Conclusions

LHC RF Studies

12th HL-LHC Collaboration Meeting - Uppsala, Sweden B. E. Karlsen-Bæck, T. Argyropoulos, R. Calaga, I. Karpov, A. Macpherson, N. Shipman, H. Timko *CERN*, *SY-RF Group*

Outline

FE-FRT

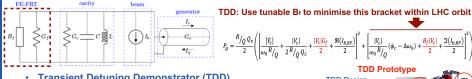
- Overview of ongoing RF studies
 - Update on FE-FRT demonstrator
- RF power limitations at injection
 - Where we are today and plans for Run 3
- Advances on the BLonD simulation model
 - Modelling cavity feedbacks and next steps
- Voltage calibration studies
 - Beam-based calibration results
- Conclusions

Ongoing RF Studies

- Improved longitudinal impedance model
- Investigations of longitudinal stability
- Demonstrator of a ferro-electric fast reactive tuner (FE-FRT)
- Power limitations at injection

Ongoing RF Studies

- Improved longitudinal impedance model \longrightarrow Fellow starting 1st October
- Investigations of longitudinal stability \longrightarrow See talk by I. Karpov
- Demonstrator of a ferro-electric fast reactive tuner (FE-FRT)
- Power limitations at injection



Transient Detuning: Compensation of beam loading

Transient Detuning:

FE-FRT

- Compensation of beam loading by means of non-mechanical tuning of cavity frequency
- Fast frequency switching between bunch trains to minimize required RF power (Pg)
- Potential power savings over present half-detuning scheme used at LHC injection settings

- Transient Detuning Demonstrator (TDD)
 - Based on a ferroelectric fast reactive tuner (FRT)
 - Applied to LHC cavity:
 - targets: tuning range of 18 kHz
 - target tuning speed : < 100 ns
 - TDD proof-of principle being tested in SM18 now
 - Demonstration of TD expected by mid 2023 •
 - Will confirm TDD inputs for BLonD simulations

Courtesy I, Ben-Zvi, A Castilla, A, Macpherson, N, Shipman

E-Field

TDD Design Coupled resonance FRT

Outline

FE-FRT

- Overview of ongoing RF studies
 - Update on FE-FRT demonstrator
- RF power limitations at injection
 - Overview, where we are today and plans for Run 3
- Advances on the simulation model (BLonD)
 - Highlights
- Voltage calibration studies
 - Brief summary
- Conclusions

Recap of RF Power Limitation Studies

• RF power limitations are expected for HL-LHC beam intensities Table: Optimized half-detuning parameters in *steady-state* at flat-bottom

Year	Intensity	Voltage	Bunch length	RF peak	Optimum	Optimum	Min. avg. klystron
	-	-	-	beam current	Q_L	detuning	forward power
2022	$1.4 \times 10^{11} \text{ p/b}$	4 MV	1.22 ns	1.339 A	16600	-12.07 kHz	84 kW
HL-LHC	$2.3 \times 10^{11} \text{ p/b}$	7.8 MV	1.24 ns	2.178 A	19890	-10.07 kHz	265 kW

[1] H. Timko, Talk at Chamonix 2022, https://indico.cern.ch/event/1097716/contributions/4618900/

Recap of RF Power Limitation Studies

• RF power limitations are expected for HL-LHC beam intensities Table: Optimized half-detuning parameters in *steady-state* at flat-bottom

Year	Intensity	Voltage	Bunch length	RF peak	Optimum	Optimum	Min. avg. klystron
	-	-	-	beam current	Q_L	detuning	forward power
2022	$1.4 \times 10^{11} \text{ p/b}$	4 MV	1.22 ns	1.339 A	16600	-12.07 kHz	84 kW
HL-LHC	$2.3 \times 10^{11} \text{ p/b}$	7.8 MV	1.24 ns	2.178 A	19890	-10.07 kHz	265 kW

H. Timko, Talk at Chamonix 2022, https://indico.cern.ch/event/1097716/contributions/4618900/

Caveats:

- Design is 300 kW/klystron, but line-by-line differences in available power: 260-310 kW
- Need regulation margin for cavity feedback and to back off from klystron saturation
- Unmatched bunches at injection and need to get through injection transients without significant losses

Plan for Measurement Studies Run 3

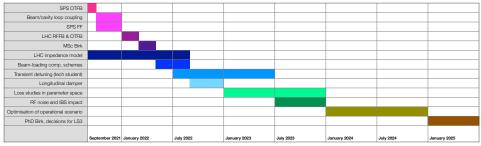
Power limitations and dynamics at injection

- Minimum capture voltage w.r.t. losses
- Voltage and power calibration
- Optimization of injection
- Longitudinal damper
- Persistent injection oscillations at high intensity
- Tomography measurement of energy mismatch

LHC impedance model

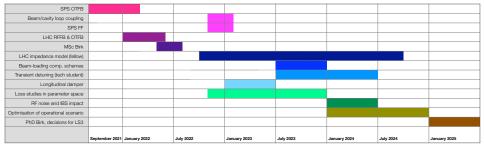
- Broad-band impedance cut-off frequency
- Beam-based impedance measurements

Beam dynamics studies throughout the cycle

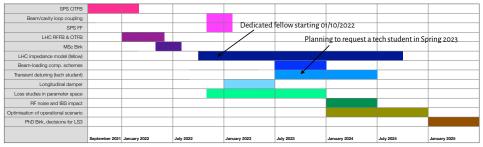

- Controlled emittance blow-up during the ramp
- Accurate threshold of loss of Landau damping
- Coupled-bunch stability threshold
- Longitudinal Schottky measurements

Other measurements

- Longest bunch length at flattop for physics
- Continuous emittance blow-up at flattop
- Voltage calibration with beam
- Longitudinal BTF


Plan for Simulation Studies

Original timeline (September 2021)


Plan for Simulation Studies

Updated timeline (September 2022)

Plan for Simulation Studies

Updated timeline (September 2022)

Outline

FE-FRT

- Overview of ongoing RF studies
 - Update on FE-FRT demonstrator
- RF power limitations at injection
 - Overview, where we are today and plans for Run 3
- Advances on the simulation model (BLonD)
 - Highlights
- Voltage calibration studies
 - Brief summary
- Conclusions

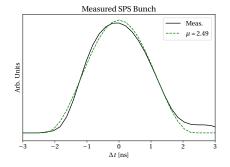
Motivation for Simulations

LHC Simulations

- Dynamic power requirements
 - Unmatched beam giving turn-by-turn dynamics
 - Beam- and cavity loops giving bucket-by-bucket dynamics
- Impedance model to be improved

SPS Simulations

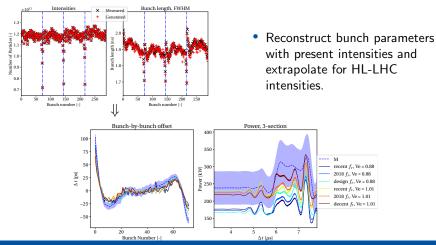
- Cannot measure halo particles
- Want to accurately reproduce flat-top beam distributions
- Strong intensity effects and a good impedance model available
- SPS cavity controller is needed
 - Reduces RF cavity impedance
 - Redistributes the bunches across the batch


September 22, 2022

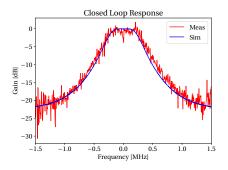
LHC RF Studies

SPS Halo Population

- There is no direct (non-destructive) measurement of the halo available
- Model the profile with a binomial distribution in simulations, where μ must be fine-tuned for our studies


$$\lambda(t) = \lambda_0 \left(1 - rac{t}{ au_{\mathsf{full}}/2}
ight)^{\mu + rac{1}{2}}$$

Measured SPS bunch profile (black) and a binomial fit (green)


Reconstructing SPS Bunch Parameters

LHC Capture

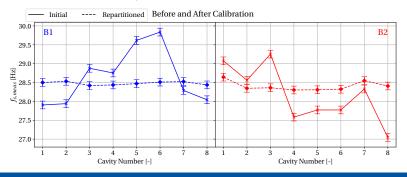
- For now we have tested the LHC RFFB and OTFB model, which gives good results
- We will couple the cavity controller with the beam phase and synchronization loop (and longitudinal damper)
- We will investigate the dynamics of the mismatched bunches and bucket-by-bucket power consumption

Measurement of cavity 1B1 and simulated model

Outline

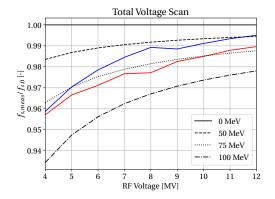
FE-FRT

- Overview of ongoing RF studies
 - Update on FE-FRT demonstrator
- RF power limitations at injection
 - Overview, where we are today and plans for Run 3
- Advances on the simulation model (BLonD)
 - Highlights
- Voltage calibration studies
 - Brief summary
- Conclusions


LHC RF Voltage Calibration - Why?

- To predict beam losses at HL-LHC intensities, we need to know how much power is available for each klystron/cavity.
 - Power is measured in steady-state from DC power losses (thermal measurement with water flow)
 - In transient conditions it is hard to accurately measure RF power
- The other option is to calculate power from voltage and Q_L
 - Q_L is calibrated every year and we believe we know it quite accurately (to be exactly evaluated)
 - Voltage calibration why now?
 - Voltage was carefully calibrated at LHC start-up
 - In Run 1 and Run 2, the synchrotron frequency was verified with the total voltage
 - · We never did cavity-by-cavity voltage calibration with beam though

Cavity-by-cavity Calibration


- Voltage was calibrated from synchrotron frequency at capture of low-intensity pilot bunches, using one cavity at a time
 - The calibration error was found to be similar at different voltage levels
 - During the measurements, we showed that we can even out the voltage differences line-by-line

Total Voltage Scan

- Verified the correction of calibration error for the operational range of 4-12 MV/beam
- We had significant injection errors, which we need to take into account for our analysis
- Analysis ongoing

Measured synchrotron frequencies with expected result for different injection errors

Conclusions

- RF studies ongoing on many different aspects for HL-LHC
- Results from TDD proof-of principle expected by mid 2023
- Power limitations at injection
 - Significant progress to implement necessary models in BLonD
 - Measurement studies have started as well
- Still a long simulation and measurement program foreseen for Run 3

Conclusions

home cern