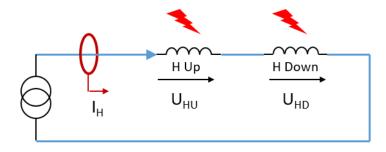


Symmetrical quench detection and QDS threshold management for HL-LHC

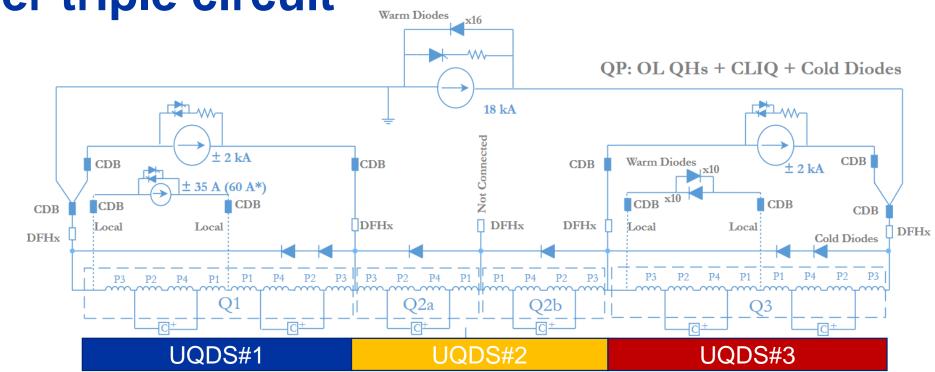
Jens Steckert, Jelena Spasic, Reiner Denz & colleagues – TE-MPE-EP Thanks to Samer Yammine (TE-MPE)



- Symmetric quench detection for HL-LHC magnet circuits
 - Inner Triplet
 - D1
 - D2
 - IT correctors
 - D2 correctors
 - Summary
- Configuration management for HL-LHC QDS
 - Digital quench detectors
 - Proposed solution
 - Summary

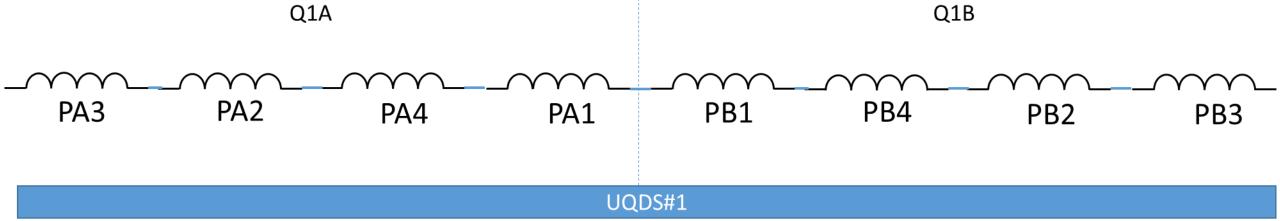
Symmetric quenches in a nutshell: definition

- From quench detection point of view a quench is considered symmetric if multiple observed parts of the magnet quench in a simultaneous way
- Bridge type quench detectors or simple comparison will not detect in a reliable way
- Symmetric quench detection algorithms can be deployed in addition* to standard QD, allowing different thresholds

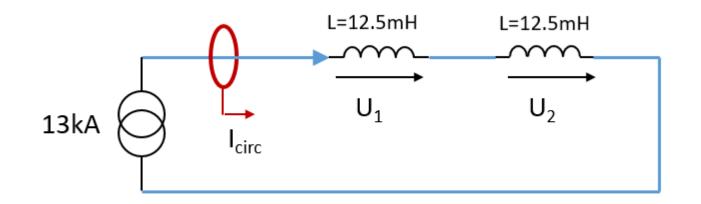


 $U_{quench} = U_{HU} - U_{HD} \rightarrow$ insensitive to quench voltage if present on both coils

* Except for MCBRD


Inner triple circuit

- Each UQDS observes all magnet poles with identical current (except Q1)
- Comparison among poles detect asymmetric and symmetric quenches (Simultaneous quench of 8 consecutive poles considered extremely unlikely)


Inner triplet circuit symmetric quench detection algorithm example Q1

- Within one magnet, compare poles of the two magnet halves which each other: PA3 - PB3, PA2 - PB2, PA4 - PB4, PA1 - PB1
- Due to trim in Q1A, inductive voltage per pole can differ up to +/-28.64mV per pole between Q1A and Q1B (Based on max di/dt of 3.32A/s and 8.625mH pole inductivity)
- This would be still compatible with a threshold of 100mV.
- Additional comparison within Q1A and Q1B could run with a lower threshold

D1 circuit

di/dt max: 12 A/s Uind_{max}: 150 mV

- Only two pole voltages accessible,
- Two solutions for symmetric quench detection
 - Absolute voltage detection: if any pole voltage exceeds 200mV
 - L*di/dt algorithm

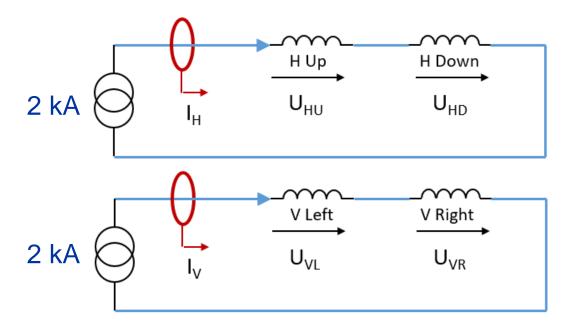
D1 symmetric quench detection

Absolute voltage threshold

- Pro
- Simple
- Robust
- Inexpensive current monitoring
- Con
- Threshold needs to be lifted during PC start up at low current < $I_{\rm min \ op}$
- Minimum threshold per pole ca 200mV

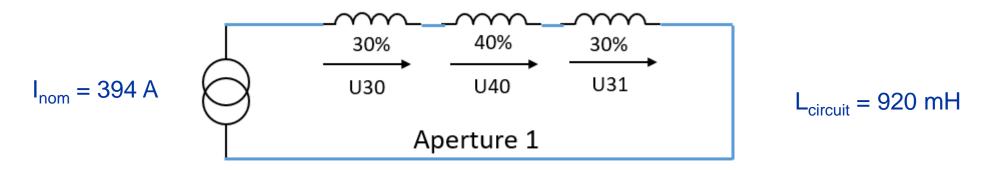
L * di/dt Algorithm

- Pro
- Lower thresholds achievable
- Con
- DCCT-based current measurement required to achieve thresholds < 200mV
- 13kA DCCT would be expensive 20...50k
- Algorithm very sensitive to smoothness of current


D2 symmetric quench detection

- For the unlikely case that both apertures quench a total voltage threshold per coil could be used
- Absolute coil threshold of ~ 120 mV could be realistic
- Current measurement to detect low current regime required
- For asymmetric quenches, std. coil comparison algo.

MCBXF(A/B)


di/dt_{max}: 15 A/s Lcircuit: 58mH .. 232 mH Uind_{max}: 870 .. 3480 mV

$$Ures = (U_{HU} + U_{HD}) - (L^* di/dt)$$

- Inductance is too large for an absolute voltage based algorithm
- L*di/dt based algorithm to detect symmetric quenches
- Current measurement by DCCT on 1/4 of current
- QD scheme tested in SM18

- Due to construction, magnet tends do quench symmetrically
- Asymmetric split of coil voltages (voltage taps at: 30% and 70% of inductance)
- Hybrid QD algorithm, detects symmetric and asymmetric quenches with single threshold
- Due to high inductance L*di/dt compensation algorithm difficult

MCBRD

	Quenching element voltage	Effective threshold	Effective threshold (T= 50mV)
$\xrightarrow{30\%} \xrightarrow{40\%} \xrightarrow{30\%}$	U30, U31	т	50 mV
U30 U40 U31	U40	T / 1.5	33 mV
Aperture 1	U30 & U31	T/2	25 mV
	U30 & U40	T * 2	100 mV
Ures = 3/2 * U40 – (U30 + U31)	U31 & U40	T * 2	100 mV
	U31 & U40 & U31	T * 2	100 mV

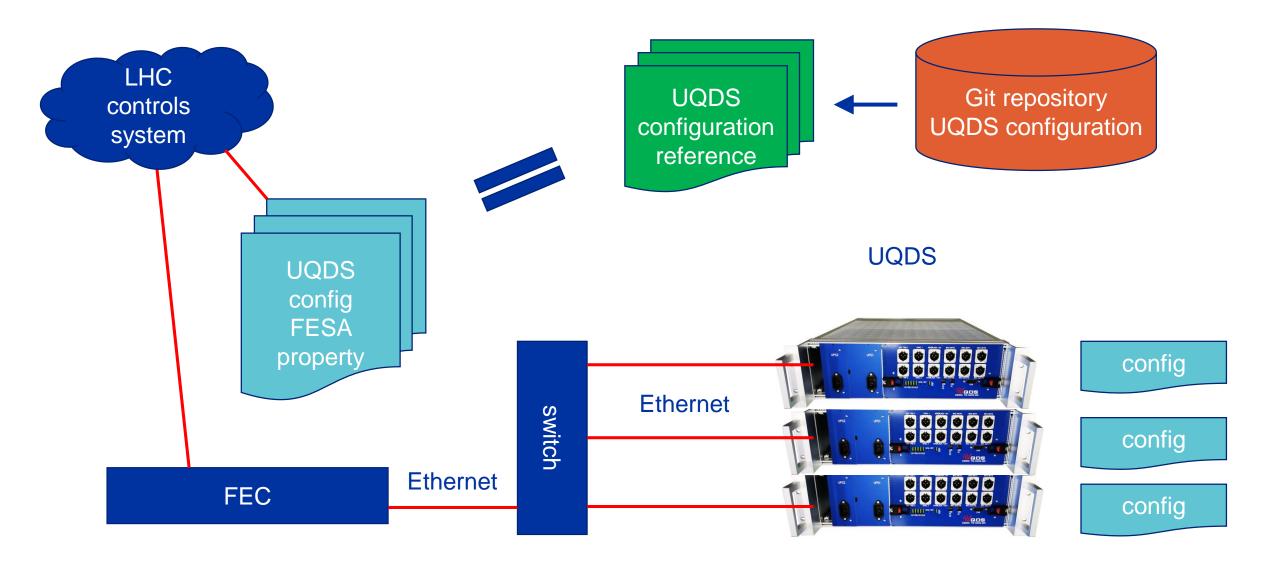
- Hybrid algorithm for asymmetric and symmetric quenches
- Comparison algorithm with scaling allows to detect symmetric quenches as resistive voltage doesn't scale the same way as inductive voltage
- Effective thresholds depend on number and location of quenching elements
- Scheme tested in SM18

Summary of symmetric quench detection methods

Circuit	Current	QD algorithm	comment
Q1, Q2, Q3	18 kA	Coil comparison across magnets	Only one magnet half quenches in a symmetric way at the same time
MCBXFA/B	2 kA	L*di/*dt inductive compensation	Algorithm always work, beware of discontinouites in current
MQSXF	120 A	L*di/dt inductive compensation	" "
D1	13 kA	Absolute voltage threshold	Simple and robust
D2	13 kA	Absolute voltage threshold	Simple and robust
MCBRD	2 kA	Coil comparison with scaling	Robust

- Symmetric quench detection algorithms defined for all HL-LHC magnets
- Design choice for D1 & D2 to be decided
- Most of the concepts already tested on the respective magnet prototypes on the test benches

QDS configuration management



Configuration management

- Digital quench detectors can be remotely configured (in limits)
- Remotely changeable thresholds and filters have been very useful in the past
- Configurable parameters require supervision to prevent errorneous settings
- HL-LHC QD controls system is designed with configuration management in mind
- Configuration management allows:
 - Continious supervision of critical parameters
 - Re-configuration of hardware after intervention
 - Controlled modification of parameters due to protected repository
 - Tracking of changes via Git history

Configuration management – Architecture

Configuration management – layered approach

- Checksum inside UQDS register file (column parity) ensures integrity on low level (wrong values open interlock)
- Periodic transmission of register file through controls system and exposure as FESA property
- Periodic comparison of FESA property with reference from repository
- FESA property can also be pushed down to UQDS crate in case of new configuration or hardware exchange
- Changes to configuration initiated on repository level only → full traceability and safety
- Configuration tables are stored as human-readable text files for full traceability

- Low level, checksum-based integrity check inside FPGA protects against bit-flips and corruption
- Full exposure of configuration allows to run permanent software based checkers which detect non-conformal configuration
- Storage of configuration in Git repository adds traceability and full control about configuration
- System to be tested peu-a-peu on test benches and then IT string

home.cern