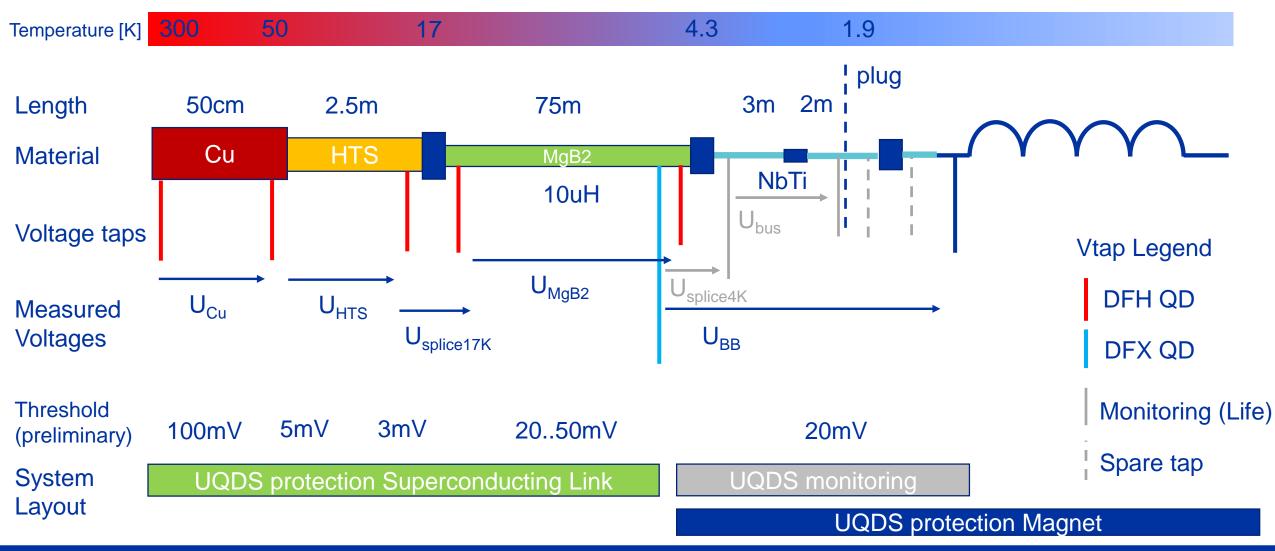


Deliverables for SC Link protection & current lead heater controls

Jens Steckert, Jelena Spasic, Tomasz Podzorny, Reiner Denz & colleagues – TE-MPE-EP

Outline

HL-LHC SC link protection


- System description
- Voltages and thresholds
- System size
- Summary

Current lead heater controls

- System overview
- Proposed solution
- System size
- Summary

SC link overview

Jens Steckert | Deliverables for SC Link protection

- Standard UQDS v2x crate with up to 16 measurement channels
- QD algorithm: Absolute Threshold
 - Voltages over link elements show little dependence on di/dt, very low inductance
 - Element of highest inductance is MgB2 part which totals to ca 10uH
- First large scale test of UQDS for SC link in cluster F2 in SM18 during spring next year

SC link signals

- 5 voltages to be measured for protection of each link connection
 - 1 signal of those (NbTi BB) will be supervised / protected by the magnet protection UQDS
 - 4 voltages by SC-Link QDS
- Two monitored, but not protected signals (no redundancy)
 - 4 Kelvin splice
 - NbTi bus down to 1.9K plug
- One UQDS can protect up to four link branches (16 channels) (PRELIMINARY might be more dense in next system revision)
- System partitioned to not mix circuit classes in one UQDS box
- Monitored signals can be grouped in one UQDS box (no interlocks)

System size

Magnet class	Circ. cur.	# circuit	Leads/circ	Sig/Lead	Signals tot	UQDS units (redundant)
IT	18kA	1	2	4	8	2
IT	2kA trim	1	3	4	12	2
MCBXFB	2 kA	4	2	4	32	4
MCBXFA	2 kA	2	2	4	16	2
D1	13 kA	1	2	4	8	2
D2	13 kA	1	2	4	8	2
MCBRD	600 A	4	2	4	32	4
						18

Per IP side:

→ 18 UQDS required to protect all super conducting link connections

→ 4 UQDS for additional signal monitoring

For P1, P5:

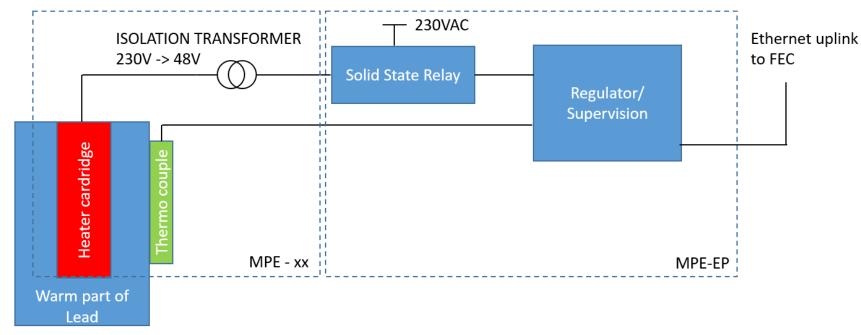
- → 72 UQDS for Link protection of P1/P5
- ➔ 16 UQDS for additional monitoring of P1/P5

88 UQDS for SC link protection/ supervision

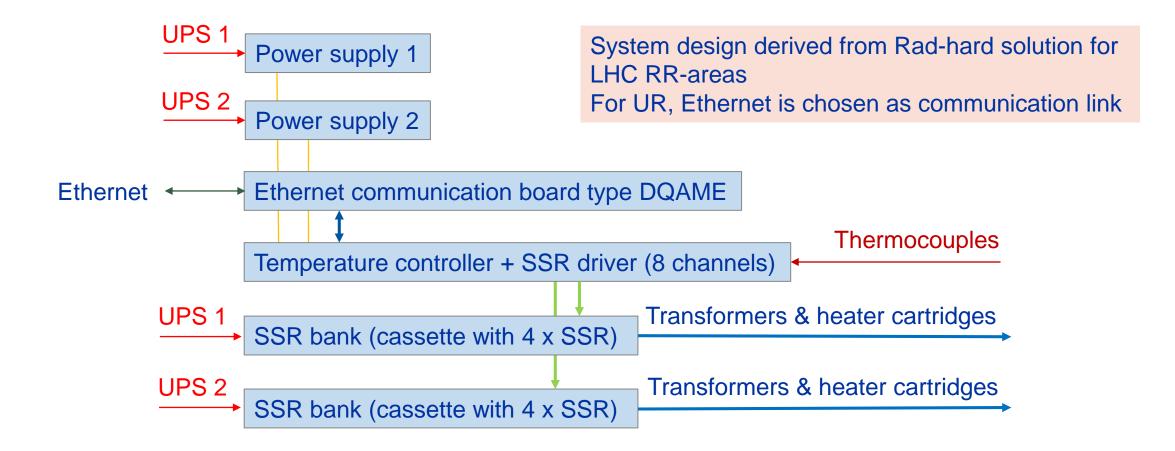
- Protection scheme for SC link defined
- System partitioning and size determined
- Design of UQDS v2.2 completed and 130 units produced
- Cluster F2 in SM18 will act as a test bed followed by String2
- Next UQDS version (v3) enables potential to double the number of channels per UQDS and thus reduce the number of UQDS crates.

Current lead heater controls

Current lead heating system overview


- Warm part of the current lead requires active heating to prevent icing in case of low load
- Heater cartridge integrated in warm part of lead, powered with 230VAC controlled by solid state relay (on/off)

- Simple on/off regulator powers/un-powers heater element based on temperature sensor reading
- Power part of the system follows the same architecture as for LHC circuits
- Commercial, non-supervised regulator is replaced by an in-house solution which is connected via Ethernet to the controls system


New current lead heating system

- 48V powered heater cartridge fed with isolated voltage
- Thermocouple as feedback for regulator
- Solid state relay providing on/off capability
- Controller implementing regulation (on/off) and supervision

Functional Design

Current lead heating system - size

- 29 super conducting links per IP side (IT + D1 + D2 + correctors)
 → 116 controller channels for all IP
- Each link is controlled by one controller channel
- System size (controllers) will not exceed one standard Rack per UR
- In-detail integration (# of lead ends per controller etc. still to be defined)

Summary/Status

- Power part of the system is defined \rightarrow Talk of G. D'Angelo
- Basic design of controller part is defined \rightarrow Derivative of R2E controller for LHC
- Detailed design (channels/controller) still to be defined
- System size per IP will not exceed one standard Rack

home.cern