

## Current Lead Heating System (CLHS) for HL-LHC circuits and Instrumentation Feedthrough System (IFS)

G. D'Angelo, with inputs from WP6a and WP7



12th HL-LHC Collaboration Meeting, Uppsala, 19-22 September 2022

### **Outline**

- Scope of Current Lead Heating System
- Introduction
- Overview of system
- Integration
- IFSs of WP6a on DFX and DFM
- Conclusions



### **Scope of CLHS**

- Each superconducting circuits of the HL-LHC Inner Triplets and Matching Sections will be equipped with HL-LHC HTS current leads (600A to 18kA circuits). In order to ensure their safe operation, a current lead heating system (CLHS) is required.
- The CLHS avoids water condensation, ice formation and guarantees that the temperature at the top of the current lead stays above the dew point during machine operation.
- Each Current Lead Heating System is composed of a Heater Control Unit, a Heater Power unit, Heater Cartridges and Temperature sensor (thermocouple).









Example of existing CLHS system in the LHC machine



### Introduction

- Functional specification has been prepared by J. Fleiter, EDMS 2770173, WP6a, based on the existing CLHS in the LHC machine.
- Main specs:
  - 19 leads for Inner Triplet circuits (DFHX) and 10 leads for Matching Section circuits (DFHM), total of 29 leads.
  - Heater cartridges powered 48 VAC (isolation transformer)
  - Specific power needed per current lead type:

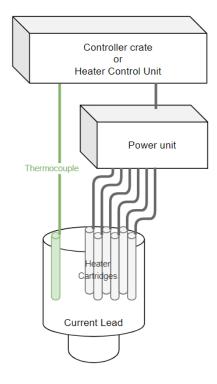
|                     | Type of<br>lead | Number of<br>leads per<br>system | Number of<br>cartridge heater<br>per lead | Maximum<br>Power per lead<br>[W] |
|---------------------|-----------------|----------------------------------|-------------------------------------------|----------------------------------|
|                     | 18 kA           | 4                                | 6                                         | 1800                             |
| Inner Triplet       | 7 kA            | 3                                | 2                                         | 250                              |
|                     | 2 kA            | 12                               | 2                                         | 250                              |
| Matching<br>Section | 18 kA           | 2                                | 6                                         | 1800                             |
|                     | 0.6 kA          | 8                                | 1                                         | 125                              |



Abstract

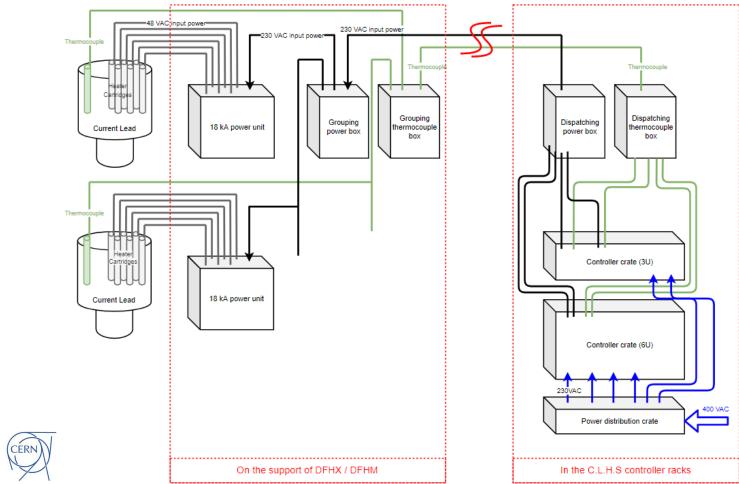
power cable




### FUNCTIONAL SPECIFICATION

This functional specification describes the requirements of the heating system for the HL-LHC current leads

| v                                      | Varm terminal   |                        |               |           |
|----------------------------------------|-----------------|------------------------|---------------|-----------|
| Room temperature<br>He gas recovery po |                 | Main heat<br>exchanger | 50 K Terminal | HTS cable |
| Connection to                          | Cartridge Heate | 215                    | Vacuum vessel |           |


### **Components of each heating system**

- The heating system of each current lead is made of:
  - Heater Control Unit
    - Temperature regulation
    - Power electronic (SSR)
  - Heater Power Unit
    - Isolating transformer (3 kV) (230/48 VAC)
    - circuit breaker on secondary
  - Cartridge Heaters:
    - From 1 to 6 cartridges per lead, 48 VAC, 125 W to 300 W
  - Temperature Sensor
    - Thermocouple J-type installed on the warm terminal of each lead





### **General overview of the C.L.H.S.**



6

### Integration in the HL-LHC machine

The integration of the components of the CLHS in HL-LHC gallery is as follow:

- Power units and grouping box are installed close to current leads, on top of the DFHX / DFHM in individual box.
- Heater cartridges and thermocouple are mounted on the current leads, equipped with their cable running on cable trays installed on top of the DFHX / DFHM.
- Heater control units installed at about 15 m from the current leads in dedicated racks, in UR.

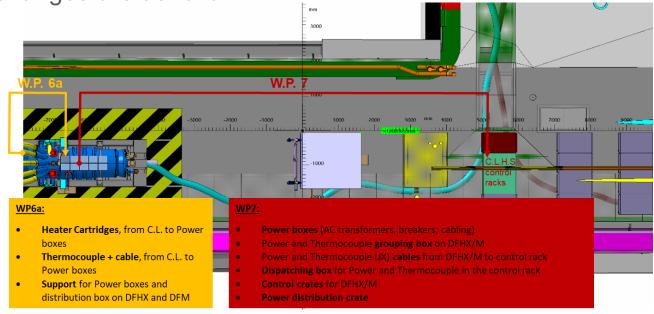
-2000 -1000

Power Units

DFHX

**Control units** 

DFHM


1000 2000 3000 <sup>min</sup> 4000

**Current Leads** 



### **Responsibilities**

- There is an agreement between WP6a and WP7 regarding the responsibilities for the HL-LHC CLHS.
- Engineering Change Request in under preparation and will be circulated soon.
- Proposed changes are as follow:





# Overview of the boxes needed at the DFHX/ DFHM

18kA Lead

2 kA Leads

(2)

#### DFHX:

- 4 Large power boxes for 18 kA lead
- 8 Medium power boxes for 7 / 2 kA lead
- Grouping box for power (230 VAC)
- Grouping box for thermocouple signals

| • | D | F | Η | M | : |
|---|---|---|---|---|---|
|   |   |   |   |   |   |

- 2 Large power boxes for 18 kA lead
- 4 Medium power boxes for 600 A lead
- Grouping box for power (230 VAC) and thermocouple signals

| 18 kA Lead         |  | 18 kA Lead    |                    | Grouping box<br>"thermocouple<br>and power" |  |
|--------------------|--|---------------|--------------------|---------------------------------------------|--|
| 600 A<br>Leads (2) |  | 0 A<br>İs (2) | 600 A<br>Leads (2) | 600 A<br>Leads (2)                          |  |

18 kA Lead

(2)

(2)

18 kA Lead

2 kA Leads 2 kA Leads 2 kA Leads 2 kA Leads 2 kA Leads

(2)

The integration studies should be updated based this new layout that uses grouping/dispatching boxes.

The design of the frame (WP6a) attached to DFHX/DFHM supporting the boxes should be further studied with inputs from WP7.



7 kA Leads

(2)

Grouping

box

"power"

18kA Lead

(2)

(2)

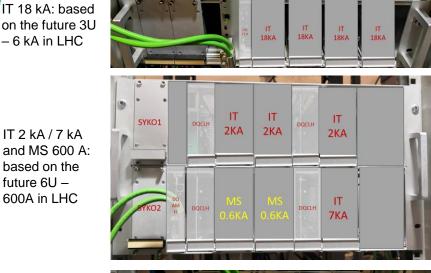
7 kA Leads

(2)

Grouping box

"thermocouple"

### Overview of the control crates in the UR


IT 18 kA: based on the future 3U - 6 kA in LHC

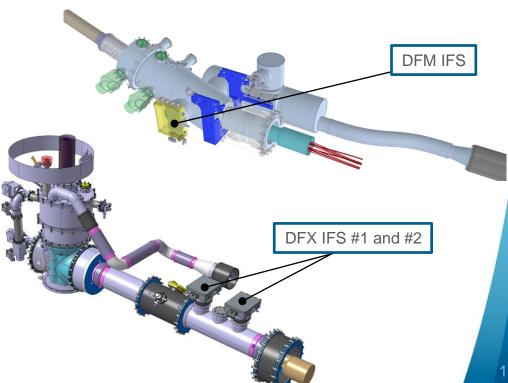
IT 2 kA / 7 kA

based on the

600A in LHC

future 6U -




MS 18KA: based on the future 3U -13KA in LHC



- WP7 will use heater control units developed for the RRs in LHC.
- For Inner Triplet leads:
  - 3U crate:
    - 4 x "cassettes" for 18 kA leads (1 "cassette" = 1 lead of 1800 W), D1 and RQX.
  - 6U crate :
    - 1 x "cassettes" for 7 kA leads (1 "cassette" = 4 leads of 250 W)
    - 3 x "cassettes" for 2 kA leads (1 "cassette" = 4 leads of 250 W)
- For Matching Section leads:
  - 6U crate : same crate as for IT leads
    - 2 x "cassettes" for 600 A leads (1 "cassette" = 4 leads of 125 W)
  - 3U crate:
    - 2 x "cassettes" for 18 kA leads (1 "cassette" = 1 lead of 1800 W)

### IFSs of WP6a on DFX and DFM

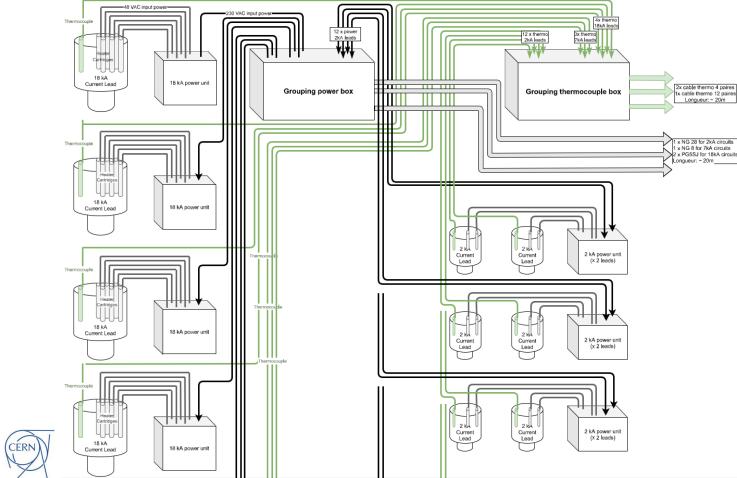
- Following careful integration studies and for standardisation purpose it was decided to use HL-LHC I.F.S. boxes and flanges also in DFX and DFM.
- The signals routed are:
  - Vtaps of SC busbars
  - Cryogenic Heaters (EH)
  - Temperature sensors
  - Each IFS Type L could route:
    - 42 HV signals (Vtaps and EH)
    - 4 LV signals (TT sensors)
  - 2 IFS boxes already prepared for DFX test on bench F2



### Conclusions

- Functional specification for HL-LHC CLHS has been prepared by J. Fleiter (WP6a), EDMS 2770173.
- Proposed technical solution by WP7 has been presented and should be describe in a dedicated document.
- Integration studies have started, however they should be finalized according to the updated design by WP7.
- WP7 will use the updated control units developed for the LHC in RRs.
- Responsibilities of the current lead heating system for HL-LHC have been discussed and agreed. The ECR will formalized responsibilities and budget allocation.
- WP6a profits from the design of the HL-LHC I.F.S. and flanges to route part of the instrumentation of the DFX and DFM.
- Prototype HL-LHC I.F.S. boxes have been prepared for the type test of the DFX on bench F2 (SM18).



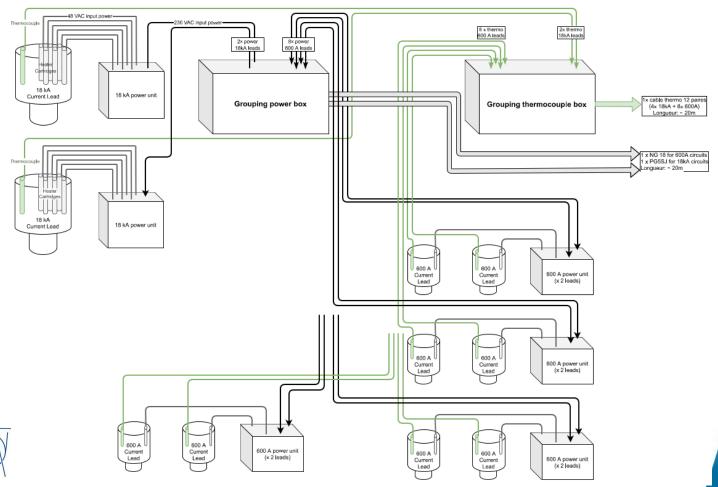

### Thank you for your attention !



### **Backup slides**



### **Overview of the C.L.H.S. for IT circuits**






### **Overview of the C.L.H.S. for MS circuits**

CERN

HL-LHC PROJEC

