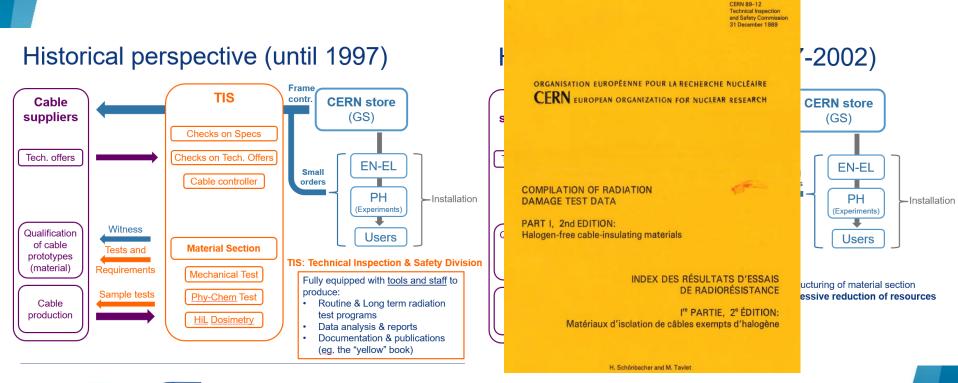


Cable Irradiation Activity

J. Gascon for CARE project

Special thanks to I. Aviles Santillana, M. Ferrari, H. Garcia Gavela, R. Garcia Alia, C. Garino, G. Lerner, S. Sgobba, M. Taborelli & CARE team

12th HL-LHC Collaboration meeting, Uppsala, 19-22 September 2022


Introduction

History

CERN

-LHC PROJEC

Cable Irradiation Activity - J. Gascon – 12th HL-LHC Collaboration meeting - 21st September

History

Source: RIACWG

Historical perspective (after 2002)

Frame Frame contr contr Cable **CERN** store Cable **CERN** store (GS) suppliers (GS) suppliers A&T + others **Checks on Specs** Checks on Check materials? EN-MEF (for A&T) Checks on Specs Checks on Tech. Offers materials?? Tech. offers Tech. offers Checks on Tech. Offers EN-EL EN-EL Small Small orders orders PH PH Installation (Experiments) Small orders (Experiments) (non-standard cable) Qualification HSE Users Qualification **Tests** required of cable HSE Users in tech. specs of cable prototypes HiL Dosimetry HLD for injectors only (material) prototypes Multi-purpose (not specific for cable samples) (material) Mechanical Test EN-MME Less resources Abandoned Annual report discontinued Samples required Cable Phy-Chem Test TE-VSC in tech. specs production Cable production **RIAC WG** Activity coordination disappeared completely

Historical perspective (2010-2015)

History

CARE Working Group 2016-2019

- Activity taken by HSE unit
- Followed recommendation proposed by RIACWG

CARE Project 2019-

- Leader: J. Gascon
- Team members:

Berta RUIZ PALENZUELA Materials Eng.

Federica BORTOLETTO Materials Eng.

Dr. Marija KRANJCEVIC PhD in Computing

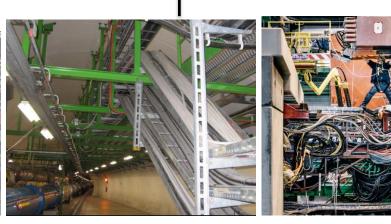
Cable Ageing Research (CARE) Project

- Long-lead <u>Research</u> programme on cable ageing
- □ Focussed to Rad-Hard cables
- Oriented mainly on new cables procurement
- □ Seeking predictive maintenance oriented to reduce cable replacements
- □ Enhancing decision making process in terms of expected cables lifetime

Main Objective: extend cable lifetime procuring the most appropriate cables for CERN operations

- Determining cable "weathering" installation & operation conditions (cable stressors)
- Defining appropriate technical requirements and tests procedures in cable procurement bids
- Providing Quality control & acceptance criteria on cable procurement
- Assessing cable degradation during beam operation (condition monitoring)
- Tracing logbook during all cable lifecycle (complete cable life data over years)
- Establishing lifetime models for cables from cable life data analysis

Cable design considerations



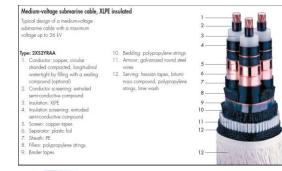
Cable Design

Cable applications at CERN

- HV power
- LV power
- DC power (Power converters & magnets)
- Instrumentation & Control
- Speciality (RF, experimental areas, others)
- Safety (lighting, monitoring, safety systems)
- IT & office (commercial products)
- Grounding

Cable Stressors

- Temperature
- Humidity
- Chemicals (oxygen, ozone, lubricants,...)
- Ionising radiation (UV included)
- Electrical (ohmic heating, voltage insulation stress)
- Mechanical (bending, squeezing, vibration)


Cable Design

Cable main components

- Conductors (electrical): copper, aluminium
- Insulation (electrical): polymers
- Shielding (electrical): foil and/or braided wires (Al, Cu)
- Jacket (mechanical, chemical, fire): polymers

> Additional components

- Fillers, binder or bedding: mechanical stability
- Tapes, semiconductors: electrical, mechanical or fire
- Armouring: mechanical protection

- Typical Polymers cable Industry (halogen free)
 - Ethylene vinyl acetate (EVA)
 - Cross-linked polyethylene/polyolefin (XLPE / XLPO)
 - Low and High density polyethylene (LDPE / HDPE)
 - Ethylene propylene based elastomers (EPR / EPDM)
 - Polypropylene (PP)
 - Polyphenylene oxide (PPO)
 - Polyphenylene ether (PPE)
 - Butyl rubber (BR)
 - Polyimide (Kapton®)
 - Silicone rubber (SiR)
 - Polyether ether ketone (PEEK)
 - Polyurethane rubber (PUR)
- > Additives (antioxidants, flame retardant, stabilizers)

Radiation effects

Ionizing radiation effects on Polymers

- Formation of free radicals: depending on chemical structure, crystallinity, dose rate, solvent content, additives, plasticizer, stabilizers, temperature, oxygen levels, humidity.
- Formation of hydrogen & light hydrocarbon
- Formation of C-C bonds between molecules (crosslinking)
- Rupture of C-C bond (chain scission)
- Increase in unsaturation
- Breakdown of crystalline structure
- Discoloration
- Oxidation

> Synergistic effect

• Simultaneous stressors damage higher than sequential equivalent stressor damage separately: *Temperature & radiation more damage than temperature and after radiation for same quantities*

5x10⁶ Gy

Not irradiated

10⁷ Gy

CARE activities for HL-LHC Project

Performed activities

> Preparation of cable qualification process for HL-LHC cables procurement

- Strategy
 - ✓ Inputs from R2E for cable radiation levels expected in HL-LHC areas
 - ✓ Preparation of Procurement documents for Rad-tolerant cables (new 3.5MGy cable category)
 - ✓ Establishing qualification criteria and acceptance criteria for cables on ageing (radiation)

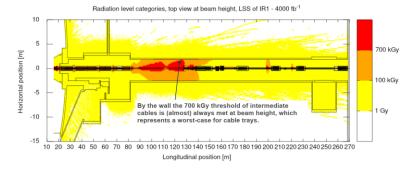
Tests procedures

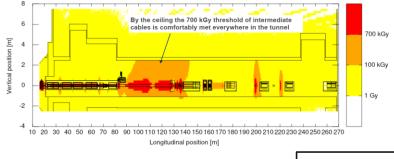
- ✓ Tests techniques for cable assessment reviewed
- ✓ Test techniques fully defined particularly on test parameters not defined by standards
- ✓ Ageing radiation methods definition according to expected cable radiation levels in HL-LHC areas

Tests execution

- ✓ Ageing samples at CERN & in external facilities
- ✓ Specimen preparation for testing after ageing
- ✓ Testing in CERN labs
- ✓ Tracking data results in database
- ✓ Qualification practice campaigns on available cables at CERN

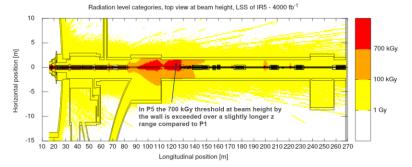
• Analysis


- ✓ Technical report from test results
- ✓ Statistical studies improving reliability of tests

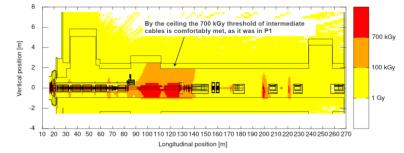

R2E inputs for HL-LHC cables

> R2E WG FLUKA simulations

IR1



Radiation level categories, side view on the beam axis, LSS of IR1 - 4000 fb⁻¹



Courtesy of G. Lerner, SY-STI

IR5

Cable Irradiation Activity - J. Gascon – 12th HL-LHC Collaboration meeting - 21st September

(June 2021)

Qualification Criteria

> Testing methods & acceptance criteria

		ageing Method	Source ageing method	Acceptance criteria	Internation	nal standards
					According to IEC 60502	
	Reference Stage		IEC 60502	 EaB ≥ 125% (sheath) EaB ≥ 200 % (insulation) Tensile strength ≥ 9MPa 	<pre>sheath LSZH EaB ≥ 125% Tensile strength ≥ 9MPa</pre>	insulation XLPE • EaB ≥ 200% • Tensile strength ≥ 12MPa
Т	hermal Ageing Stage	Thermal ageing 42 days at 100°C	Temperature, time and oven requirements are taken from IEC 60811-408	 Residual EaB ≥ 70% OIT > 2 minutes 	According to IEC 60811-40 Applicable for wires, materia to be obtained after the ther	ls to be rolled into coils, no cracks
	Radiation Resistance Stage	Gamma Irradiation Dose 3.5 MGy (dose rate 1Gy/s)	IEC 60544-2	 EaB ≥ 100 % (sheath) Residual EaB ≥ 50% (insulation) Residual Tensile strength ≥ 50% 	According to IEC 60544-2 • Residual EaB ≥ 50% • Residual Tensile strength ≥	50%

Irradiation ageing experience

> Artificial irradiation with cable bundles

- ✓ R2M framework contract used for 2 campaigns
- ✓ Facility for 1st campaign Germany
- ✓ Facility for 2nd campaign France
- ✓ Difficulties due to COVID (facilities overbooked for medical)
- ✓ 1st campaign sent out in May 2021- Cable bundles received in September 2021
- ✓ 2nd campaign sent out in October 2021- Cable bundles received in May 2022
- ✓ Technical report on 1st campaign released
- ✓ Tests on 2nd campaign ongoing

(CERN)	2560544	REV. 0.4	FINAL	(CERN)	2632455	5 2.0	FINAL
CERN CH1211 Geneva 23 Switzerland	ering Department	REFERENCE 20-08		CERN Of1211 Geneva 23 CDBV SY Switzerland Sy	erator Systems	REFERENCE	
Т	echnical Requirement Irradiation test	s		Т	echnical Requirement Irradiation test	S	
Cable irradiati	20-08 on test to deriv	ve Cable A	geing		21-02 liation test to d ond test at low		
This document describes the procedure related to the rad suppliers and explain the ray irradiated by th Co source wit 2 MGy.	iation resistance of 3 cable diation requirements listed i	types from 5 diff in IS23. Cables w	erent vill be	qualification procedure n from 5 different supplier 1523. Cables and materi ⁶⁰ Co gamma source with at a dose rate of 1 kGy/ at a dose rate of 3.6-5 k dose rate effects in cable	Abstract es the cable irradiation de elated to the radiation res is and explain the radiation als for cable manufacturing 5 does etsps in range betw h. This test follows a previx (y/h (irradiation test 20-00 samples. KEYWORDS KEYWORDS	istance of 3 of n requiremen will be irradi een 0.1 MGy a bus campaign 3) and aims a	table types ts listed in ated using and 2 MGy, performed
DOCUMENT PREPARED BY:	DOCUMENT CHECKED BY:	DOCUMENT APPRI	OVED BY:				
David Vázquez [HSE-OHS-IB] Artem Danyliuk [HSE-OHS-IB]	Jose Gascon [HSE-OHS-1B]	Matteo Ferrari [S'	Y-STI-TCD]	DOCUMENT PREPARED BY: David Vázquez [HSE-OHS-IB] Artem Danyliuk [HSE-OHS-IB]	DOCUMENT CHECKED BY:		APPROVED BY:
	-						

Irradiation ageing experience #1

- > 1st Irradiation campaign objectives (bundles received in September 2021)
 - Type of cables & manufacturers
 - ✓ NE8 & NE48 types selected as most used type in HL-LHC project (source EN-EL Group) & cables available in CERN stores
 - ✓ NE48 type includes 2 different manufacturers to assess influence of manufacturer
 - ✓ PH3SJ type from Polycab manufacturer (contract signed by CERN stores) to assess radiation hardness
 - ✓ CGN50 type produced with popular Megolon S304 (radiation resistant)
 - Dose rate influence 1Gy/s (~3.6kGy/h)
 - ✓ 5 Dose steps 0.1 0.2 0.5 1 2 MGy increase data
 - ✓ Confirm degradation trend of each cable type & manufacturer
 - ✓ Confirm cable degradation around 500kGy

Ageing methods

- \checkmark 3 Combinations: Radiation only , Thermal ageing & radiation later, Radiation & thermal ageing later
- ✓ Thermal ageing 168h as requested in IEC-60502
- ✓ Assess influence of cable stressors and combination of them
- Pilot campaign #1
 - ✓ Bundles dosimetry (3 dosimeters per bundle) & dose from facility
 - $\checkmark\,$ Get experience from irradiation facility for cable qualification

✓ Dumbbell specimens type 5A & 5B from jackets

Specimen type	5A	5B	
Overall length	≥75	≥35	
Width at ends	12,5 ± 1	6 ± 0,5	
Length of narrow parallel-sided portion	25 ± 1	12 ± 0,5	
Width at narrow portion	4 ± 0,1	2 ± 0,1	
Small radius	8 ± 0,5	3 ± 0,1	
Large radius	12,5 ± 1	3 ± 0,1	
Initial distance between grips	50 ± 2	20 ± 2	
Gauge length	20 ± 0,5	10 ± 0,2	
Thickness	2 ± 0,2	1 ± 0.1	

Visibility : CERN Internal **OCCUPATIONAL HEALTH & SAFETY AND** ENVIRONMENTAL PROTECTION UNIT

Choose an item.

PROCEDURE

EDMS

2705496

1.0

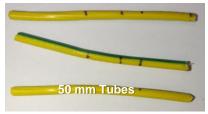
Statu

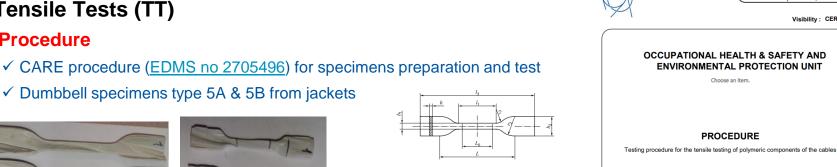
See EDMS

Prepared by:	Checked by:	Approved by:
rtem Danyliuk	Berta Ruiz Palenzuela Federica Bortoletto Marija Kranjcevic	Jose Gascon
	Distribution to	
Click or tap here to enter text		

\checkmark 50 mm tubes from insulation (L0=10 mm)

Testing


Procedure

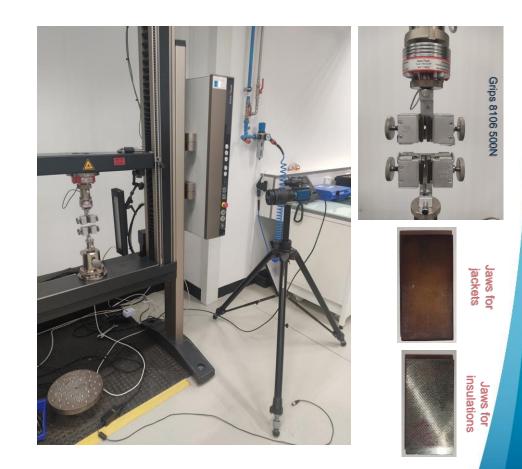

 \geq

Tensile Tests (TT)

Dumbbell 5A

CERI

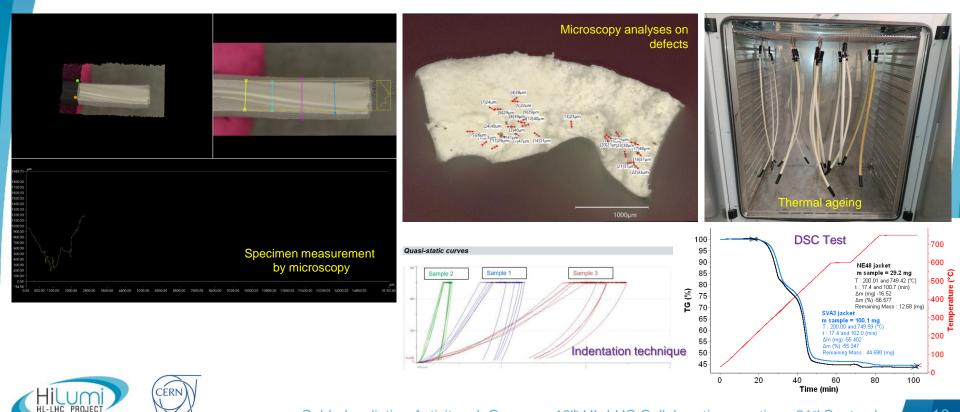
and the second second			Specimen
	the second se	13	Overall len
A.		b2	Width at e
623	Dumbbell 5B	I_1	Length of r
		b_1	Width at na
		11	Small radiu
		r2	Large radi
		1	Initial dista


Testing

Tensile Tests (TT)

- Equipment (MME lab)
 - ✓ Machine Zwick/Roell Z010
 - ✓ Grips 8106 500N
 - ✓ 2 different jaws
 - ✓ Limmes video-extensometer

• Test



Testing

Other performed test techniques

Tensile tests performed on 1st irradiation samples \triangleright

Cal	blo		Number of tested specimens					
Туре		Manufacturer	Jackets			Insulation		
1 y			Total	Valid	Share of valid [%]	Total	Valid	Share of valid [%]
NE8	3	NOVACAVI	275	184	67	22	15	68
NE4	48	DRAKA	463	337	73	114	67	59
NE4	18	2M KABLO	492	408	83	341	225	66
CGI	N50	RFS	37	32	86	-	-	-
HCA	A78	RFS	36	33	92	-	-	-
PH3	BSJ	POLYCAB	41	38	93	112	65	58

Most expected cable types (33%) in HL-LHC Project

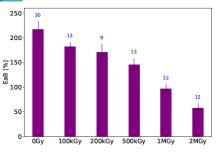
EDMS	Vers.	Status
2720276	1.0	See EDMS

Visibility: SENSITIVE

OCCUPATIONAL HEALTH & SAFETY AND ENVIRONMENTAL PROTECTION UNIT Occupational Health and Safety
TECHNICAL REPORT 20-08 Cable irradiation test to derive cable ageing
This document details all the findings, results and issues related to the pilot campaign aimed at advancing the knowledge on degrada- tion of polymeric cable components. Artificial irradiation and ther- mal ageing of cables were performed under controlled conditions and monitoring of materials degradation was performed via tensile testing.

Prepared by:	Checked by:	Approved by:
F. Bortoletto (HSE-OHS) A. Danyliuk (HSE-OHS) M. Kranjčević (HSE-OHS) B. Ruiz Palenzuela (HSE-OHS)	R. Garcia Alia (SY-STI) M. Ferrari (SY-STI) Y. Aguiar (SY-STI) G. Lerner (SY-STI) S. Sgobba (EN-MME)	J. Gascon (HSE-OHS)
	Distribution to	

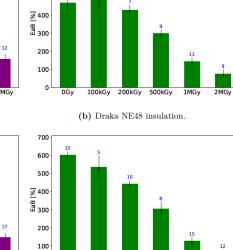
B. Delille – HSE management



> Results trend on cable degradation

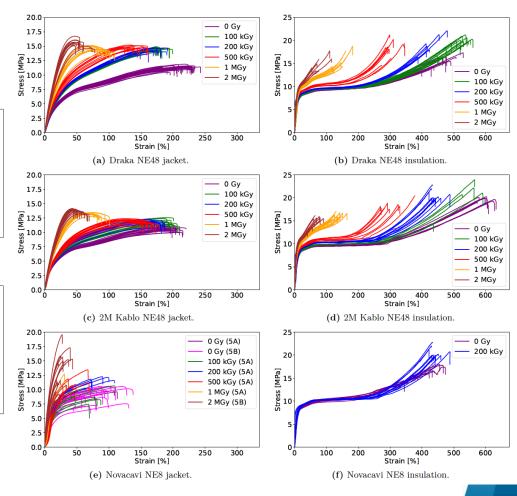
700

600


500

(a) Draka NE48 jacket.

(c) 2M Kablo NE48 jacket.

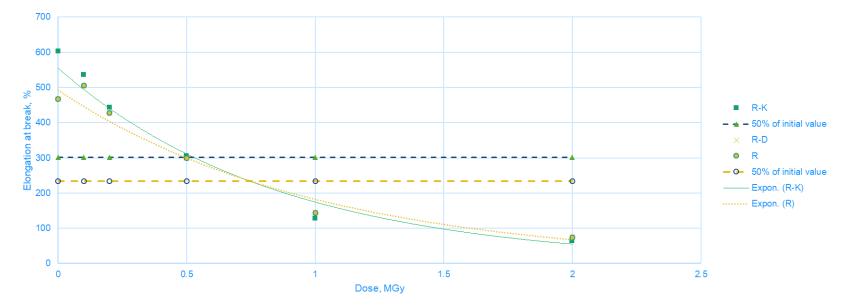

100kGy 200kGy 500kGy

(d) 2M Kablo NE48 insulations.

1MGv

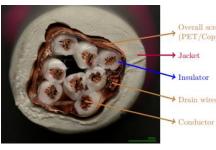
2MGv

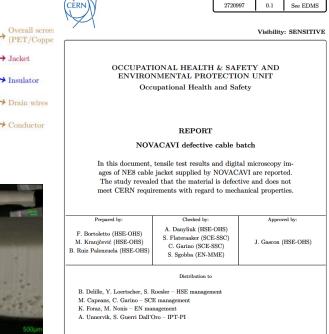
0Ġy



Cable Irradiation Activity - J. Gascon – 12th HL-LHC Collaboration meeting - 21st September

> Results comparison per manufacturer


Comparison Tensile properties of the NE48 Insulation from Draka and 2M Kablo



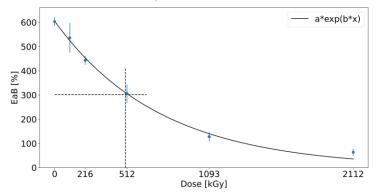
> Acceptance criteria results

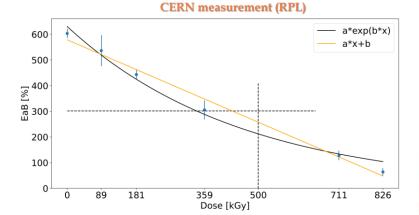
Cable	Cable component	500kGy Facility
NE8 NV	sheath	do not pass*
NE48 DR	sheath	pass
NE48 DR	insulation	pass
NE48 2M	sheath	pass
NE48 2M	insulation	pass
PH3SJ Polycab	sheath	pass
PH3SJ Polycab	insulation	do not pass

Production defect discovered in NV cable sheath

EDMS

Status



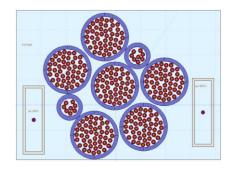

HILUMI PROJECT	CÉ
	1

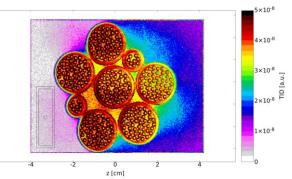
> Dosimetry findings

Facility dose Measurement

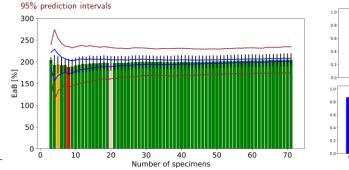
Target Dose [kGy]	Dose Facility [kGy] ⁴		R2E	
Target Dose [KGy]	Dose Facility [KGy]	Dosimeter	Dose [kGy] ⁵	Error
		D1-0.1	78	27 %
100	107	D2-0.1	89	17 %
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18 %	
		D1-0.2	171	21 %
200	216	D2-0.2	181	16 %
		D3-0.2	176	19 %
500		D1-0.5	270	47 %
	512	D2-0.5	359	30 %
		512 D2-0.5 359 D3-0.5 359	30 %	
		D1-1	681	38 %
1000	1093	D2-1	711	35 %
		D3-1	641	41 %
		D1-2	754	64 %
2000	2112	D2-2	826	61 %
		D3-2	730	65 %

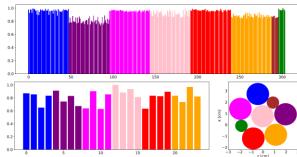
⁽⁴⁾ Dose calculated by facility via 2 alanine dosimeters (2 positions)
 ⁽⁵⁾ Measured by R2E at CERN after an ultrasonic bath


> Other analysis performed


Working closely with R2E group on dosimetry & FLUKA for artificial irradiation

[u 1 ×


-1


-2

Math analysis: statistics, data correlation, models

Results tracked in CARE Database

Created with the guidance of the HL-LHC quality control group

4 💋 Campaigns

▲ (☐ [A1] AD HORN CABLE assessment request

CHCPPCAC000-CR000006 - AD HORN CABLE

C HCPPCAC000-CR000007 - AD HORN CABLE

O HCPPCAC000-CR000008 - AD HORN CABLE

Image: Page 10 Page

IC1] TK-NC-working-grp

Macrobundles

Description of the second s

[A3] Cable assessment MPPE
 [A4] Cable assessment PVC Cable East Area

Ø 2M Kablo - NE48
 Ø Draka - NE48

Image: Image:

▷ □ Cable Components
 □ 2599880 (v.1) Other ID for 20-08
 ▷ □ IR21 21-02 Cable irradiation test to derive cable ageing

C[S1] TT with more specimens
 C[T1] TDC2 campaign
 C[Stored]

IP1 PIEP TT procedure harmonization

IR1 20-08 Cable irradiation test to derive cable ageing

A O HCPPCAC003-RF000001 - HCA78-50JFN Cable

CHOPPCAC005-PY000001 - PH3SJ Cable HCPPCAC005-PY000002 - PH3SJ Cable HCPPCAC004-RF000001 - CGN50 Cable

2593098 (v.1) RFS - HCA78-50JFN - TDS

A O HCPPCACC000-CR000001 - AD HORN CABLE Jacket

D CONTRACTOR CONTRACTOR PROVIDENT AND ADDRESS AND A

HCPPCACC000-CR000003 - AD HORN CABLE Jacket
 HCPPCACC000-CR000004 - AD HORN CABLE Insulation

CHCPPCACC000-CR000006 - AD HORN CABLE Insulation 2609505 (v.1) AD Horn cable assessment request

2611977 (v.1) Tensile Test Report AD HORN CABLE Jacket Reference

Tracking CARE elements

- ✓ Cables and cable components (jacket & insulation)
- ✓ Cable bundles
- ✓ Dosimeters
- ✓ Raw Materials

EDMS Node

- ✓ Items & assets (cables, materials, etc.)
- ✓ Documents (specifications, test reports, etc.)
- ✓ Projects (campaigns, documentation, etc.)

• Infor, MTF, EAM Light

- ✓ Asset properties
- ✓ Steps

EAM store representing the physical storage space

Labels with a QR code

Main Made of Equipment data Manufacturing Operation Documents History Map Actions : Edit | History External Links Property Values Property Nominal Value Value Unit Campaign 20-08 Cable irradiation test Origin BE-EA SCEM Code N/A Drum Number CERN N/A Drum Number Supplier 50671 Production Date 2020/W0 Color Black Diameter [mm] 28 Length [m]

Equipment Identifier: HCPPCAC001-N4000100 Other Identifier: 00-NE8-N-drum Description: NE8 Cable

	eneric Data				
Step		10	Other name		
	ription	Traceability			
State		Done	Result	Ok	
	pleted on	2021-02-23			
Provided by Responsible			Open in EAM Light	29432331 ADANYLIU	
			Executed by		
-	ocuments				
ep D	ocuments	🗹 🔯 🗄 🔗)	R	≡ ∟ ^	
ep D	ocuments	🗹 🔌 🖿 🔗 ל	Ś	E La ^	
ep D	ocuments		-		

Main Made of Equipment data Manufacturing Operation Documents History Map

Actions : Add extra step

Workflow Diagram

Vorkflo	w Ste	ps		Last Repeat		
Step 11	R/E	Other name	Description	Status	Result	NC
5		0	Traceability	Done	Ok	
10		0	Ageing: irradiation in tunnels (*)	Cancelled	Cancelled	
20		0	Artificial ageing: irradiation (*)	Cancelled	Cancelled	
30		0	Artificial ageing: thermal ageing (*)	Cancelled	Cancelled	
40		0	Specimen preparation	Done	Ok	
50		0	Tensile test (TT) (*)	Done	Ok	
60		0	Oxidation induction time (OIT) test (*)	Cancelled	Cancelled	

1st irradiation experience summary

Irradiation facility (R2M framework contract)

- ✓ Shipping going and back should be improved (samples stacked, packing inadequate, time delays, weathering)
- ✓ Packing from CERN to be improved in terms of dimensions
- ✓ Difficulties to obtain clear information from facility (subcontractor)
- ✓ Samples irradiation monitoring to be improved

Dosimetry

- $\checkmark\,$ Mismatching between dosimeters measurements and facility dose calculation
- $\checkmark\,$ Bundles arrangement to be optimised to reduce shielding effect during irradiation
- $\checkmark\,$ Expected shielding effect on bundles mismatching with dosimeters measurements

Testing

- ✓ Extremely difficult to prepare tubes for small cable insulations
- ✓ Slipping prepared insulation tubes in TT machine grips
- ✓ Number of Tensile test should be 10 valid ones per component to obtain reasonable standard deviation in results (<10%)
- $\checkmark\,$ DSC tests on cable insulation were not performed due to machine breakdown

Qualification exercise

- ✓ 2 manufacturers will pass qualification (facility dose measurement)
- $\checkmark\,$ Qualification process allowed detect defective cable batch
- ✓ Applicable CPR class Cca fire requirement might disqualify cables in terms of radiation (Polycab manufacturer)

Radiation ageing experience #2

- > 2nd irradiation campaign objectives (bundles received in May 2022)
 - Type of cables & manufacturers
 - ✓ NE8 & NE48 types from same batch than 1st campaign
 - ✓ NF12, SVA3 & TFA3 type included as samples irradiated naturally in TS1+ & TDC2 tunnels
 - Dose rate lower ~1kGy/h
 - ✓ Same dose steps 0.1 0.2 0.5 1 2 MGy
 - ✓ Confirm cable degradation around 500kGy is independently of dose rate
 - Ageing methods
 - ✓ Same as 1st campaign
 - Dosimetry
 - ✓ 2 extra RPL dosimeters per bundle + 2 RPLs for facility measurement
 - Pilot campaign #2
 - ✓ Dose rate effect
 - $\checkmark\,$ Fix parameters to be retained for HL-LHC qualification
 - ✓ Confirm shielding effect and dosimetry
 - ✓ Correlate all results with 1st campaign ones

2nd Irradiation experience situation

Irradiation facility (R2M framework contract)

- Packing was improved delays shorter
- ✓ Detailed information about radiation but partially clear information from facility (subcontractor)
- ✓ Maintenance stop cut irradiation during around 10 days

Dosimetry

- ✓ Confirmed mismatching between dosimeters measurements and facility dose calculation
- ✓ R2E is looking for an appropriate solution for future

Testing

- ✓ Tensile tests for cable sheath performed
- ✓ Insulation cable specimen tubes are prepared awaiting new upgrade of Tensile Test machine
- ✓ DSC machine repaired tests for 1st and 2nd on cable insulation are ongoing at this time

Reporting

- ✓ Analysing tests results from cable sheath on 2nd campaign
- ✓ Correlation with 1st campaign ongoing
- ✓ Drafting report

CARE Roadmap

Complete 2nd campaign

- ✓ DSC & TTs on cable insulation by January 23
- ✓ Correlation between both campaign by February 23
- ✓ Technical report by March 23

Prepare 3rd campaign

- ✓ More Cables & compounds sent to facility by December 22
- ✓ Ageing & Testing by May 23
- ✓ Analyses & report by July 23

> HL-LHC cable procurement

- ✓ Market Survey by October 22
- ✓ Qualification process from manufacturers starting June 23
- ✓ Irradiation ageing by November 23
- ✓ Testing & qualification process by January 24
- ✓ Technical specification by June 24

Summary

- Radiation tolerant cables aim reduce cable replacement campaigns
- Qualification process will identify best cable manufacturers
- Work started on preparing qualification for HL-LHC
 - Development of qualification procedures
 - ✓ Defining acceptance criteria
 - Getting experience with pilots campaigns on existing cables at CERN
- Short term objectives
 - Supporting HL-LHC cable procurement
 - ✓ Technical exchange with cable manufacturers
 - Research on testing and ageing methods
 - More accurate thresholds based on tests results and correlations

Thank you for your attention!

Cable Irradiation Activity - J. Gascon – 12th HL-LHC Collaboration meeting - 21st September