

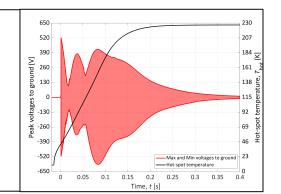
Update on the Inner Triplet quench simulations and current in the circuit branches

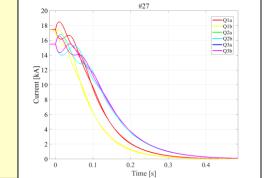
E. Ravaioli (CERN) STEAM

Thanks to:

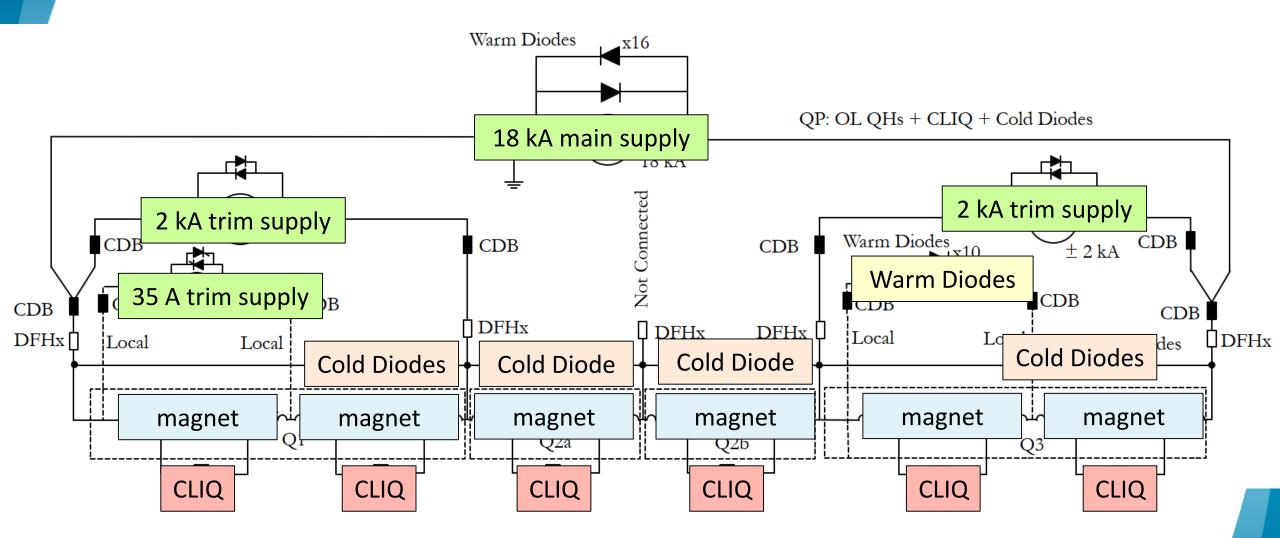
S. Izquierdo Bermudez, L. De Mallac, F. Mangiarotti, M. Mentink, F. Rodriguez Mateos, A. Verweij, D. Wollmann, S. Yammine (CERN) and many other colleagues for their inputs

21 September 2022


Update on the Inner Triplet quench simulations and current in the circuit branches

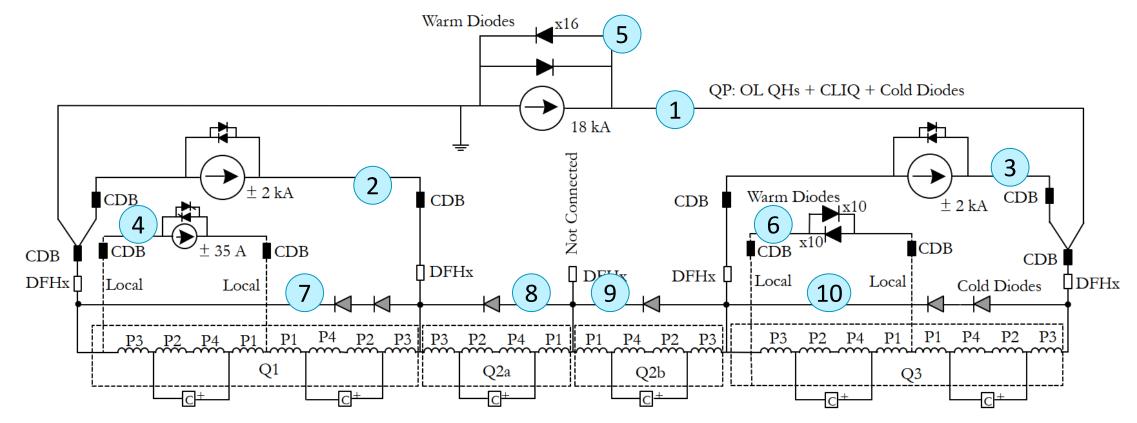

Circuit analysis

- Calculate worst-case peak currents and thermal loads in all circuit branches
- Update figures following last circuit fine tuning


Magnet quench protection analysis

- Demonstrate protection strategy
- Calculate worst-case hot-spot temperature and peak voltage to ground
- The quench protection of the HL-LHC Inner Triplet circuit is adequate in all foreseen operation scenarios, and resilient to all plausible failure scenarios and conductor variations.

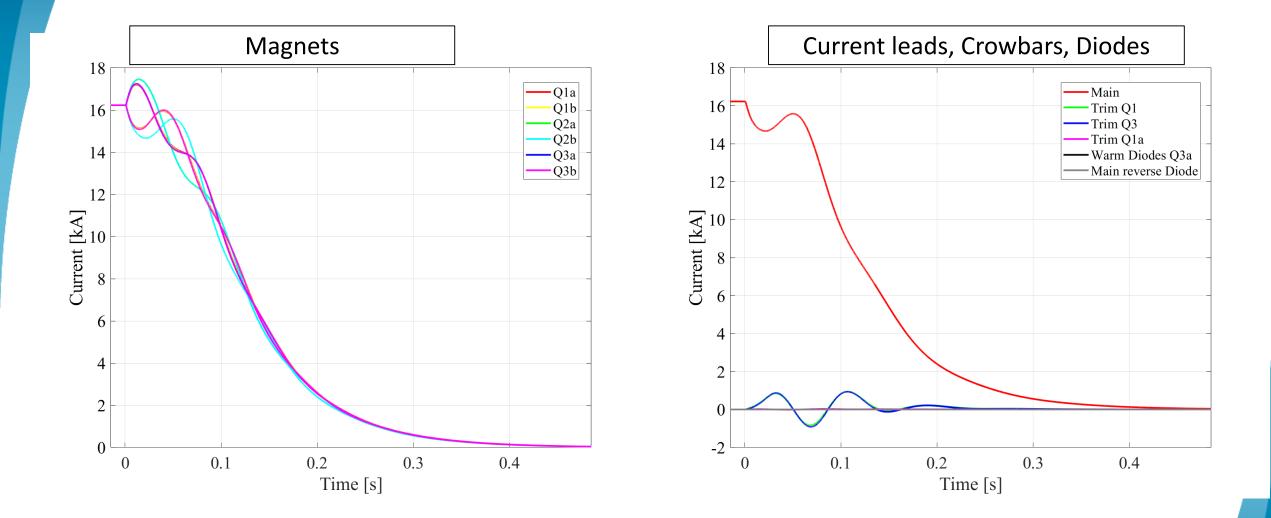
HL-LHC Inner Triplet Circuit



Note: This schematic includes the proposed changes to the crowbars, see MCF meetings #84, 91, 107

Schematic courtesy of S. Yammine

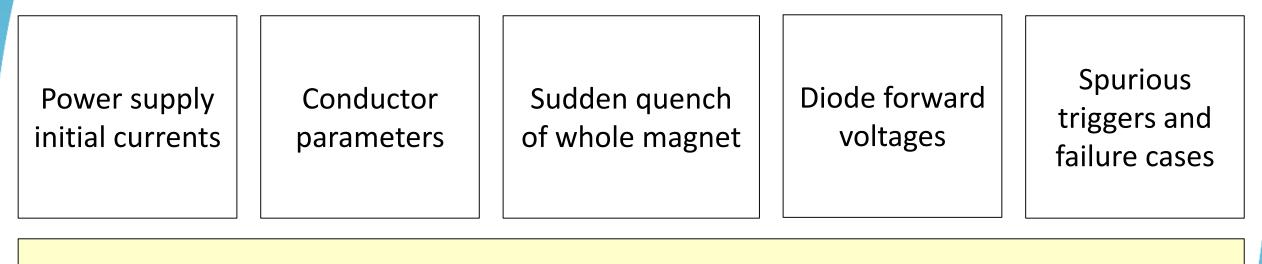
Circuit branches considered in the analysis


Identify **conservative worst-cases** for these components based on circuit operating cases, failure cases, magnet conductor parameters. For each case, calculate **peak current** and **thermal load**.

- 1. Main power supply crowbar and leads
- 2. Q1 trim power supply crowbar and leads
- 3. Q3 trim power supply crowbar and leads
- 4. Q1a trim power supply crowbar and leads
- 5. Main power supply reverse Diodes

- 6. Q3a Warm Diodes
- 7. Q1 Cold Diodes
- 8. Q2a Cold Diodes
- 9. Q2b Cold Diodes
- 10. Q3 Cold Diodes

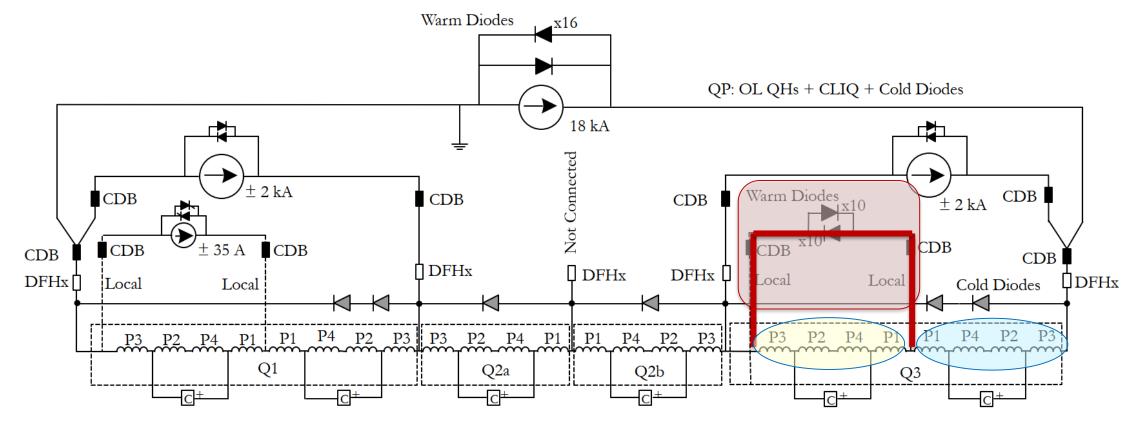
Reference circuit discharge after a quench



CERN

L-LHC PROJEC

STEAM simulations


Factor considered while identifying the worst-cases

Very conservative worst-cases

Example: Identify worst-case for Q3a Warm Diode

- I_main=15.5 kA, I_trimQ1=0, I_trimQ3=2 kA, I_trimQ1a=-35 A
- All fours Q3a coils suddenly quench [by choice this is unrealistically conservative]
- Q3a coils have f_Cu/noCu=1.1 and RRR=100. All other coils have f_Cu/noCu=1.3 and RRR=300



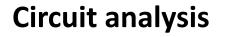
Schematic courtesy of S. Yammine

Example: Identify worst-case for Q3a Warm Diode

CERN

-IHC PROJEC

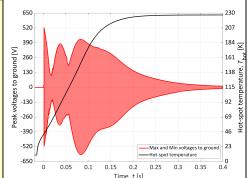
STEAM simulations


Max identified peak currents and thermal loads (magnets excluded)

Component	Peak current	Characteristic time	
Main power supply crowbar and leads	17.5 kA	~120 ms	
Q1/Q3 trim power supply leads	<5.0 kA	~120 ms	
Cold Diodes	<5.2 kA	~120 ms	
Q1a trim power supply crowbar and leads	<3.7 kA	~100 ms	
Q3a Warm Diodes	<3.6 kA	~100 ms	
Main power supply reverse Diodes	<1.0 kA	~ 15 ms	

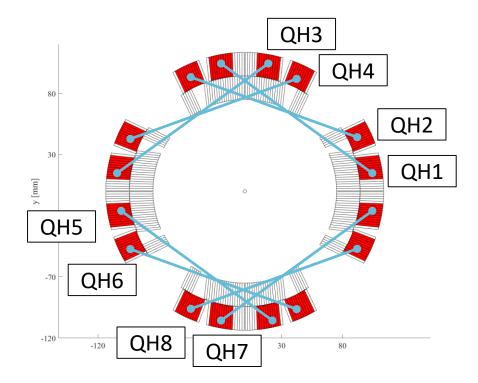
- Values obtained at ultimate current under very conservative assumptions
- Circuit components dimensioned for these requirements without headaches
- The proposed change of crowbar configuration did not increase significantly these figures

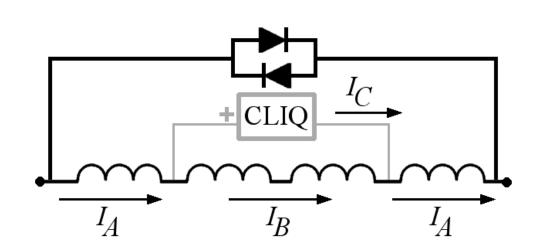
Update on the Inner Triplet quench simulations and current in the circuit branches



- Calculate worst-case peak currents and thermal loads in all circuit branches
- Update figures following last circuit fine tuning

- Demonstrate protection strategy
- Calculate worst-case hot-spot temperature and peak voltage to ground
- The quench protection of the HL-LHC Inner Triplet circuit is adequate in all foreseen operation scenarios, and resilient to all plausible failure scenarios and conductor variations.





#27

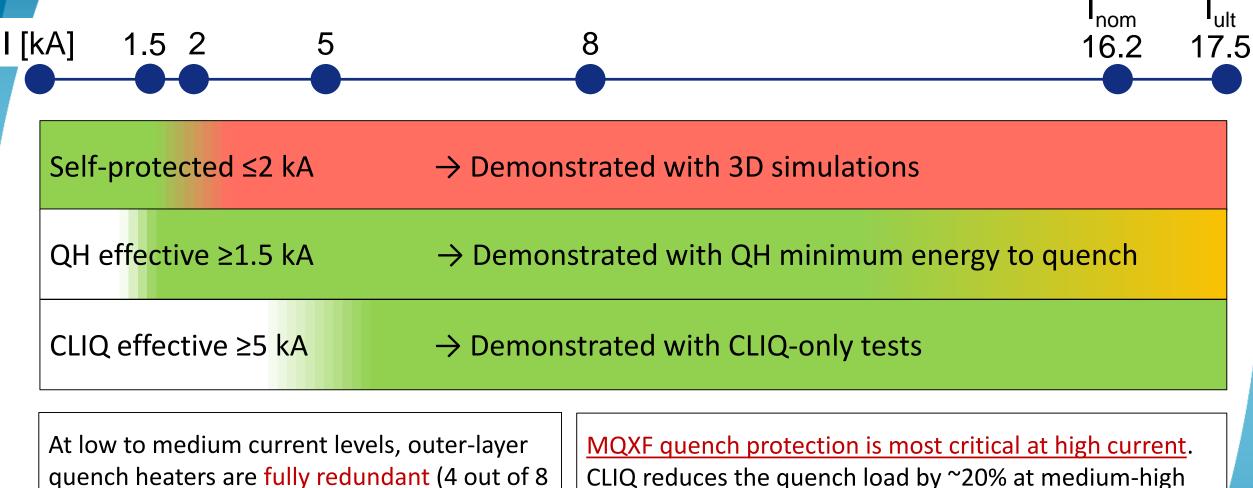
Ħ 10

MQXF magnet quench protection system

QUENCH HEATERS						
(QH)						

8x 7.05 mF QH units charged to 940 V

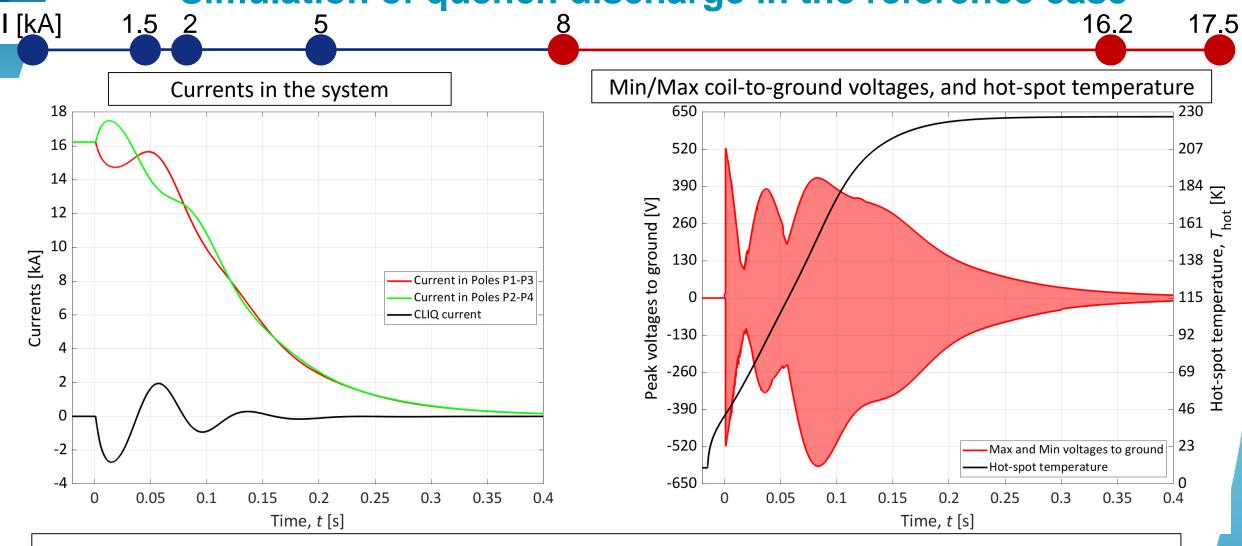
CLIQ


(COUPLING-LOSS INDUCED QUENCH)

1x 40 mF **CLIQ** unit charged to 600 V or to 1000 V for 4.2 m or 7.15 m long MQXF

Update on the Inner Triplet quench simulations and current in the circuit branches – E. Ravaioli – 21 September 2022

MQXF quench protection strategy

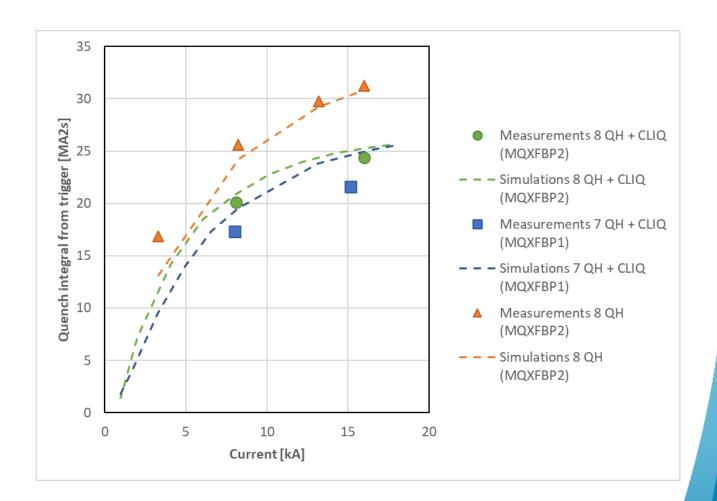

QH circuits are sufficient)

 \rightarrow Demonstrated with dedicated tests at CERN

MQXF quench protection is most critical at high current.
CLIQ reduces the quench load by ~20% at medium-high current (hot-spot temperature reduced by ~100 K)
→ Demonstrated with dedicated tests at CERN, BNL, FNAL

Simulation of quench discharge in the reference case

Reference case:8 QH units + 1 CLIQ unit per magnet. No failures. Uniform conductor parameters \rightarrow Hot-spot temperature~230 K \rightarrow Peak voltage to ground~600 V


CERN

STEAM simulations

MQXFB protection

Measured quench integral in good agreement with computations.

- For nominal protection configuration (QH+CLIQ), QI from triggering ≈ 25 MA²s, with a hot-spot temperature ≈ 250 K
- In MQXFBP2, during the trim current test, the magnet was protected only with quench heaters, reaching a hot-spot temperature of ~330 K without impact on magnet performance
 - \rightarrow validate design choice of allowable T_{hot}

Measurements: F. Mangiarotti. Simulations: E. Ravaioli. Analysis: S. Izquierdo Bermudez

Update on the Inner Triplet quench simulations and current in the circuit branches – E. Ravaioli – 21 September 2022

Worst-case analysis

Reference case

- 8 QH units + 1 CLIQ unit per magnet
- Uniform conductor parameters

→ Hot-spot temperature ~230 K

→ Peak voltage to ground ~600 V

Worst case

- Two simultaneous units failing
- Non-uniform conductor parameters
- BUT electrical order of the four coils optimized

→ Worst-case temperature of 370-400 K considered acceptable for a one-in-a-lifetime event as a double failure

→ Worst-case voltage to ground at nominal current remains below electrical design criteria (<670 V)

STEAM simulations

Conclusion

The quench protection of the HL-LHC Inner Triplet circuit has been **successfully demonstrated**

in all foreseen operation scenarios, and for various failure scenarios and conductor variations.

- 0-2 kA: Magnet is self-protected. Demonstrated with conservative 3D quench simulations.
- **1.5-8 kA**: Quench heaters only are fully redundant. Demonstrated with dedicated measurements.
- 5-17.5 kA: CLIQ + Quench heaters are fully redundant. Demonstrated with dedicated measurements.
- → Results from MQXFB test campaigns are in line with simulations

Circuit analysis:

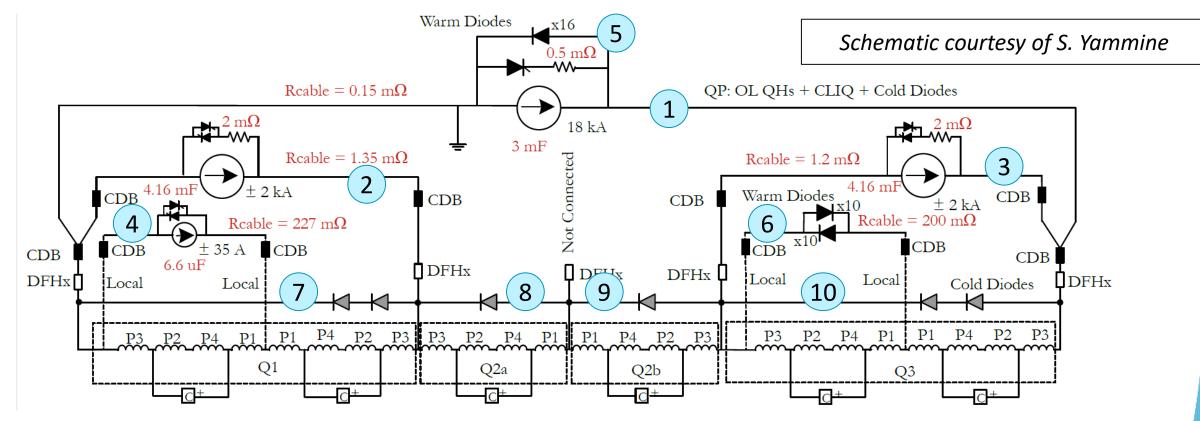
→ Peak currents and quench loads in all circuit components calculated and judged not critical

Magnet quench protection analysis:

Reference case: 8 QH units + CLIQ unit per magnet, and uniform conductor parameters
→ Hot-spot temperature ~230 K
→ Peak voltage to ground ~600 V

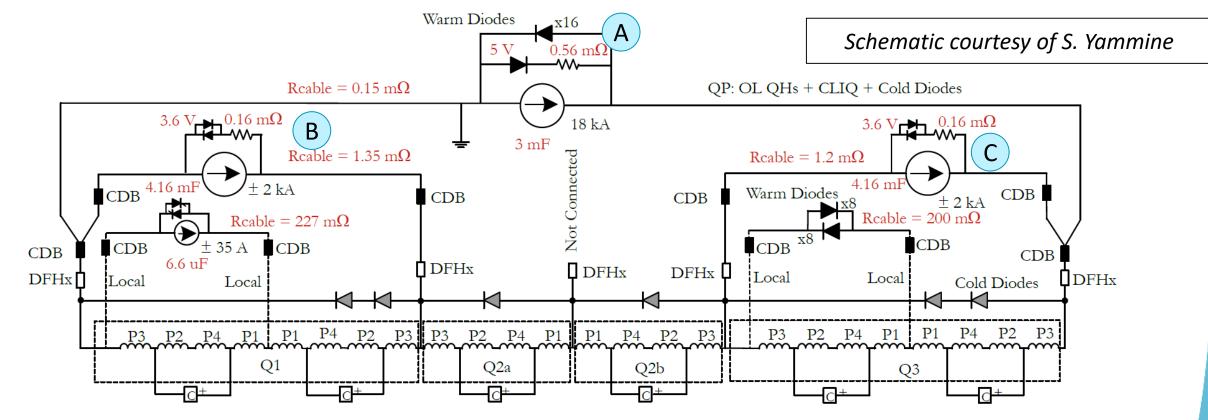
Worst-case: Two failing units and non-uniform conductor parameters

- → Worst-case temperature of 370-400 K considered acceptable for a one-in-a-lifetime event as a double failure
- → Worst-case voltage to ground at nominal current remains below electrical design criteria (<670 V)



Annex

HL-LHC Inner Triplet Circuit – Current baseline

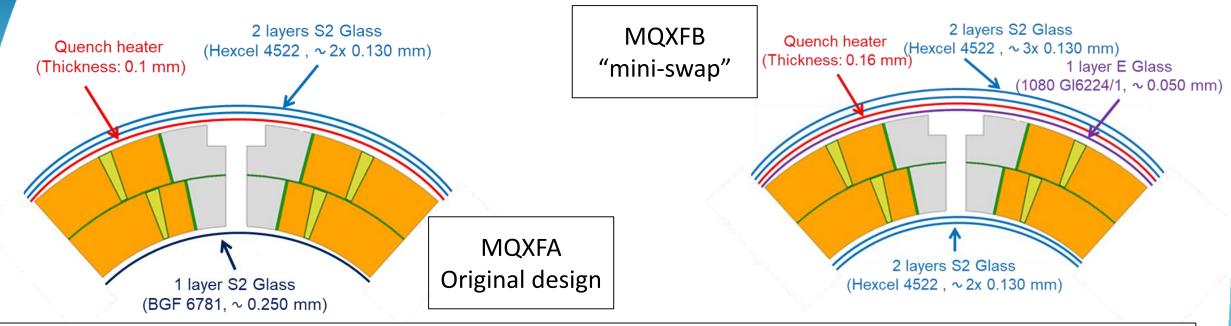

Identify conservative worst-cases for these components based on circuit operating cases, failure cases, magnet conductor parameters. For each case, calculate **peak current** and **thermal load**.

- 1. Main power supply crowbar and leads
- 2. Q1 trim power supply crowbar and leads
- 3. Q3 trim power supply crowbar and leads
- 4. Q1a trim power supply crowbar and leads
- 5. Main power supply reverse Diodes

- 6. Q3a Warm Diodes
- 7. Q1 Cold Diodes
- 8. Q2a Cold Diodes
- 9. Q2b Cold Diodes
- 10. Q3 Cold Diodes

HL-LHC Inner Triplet Circuit – Fine tuning

The alternative configuration includes these main changes:

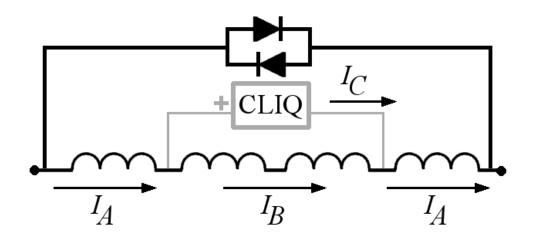

- A. Crowbar of RQX main power converter has Diodes (rather than thyristors)
- B. Crowbar of RQTX1 trim power converter has Diodes (rather than thyristors)
- C. Crowbar of RQTX3 trim power converter has Diodes (rather than thyristors)

https://indico.cern.ch/event/1039101/ https://indico.cern.ch/event/1083268/ https://indico.cern.ch/event/1191497/

Note: Crowbar of RQTXA1 trim power converter is unchanged with respect to the baseline (i.e. it has thyristors)

Quench protection heaters (QH)

- MQXFB magnets: Added a 0.055 mm layer of E Glass between quench heater and coil ("mini-swap")
 - ✓ Better insulation between heater and coil
 - ✓ Limited impact on quench protection
- MQXFA magnets stay with the previous QH design


8x 7.05 mF QH units charged to 940 V

David Carrillo, Edward Nowak <u>https://indico.cern.ch/event/1079026/contributions/4546310/</u>

✓ Spread on QH power supplies parameters decreased: magnet is protected including tolerances

CLIQ (Coupling-Loss Induced Quench)

1x 40 mF **CLIQ** unit charged to 600 V or to 1000 V for 4.2 m or 7.15 m long MQXF

- CLIQ lead parameters confirmed for Q1/Q2/Q3
 - ✓ CLIQ lead lengths: 350-420 m (2-ways)
 - ✓ CLIQ total circuit resistance: 26-38 m Ω
 - ✓ CLIQ lead self-inductance: 0.35-0.42 mH
- These parameters do not pose any performance problem

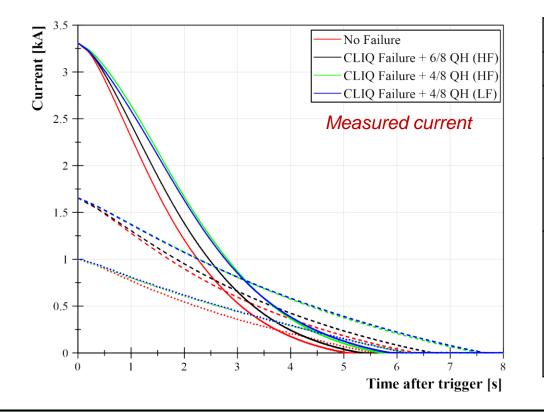
https://indico.cern.ch/event/1079026/contributions/4546310/ David Carrillo, Edward Nowak, Samer Yammine

Update on the Inner Triplet quench simulations and current in the circuit branches – E. Ravaioli – 21 September 2022

[1.5-8 kA] Low-medium current: QHs are fully redundant

200 - 8008 QH + CLIQ 8008 QH - 4008 QH Hot-spot temperature, ${ extsf{T}_{\mathsf{hot}}}$ [K] 150 → At low-medium current, QH system is fully redundant 100 \rightarrow Simulations show that half of the QHs are sufficient to maintain the peak temperature <170 K at 8 kA 50 0 8 2 7 1 3 5 6 9 Initial current, I₀ [kA]

I [kA]


1.5 2

CERN

STEAM-LEDET simulations

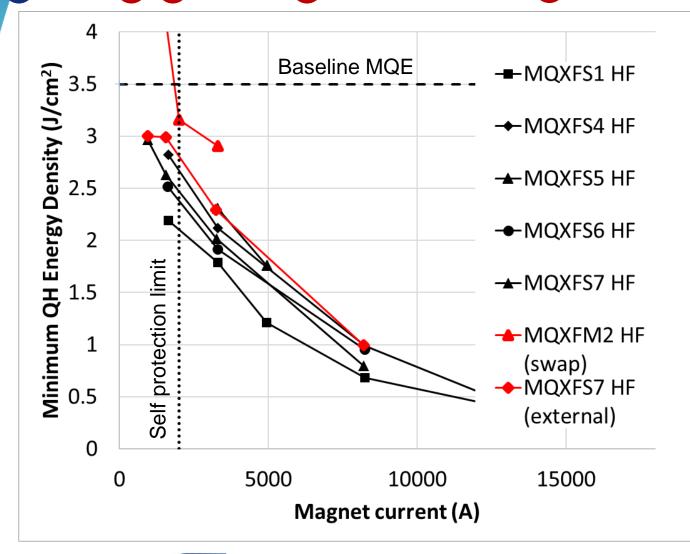
17.5

Redundancy of the quench protection at low current

5

Measured quench integral (MA ² s) from protection triggering								
Case CLIQ Low-field QH High-field QH								
Yes	4004	2004	1	1.54				
			1.65	4.26				
			3.3	12.36				
No	4004		1	0.24				
		2004	1.65	4.58				
			3.3	13.67				
No	0004	2004	1	1.82				
			1.65	5.54				
		[1 strip unavailable]	3.3	15.50				
No	4004		1	1.78				
		0004	1.65	5.53				
			3.3	15.98				
	CLIQ Yes No	CLIQ Low-field QH Yes 4004 No 4004 No 0004	CLIQLow-field QHHigh-field QHYes40043004 [1 strip unavailable]No40042004No00043004 [1 strip unavailable]	CLIQ Low-field QH High-field QH I, kA Yes 4004 3004 [1 strip unavailable] 1 Yes 4004 1.65 3.3 No 4004 2004 1.65 No 4004 2004 1.65 No 4004 1.65 3.3 No 4004 1.65 3.3 No 0004 3004 [1 strip unavailable] 1 No 4004 0004 1.65 No 4004 0004 1.65				

→ Excellent redundancy demonstrated at low current on MQXFS4 short model
 → 4 out of 8 QH circuits (4008) assure quench protection at low current.


I [kA]

1.5 2

Franco Mangiarotti, Michal Duda, Salvador Ferradas

16.2

Minimum quench-heater energy density to quench

 → Minimum quench-heater energy density (MQE) to start a quench was systematically measured on model magnets
 → QH configurations featuring additional

16.2

17.5

QH configurations featuring additional
 0.1 mm S2 glass ("swap"/"external")
 tested on a mirror coil and a model coil
 QH design provides sufficient energy
 density to protect the magnet

I [kA]

1.5 2

Franco Mangiarotti, Michal Duda, Stoyan Stoynev, Maria Baldini

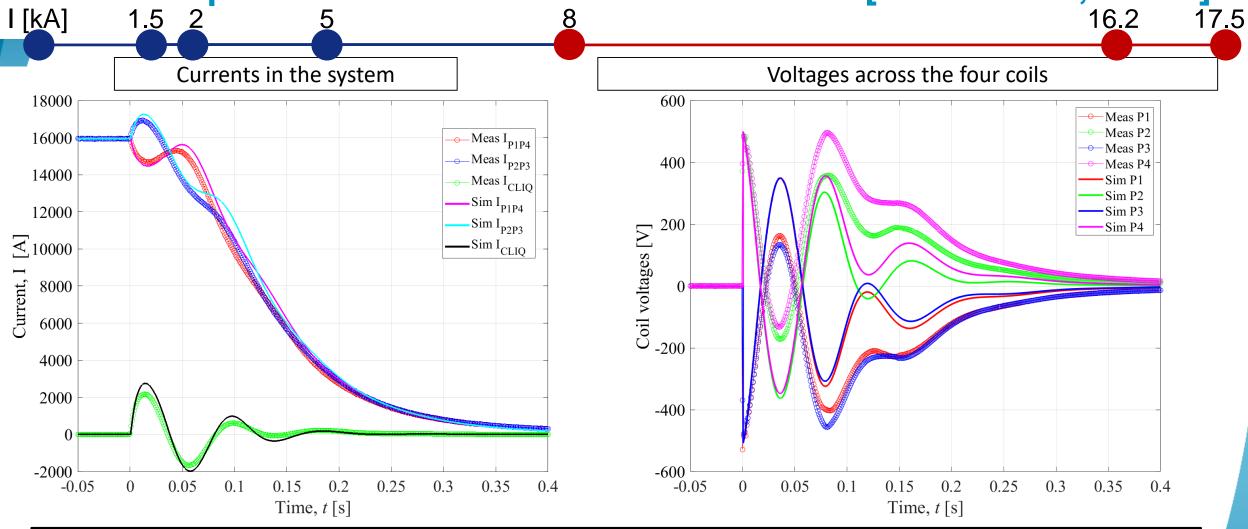
MQXFB prototype quench protection tests at low current

MQXFBP1 and BP2, at 1.9 and 4.5 K 18 16 QI from trigger [MA2s] 14 12 10 8 6 4 2 0 5 0 1 2 3 6 Δ Current [kA] • QH Yes; CLIQ Yes ▲ QH Trig 2; CLIQ Yes ■ QH Delay; CLIQ Yes △ QH Trig 2; CLIQ No O QH Yes; CLIQ No

I [kA]

1.5 2

CERN

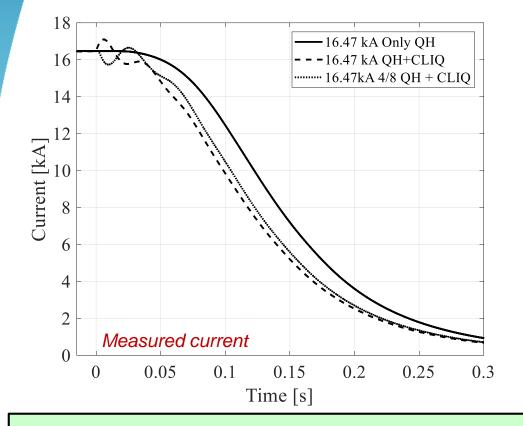

→ Based on the experience with two MQXFB prototypes, the magnet is well protected at low current.

Manual trigger without quench

2 QH circuit powered to start quench, rest triggered upon detection Manual trigger without quench, QH delayed 500 ms

17.5

Example of validation of simulation model [MQXFBP02, 16 kA]



→ Typical expected error, before applying any fitting parameters:<10% error on the quench load and <20% error on the coil voltages</p>

Measurements: Franco Mangiarotti STEAM-LEDET simulations

[8-17.5 kA] Redundancy of the quench protection at high current

Measured quench integral (MA ² s) from protection triggering							
Case	Case CLIQ Low-field QH High-field QH						
No failure	Yes	4004	16.47	24.8			
4 OH failuras	Voc	4004	0004	13.2	27.8		
4 QH failures	Yes	4004	0004	16.47	26.2		
			3004	13.2	28.9		
CLIQ failure	No 4004	[1 strip unavailable]	16.47	30.9			
Note: In the first test, CLIQ unit U=200 V, C=40 mF. In the other four tests: CLIQ							
unit U=200 V, C=50 mF.							

→ Redundancy demonstrated at 80%-100% of nominal current on MQXFS4 short model

Tests more conservative than realistic worst-case, i.e. two simultaneous failures (no CLIQ and 7008 QH)

→ If CLIQ doesn't fail, failure of 4 QH circuits increases quench load by ~1.5 MIIt (~20 K), consistent with model

I [kA]

1.5 2

Franco Mangiarotti, Jose Ferradas Troitino

16.2

Simulated hot-spot temperature – Reference and worst-case

Reference case: No failures. All coils have reference conductor parameters (RRR, Cu fraction). **Worst-case**: Worst combination of two failure cases. Coils have largest expected spread of conductor parameters [see Annex]. Optimum electrical order of four coils within each magnet selected.

Het cost temperature [K]		nce case	Worst case	
Hot-spot temperature [K]	I _{nom}	l _{ult}	l _{nom}	l _{ult}
Impregnated heaters [previous baseline]	227	250	346	374
Mini-swap heaters (0.055 mm G10 layer)	231	253	375	404

→ New QH design increases the hot-spot T only by <5 K in the reference case, and <30 K in the worst-case
 → Temperature of 370-400 K considered acceptable for a one-in-a-lifetime event such as a double failure

I[kA]

1.5 2

5

STEAM-LEDET simulations

16.2

Simulated peak voltage to ground – Reference and worst-case

Reference case: No failures. All coils have reference conductor parameters (RRR, Cu fraction). **Worst-case**: Worst combination of two failure cases. Coils have largest expected spread of conductor parameters [see Annex]. Optimum electrical order of four coils within each magnet selected.

Deak voltage to ground [\/]		nce case	Worst case	
Peak voltage to ground [V]	I _{nom}	l _{ult}	l _{nom}	l _{ult}
Impregnated heaters [previous baseline]	589	751	639	818
Mini-swap heaters (0.055 mm G10 layer)	+2%	+3%	+2%	+3%

→ Confirmed that the expected worst-case at nominal current is within electrical design criteria (<670 V)
 → The new QH design increases the peak voltage to ground only by 2-3%
 → In first approximation, MQXFA voltages are scaled with the magnetic length, i.e. they are ~40% lower

I[kA]

1.5 2

16.2

List of simulated cases

Assumptions	# I_		Q1 [kA] I_Q	3 [kA] I_Q1	a [A] fCu [-]	RRR [-]	Quench	Cold Diode OV [V] Failure
•	1	16.23	0	0	0 ref	ref	no	6 no
to identify the	2	17.5	0	0	0 ref	ref	no	6 no
worst-cases	3	17.5	0	0	0 <mark>个all</mark>	个all	no	6 <mark>no CLIQ-Q2a +QH-Q2a</mark>
	4	0.05	0	0	0 ref	Ref	no	6 No
D	5	16.23	0	0	0 ref	Ref	no	6 Spurious CLIQ-Q1a
Power supply	6	16.23	0	0	0 ref	Ref	no	6 Spurious CLIQ-Q1b
initial currents	7	16.23	0	0	0 ref	Ref	no	6 Spurious CLIQ-Q2a
	8	16.23	0	0	0 ref	Ref	no	6 Spurious CLIQ-Q2b
Conductor	9	16.23	0	0	0 ref	Ref	no	6 Spurious CLIQ-Q3a
	10	16.23	0	0	0 ref	Ref	no	6 Spurious CLIQ-Q3b
parameters	11	15.5	2	0	0 <mark>↓Q1a, ↑</mark>	others ↓Q1a, 个c	others full Q1a	6 No
	12	15.5	2	0	-35 <mark>↓Q1b, ↑</mark>	others ↓ Q1b, 个c	others full Q1b	6 No
Complete	13	17.5	-2	-2	-35 <mark>↓Q</mark> 2a, ↑	others ↓Q2a, 个c	others full Q2a	6 No
magnet	14	17.5	-2	-2	-35 <mark>↓Q2b, ↑</mark>	others	others full Q2b	6 no
•	15	15.5	0	2	-35 <mark>↓Q3a, ↑</mark>	others ↓Q3a, 个c	others full Q3a	6 no
quenches	16	15.5	0	2	-35 <mark>↓Q3b, ↑</mark>	others	others full Q3b	6 no
	17	16.23	-2	0	-35 ↓ Q1a, 个	others ↓Q1a, 个c	others no	6 no CLIQ-Q1a +QH-Q1a
Diode forward	18	16.23	-2	0	35 <mark>↓Q1b, ↑</mark>	others ↓ Q1b, 个c	<mark>others</mark> no	6 no CLIQ-Q1b +QH-Q1b
voltage	19	14.23	2	2	0 <mark>↓Q2a, ↑</mark>	others ↓Q2a, 个c	others no	6 no CLIQ-Q2a +QH-Q2a
Voltage	20	14.23	2	2	0 <mark>↓Q2b, ↑</mark>	others	<mark>others</mark> no	6 no CLIQ-Q2b +QH-Q2b
	21	16.23	0	-2	0 <mark>↓Q3a, ↑</mark>	others ↓Q3a, 个c	others no	6 no CLIQ-Q3a +QH-Q3a
Epiluro cocos	22	16.23	0	-2	0 <mark>↓Q3b, ↑</mark>	others	<mark>others</mark> no	6 no CLIQ-Q3b +QH-Q3b
Failure cases	23	17.5	0	0	0 ref	ref	no	6 short in Q1 crowbar
	24	15.5	2	0	-35 <mark>↓Q1b, ↑</mark>	others	others full Q1b	6 short in Q1 crowbar
	25	16.23	-2	0		others 		1 no CLIQ-Q1b +QH-Q1b
	26	16.23	0	-2		others		1 no CLIQ-Q3b +QH-Q3b
Hilumi	27	15.5	2	0	-35 ↓Q1b, 个	others ↓ Q1b, 个c	others full Q1b	1 no
HL-LHC PROJECT	28	15.5	0	2	-35 ↓ Q3b, ↑	others	others full Q3b	1 no ⁰