

HL-LHC longitudinal stability

Ivan Karpov, Theodoros Argyropoulos, Rama Calaga, Heiko Damerau, Leandro Intelisano, Birk Karlsen-Baeck, James A. Mitchell, Nicolas Mounet, Sigurd Nese, Elena Shaposhnikova, and Helga Timko

12th HL-LHC Collaboration Meeting, CERN, 19-22 September 2022

Recap on single-bunch stability

 Persistent oscillations after injection indicate that we are above the threshold of loss of Landau damping (LLD)

Persistent oscillations after injection

Recap on single-bunch stability

- Persistent oscillations after injection indicate that we are above the threshold of loss of Landau damping (LLD)
- The LLD threshold is defined as*

$$N_{\rm th} \propto \frac{V_{\rm rf} \tau^4}{({\rm Im}Z/k)_{\rm eff} f_c}$$

Effective impedance Effective cut-off frequency

Persistent oscillations after injection

H. Timko et al., HB2018

*IK, T. Argyropoulos, and E. Shaposhnikova, PRAB 2021

Recap on single-bunch stability

- Persistent oscillations after injection indicate that we are above the threshold of loss of Landau damping (LLD)
- The LLD threshold is defined as*

 Complicated impedance model can be substituted by an effective broad-band (BB) impedance** Persistent oscillations after injection

H. Timko et al., HB2018

4

**IK, T. Argyropoulos, S. Nese, and E. Shaposhnikova, HB2021

 Coupled-bunch instabilities (CBI) driven by higher-order modes (HOM) were not observed in the LHC so far

- Coupled-bunch instabilities (CBI) driven by higher-order modes (HOM) were not observed in the LHC so far
- HL-LHC will operate at higher intensity compared to LHC and crab cavities with strongly damped HOMs will be installed

Instability thresholds at E = 450 GeV for $V_{rf} = 8$ MV: HOM - $R_{sh} = 4 \times 71$ k Ω , $f_r = 582$ MHz

- Coupled-bunch instabilities (CBI) driven by higher-order modes (HOM) were not observed in the LHC so far
- HL-LHC will operate at higher intensity compared to LHC and crab cavities with strongly damped HOMs will be installed
- In the presence of BB impedance, the CBI threshold is reduced

Instability thresholds at E = 450 GeV for $V_{rf} = 8$ MV: HOM - $R_{sh} = 4 \times 71$ k Ω , $f_r = 582$ MHz BB - $(ImZ/k)_{eff} \approx 0.075 \Omega$, $f_r = 5$ GHz

- Coupled-bunch instabilities (CBI) driven by higher-order modes (HOM) were not observed in the LHC so far
- HL-LHC will operate at higher intensity compared to LHC and crab cavities with strongly damped HOMs will be installed
- In the presence of BB impedance, the CBI threshold is reduced below the LLD threshold

Instability thresholds at E = 450 GeV for $V_{rf} = 8$ MV: HOM - $R_{sh} = 4 \times 71$ k Ω , $f_r = 582$ MHz BB - $(ImZ/k)_{eff} \approx 0.075 \Omega$, $f_r = 5$ GHz

Instability threshold*

 \propto

Contribution of BB impedance

╋

 $\propto (\text{Im}Z/k)_{\text{eff}}$ and f_c

Contribution of HOM impedance

 $\propto R_{\rm sh}/f_r$

Instability threshold*

 \propto

Contribution of + Contribution of HOM impedance

 $\propto (\text{Im}Z/k)_{\text{eff}}$ and f_c

 $\propto R_{\rm sh}/f_r$

Possible scenarios	BB impedance	HOM impedance
Threshold is defined by BB imp., slow instability	Strong	Weak

Instability threshold*

 \propto

Contribution of Contribution of ╋ **BB** impedance

 $\propto (\text{Im}Z/k)_{\text{eff}}$ and f_c

HOM impedance $\propto R_{\rm sh}/f_r$

Possible scenarios	BB impedance	HOM impedance
Threshold is defined by BB imp., slow instability	Strong	Weak
Threshold is defined by HOM imp., fast instability	Weak	Strong

Instability threshold*

 \propto

Contribution of + Contribution of HOM impedance

 $\propto (\text{Im}Z/k)_{\text{eff}}$ and f_c

 $\propto R_{\rm sh}/f_r$

Possible scenarios	BB impedance	HOM impedance
Threshold is defined by BB imp., slow instability	Strong	Weak
Threshold is defined by HOM imp., fast instability	Weak	Strong
Threshold affected by both imp., fast instability	Strong	Strong

*IK and E. Shaposhnikova, IPAC 2022

Instabilities in the SPS as testbed

SPS impedance model after LS2

Instabilities in the SPS as testbed

- \rightarrow The lowest CBI threshold is due to HOMs at 915 MHz
- \rightarrow BB impedance impacts multi-bunch stability

Comparison with simulations

Coupled-bunch instability for bunch trains with 25 ns spacing, $V_{\rm rf} = 7.2$ MV, E = 450 GeV (MELODY)

Comparison with simulations

- Overall good agreement with some discrepancies
- Consistent with beam observations, as higher-harmonic RF system (800 MHz) is necessary to reach even LHC nominal intensity
- More accurate measurements to be done

Comparison with simulations

- Overall good agreement with some discrepancies
- Consistent with beam observations, as higher-harmonic RF system (800 MHz) is necessary to reach even LHC nominal intensity
- More accurate measurements to be done

HL-LHC impedance model

BB contributions from different elements are added as a single BB resonator with $f_r = 5$ GHz

- \rightarrow It dominates the effective impedance of HL-LHC
- → Model refinement is necessary for precise predictions of instability threshold (new fellow is arriving)

Beam-based measurements of LLD threshold

Different measurements were performed before LS2 (*J. E. Muller, PhD thesis, 2016*) Example of SPS MD on 29.04.2022

- → This technique is already used in the SPS and PS (PhD project of L. Intelisano)
- → Precise knowledge of RF voltage is important (see details in talk by B. Karlsen-Baeck)

Beam-based measurements of LLD threshold

Different measurements were performed before LS2 (*J. E. Muller, PhD thesis, 2016*) Example of SPS MD on 29.04.2022

→ This technique is already used in the SPS and PS (*PhD project of L. Intelisano*)

- → Precise knowledge of RF voltage is important (see details in talk by B. Karlsen-Baeck)
- \rightarrow Residual oscillation amplitude contains information about impedance

(IK, T. Argyropoulos, and E. Shaposhnikova, PRAB, 2021)

Sensitivity to the cut-off frequency

 \rightarrow Oscillation amplitude after the kick strongly depends on the effective cut-off frequency \rightarrow Scanning parameter space allows to probe longitudinal impedance

Summary

- Loss of Landau damping and coupled-bunch instability are closely related in the longitudinal plane
- The theoretical model is developed to describe semi-analytical results and confirmed by simulations
- Instability driven by HOMs of crab cavities could be a serious performance limitation since LLD was already observed in LHC
- Good knowledge of the (HL-)LHC impedance (especially broadband part) is crucial: MDs in the LHC and CST simulations are necessary

Thank you for your attention!

Explanation of discrepancy

Possible cures (1/3)

Synchrotron frequency variation due to bunchby-bunch parameter variation (bad for luminosity, but unavoidable) and transient beam loading can help to suppress LLD type instability

 \rightarrow Some reduction of growth rates is observed for a toy model (9 bunches)

Possible cures (1/3)

Synchrotron frequency variation due to bunchby-bunch parameter variation (bad for luminosity, but unavoidable) and transient beam loading can help to suppress LLD type instability

 \rightarrow Some reduction of growth rates is observed for a toy model (9 bunches)

Possible cures (2/3)

Further damping of HOM impedance

 \rightarrow Threshold slightly increases, and growth rate reduces, but instability might still develop due to time spent at flat-bottom

Possible cures (3/3)

Increase of LLD threshold and CBI threshold by

- Increase of RF voltage in LHC and SPS (more power or additional cavities) to increase emittance
- Adding 800 MHz RF system (smaller than 4 MV might be sufficient to compromise losses)
- Increase bunch length/emittance in SPS and capture in 200 MHz + 400 MHz RF systems (*J., Esteban-Müller, PhD thesis, 2016*), but rather high RF voltages are needed

Reduction of CBI threshold due to ImZ/k

HL-LHC will operate at higher intensity compared to LHC + crab cavities will be installed with non-negligible longitudinal impedance

Results for broad-band $(\text{Im}Z/k)_{\text{eff}} \approx 0.075 \,\Omega +$ narrow-band (HOM of DQW CC: $R_{\text{sh}} = 4 \times$ 71 k Ω , $f_r = 582$ MHz) resonators

 \rightarrow For this HOM, the CBI threshold is about ~3 higher than HL-LHC intensity

 \rightarrow In the presence of BB impedance, the CBI threshold is reduced at ~ LLD threshold

 \rightarrow Similar effect is seen in SPS

Introduction

Coupled-bunch instabilities (CBI) were not observed so far, contrary to the loss of Landau damping (LLD) due to inductive impedance ImZ/k ($k = f/f_0$)

 $V_{\rm rf} = 6 \,\,{\rm MV}$ 3.5Persistent oscillations after injection 3.0Bunch profile (arb. units) LHC MD $V_{\rm rf} = 6 \,\,{\rm MV}$ $\left(qdd \right)$ 2017 Intensity 5.0 MD data 19:09 $N_p = 1.9e11$ 1.019:26 $N_p = 1.81e11$ 0.5(IK, HL-LHC collaboration meeting, 2019) -0.50.0 0.51.0 -1.00.0(H. Timko et al., HB2018) Time [ns] 1.3 1.1 1.21.4 1.0Bunch length (ns)

 $\times 10^{11}$

 $V_{\rm rf} = 8 \,\,{\rm MV}$

4.0 -

→ During 20 min oscillations lead to ~10 % bunch lengthening and ~5% particle loss → New approach to compute the LLD threshold was developed (*IK*, *TA*, *ES*, *PRAB 2021*)

LLD threshold (MELODY) at 450 GeV for smoothed imp. (resistive wall + broad-band model at 5 GHz)

31