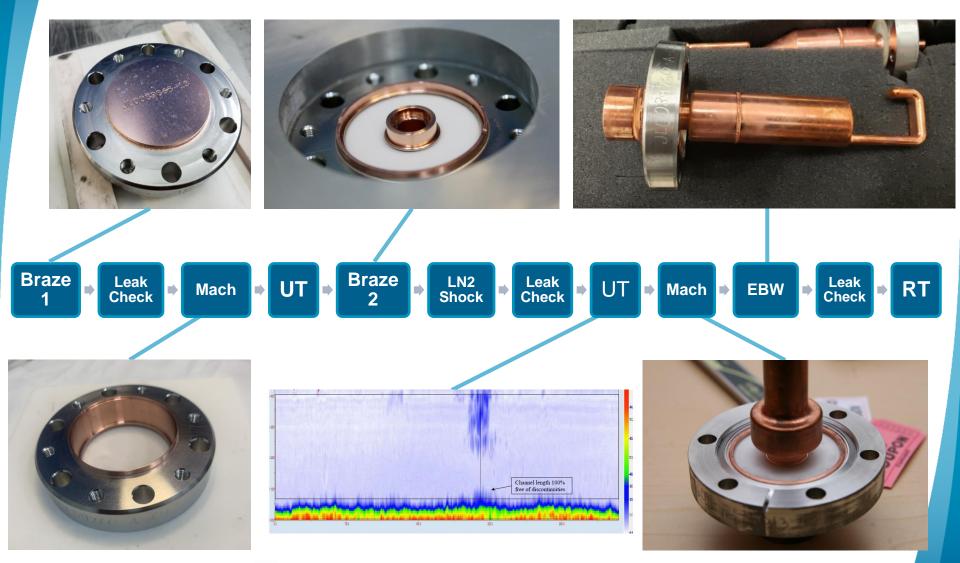


Prototype Validation: HHOM RF Tests

- HHOM-2 and HHOM-3 passed the acceptance tests as-built
- HHOM-1 (which had known dimensional deviation) did not pass, and is off the mask at ~600 MHz (green line)
 - HHOM may meet spec with a trimmed FT

Prototype Fabrication: Ceramic Feedthroughs

- FTs refer to the HHOM-FT, VHOM and Pick-Up
- Each assembly has a copper probe brazed into the center of a ceramic, which in turn is brazed into a 316LN flange
 - A copper ring is located between the ceramic and 316LN flange



Prototype Fabrication: Ceramic Feedthrough

Prototype Fabrication: Ceramic Feedthrough

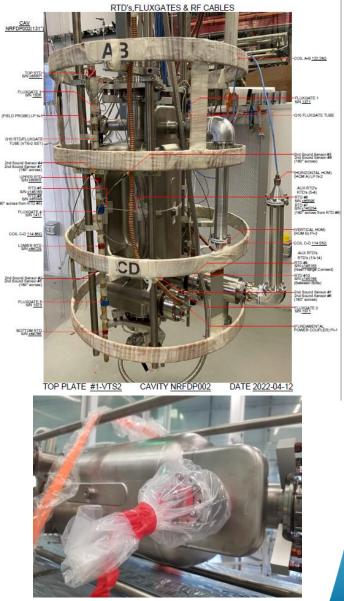
- CERN uses a rotatable titanium flange on the ceramic feedthroughs (below right)
- JLab uses a copper interface ring between the ceramic and a 316LN non-rotatable flange (below left)
 - The JLab design will be qualified by the same process as CERN
 - The two designs have been developed in parallel with the possibility of a future down-select

JLab Design


CERN Design

Prototype Validation: Feedthrough Cold Tests

- Earlier CERN iterations of the design found cracks in the ceramic after cold shocks
- JLab cold shocks involved immersing parts in LN2
- The process was changed to line up with the CERN process
- The ceramic is cooled via conduction while installed in an evacuated chamber
- JLab feedthroughs passed leak check after 5 thermal shocks using this process



Cavity Vertical Testing

- The HOMs were installed on RFD 2 at FNAL for vertical testing
- The assembly passed warm leak checks, but leaked at 4K
 - The issue was found to be the VHOM and Field Antenna feedthroughs
- Bagged leak checks determined that the CF gasket seals were the cause of the leaks
- The ceramics on the feedthroughs were still intact and leak tight
- The ancillaries were returned to JLab to test the knife edge seals

Prototype Validation: Cold Sealing Tests

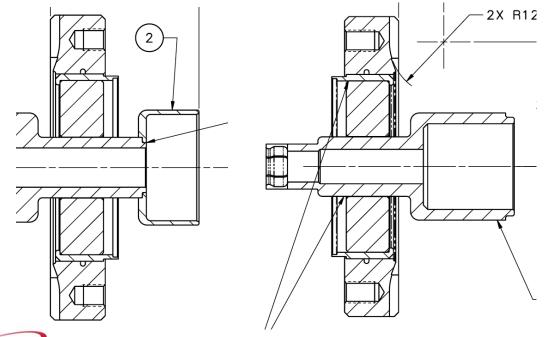
- Hardware and torquing scheme were developed to allow seals on the cavity
- HHOM/HHOM-FT assembly was sealed and leak checked in LN2 to prove the seal is not susceptible to cold leaks
- Tests were repeated on other ceramic feedthroughs; all were found to seal when cold
- The RFD 2 Cavity has been sent to JLab for testing in the VTA

Recent Achievements

- Three sets of prototype ancillaries have been fabricated. The yield was as follows:
 - 3 out of 3 HHOMs
 - 3 out of 3 HHOM-FTs
 - 2 out of 3 VHOMs
 - 1 out of 3 Field Antennas
- All Pre-Series drawings and work control documents have been approved by CERN and are ready for execution
- The Production Readiness Review (PRR) was held in May 2022
 - The project was given the go-ahead to begin Pre-Series fabrication
 - Fabrication of Pre-Series parts has started

Lessons Learned: Feedthrough EBW - 1

Issue: The EBW on the connectors to the probe damaged the copper/ceramic braze on some assemblies


Lessons Learned: Feedthrough EBW - 2

Solution:

- VHOM and HHOM-FT:
 - The weld is moved further away from the braze joint
 - An additional benefit is that ceramic shielding is no longer required

Pick-UP:

- The connector and the rod are now a single, machined part

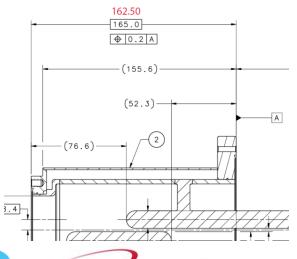
Lessons Learned: HHOM EBW

Issue: EBW parameters developed on representative samples were not transferrable to production parts

 EBW tooling acted as heat sinks, and welds required additional passes leading to excessive shrinkage and other defects

Solution:

 EBW parameters will be recalculated using representative parts that can interface with tooling


Lessons Learned: HHOM EBW

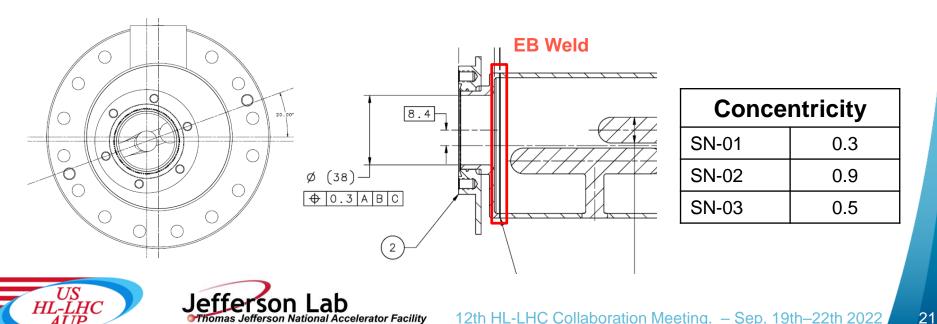
Issue: EBW on Nb parts created large underbeads and excessive shrinkage/distortion due to additional passes

 The wall thickness used on the JLab design is at the limit of practical fullpenetration EBW welds

Solution:

- The wall thickness will be reduced from ~3.5mm to 2.6mm, pending successful stress analysis
- New drawings will take shrinkage from representative samples into account

Lessons Learned: HHOM EBW


Issue: EBW distortion of upper flange weld (Nb Can Lid) lead to concentricity of the HHOM-FT port to be out of tolerance

- The nominal design has the probe of the HHOM-FT concentric to the hook
- Note: due to limited access, this measurement is difficult to accurately measure on the CMM and so is only taken as a reference

Solution:

- Reducing the wall thickness of the weld will reduce distortion. The EBW tooling for the weld will be revised and regualified prior to use
- SN-02 and SN-03 passed RF tests

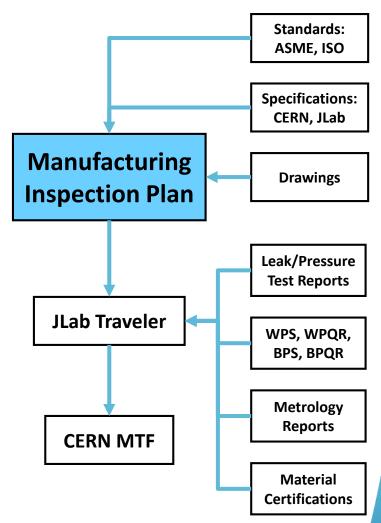
Thomas Jefferson National Accelerator Facility

Procurement Status

- All raw material for Pre-Series has been ordered and delivered
- Due to the long lead time, high-RRR Niobium and OFE Copper has also been purchased for Series units
 - Niobium is due at JLab in March 2023
 - Series OFE Copper has been received at JLab
- Part fabrication, both internal and external to JLab, is treated as a procurement
 - Pre-Series part fabrication has started
 - Where possible, prototype vendors are being used for Pre-Series contracts

Schedule

	2022							2023		
	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Qualifications										
Part Fabrication										
Assembly										
Acceptance										



Manufacturing Inspection Plans (MIPs)

- A separate MIP is developed for each ancillary component
- The MIPs are based on the design, required standards and the CERN engineering specification
 - The MIP is the master document that lists all the fabrication and inspection steps
 - The MIP defines the structures of the individual travelers
- Each assembly is tracked with a traveler in the JLab Pansophy system
- The travelers collect relevant data during production e.g. test reports and dimensional inspection results
 - The travelers also collect sign-offs that particular operations have been carried out
- The information from the travelers are transferred manually to the CERN MTF

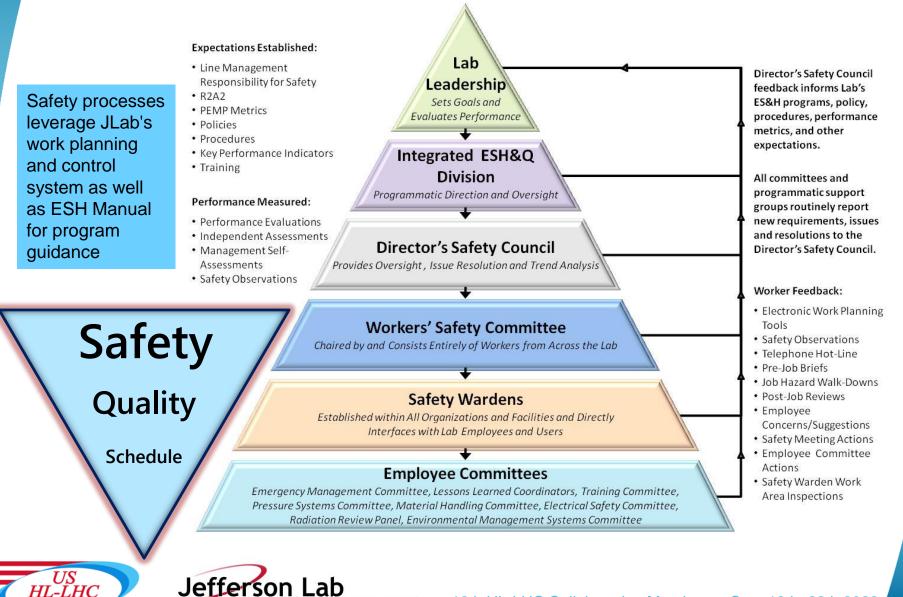
Upcoming Work

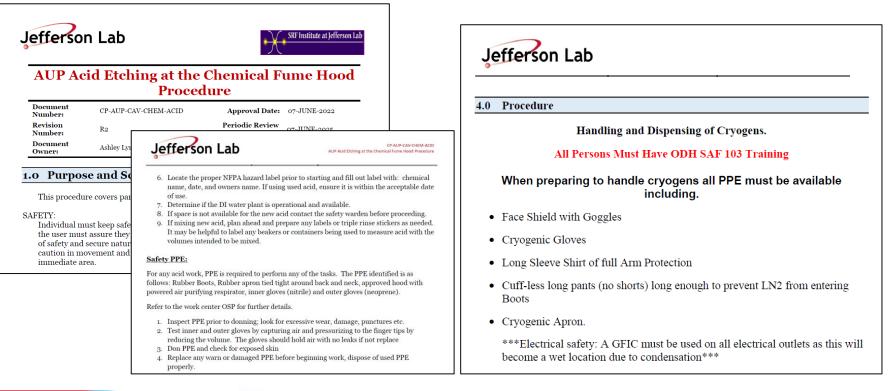
- Fabrication of parts has started in the JLab Machine Shop and external vendor
- Welding and brazing documents (WPQRs, BPQRs etc.) are in progress
 - Strategy documents outlining the welding/brazing tests have been approved by CERN
 - Assembly work will not begin until the relevant process documents are approved

Summary

- Prototype ancillaries were fabricated at JLab
 - Issues were encountered for the Field Antennas; they are understood and have been addressed in the Pre-Series design
- Drawings and process documents are complete and approved by CERN for Pre-Series fabrication
- Raw material procurement for Pre-Series is complete
- Production Readiness Review gave the goahead to move forward with Pre-Series
 - Production has started at JLab

Thanks to the RFD Ancillary Team


- Fermilab Paolo Berrutti, Manuele Narduzzi, Colin Narug, Leonardo Ristori
- **ODU** Suba De Silva, Jean Delayen
- SLAC Zenghai Li
- CERN Nuria Valverde Alonso, Adria Gallifa Terricabras, Eric Montesinos


Safety

Thomas Jefferson National Accelerator Facility

Safety

 In addition to JLab's EH&S manual, safety processes are specified in individual AUP procedures

