

FIELD QUALITY: WHERE WE STAND

G. L. Sabbi, S. Izquierdo Bermudez, E. Todesco, L. Fiscarelli, P. Rogacki, et many al.

21 September 2022 – Uppsala, HL-LHC meeting

Contents

- MQXFA
 - Integrated gradient
 - Integral multipoles
- MQXFB
 - Integrated gradient
 - Integral multipoles
- D1-D2
- MCBXF
- HO correctors and MCBRD

Integrated gradient of MQXFA

- Difference in integrated gradient in the two magnets of the same cold mass
 - First cold mass (MQXFA03 and MQXFA04): 0.05%
 - Second cold mass (MQXFA05 and MQXFA06): 0.16%
- Note: MQXFA07, MQXFA08, MQXFA09 being disassembled, are given in the table just to give an indication of the trends
- We see higher values of MQXFA03 and MQXFA04, removing these magnets the stdev on MQXFA05-10 is 0.11%
- Requirement: difference smaller than 0.5 % (EDMS 2031083)

]	Int. Gradien	Diff. In CM		Diff. To ave
	(T/kA)	(%)		(%)
MQXFA03	37.198	0.05	LQXFA01	-0.31
MQXFA04	37.178	0.03	LQAFA01	-0.36
MQXFA05	37.350	0.16	LQXFA02	0.10
MQXFA06	37.290	0.10	LQAFA02	-0.06
MQXFA07	37.334			0.06
MQXFA08	37.366			0.14
MQXFA09	37.394			0.22
MQXFA10	37.395			0.22
Stdev (%)	0.23			
Average	37.313			

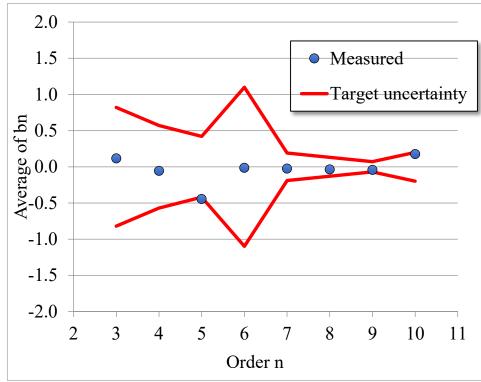
b6 CORRECTION

- After initial data on prototypes, a correction of b₆ was implemented in November 2018 to reduce it from -5 to 0 units
 - Corrective action: move a 0.125 sheet from midplane to pole, see EDMS 2019517
 - MQXFA03 will still have old shimming scheme (-4.4 units of b6)
 - All others have the new shimming scheme

Integ (unit)	MQXFA03	MQXFA04	MQXFA05	MQXFA06	MQXFA07	MQXFA08	MQXFA10	ave	stdev
b3	-0.598	1.687	-1.219	-1.870	2.09	-1.77	2.48	0.115	1.90
b4	1.258	0.292	0.293	-0.198	1.31	-0.30	-3.04	-0.055	1.46
b5	1.646	-0.845	-0.745	-1.071	-0.24	-0.09	-1.77	-0.445	1.08
b6	-4.412	-0.773	1.962	1.058	1.06	2.06	-1.06	-0.015	2.29
b7	0.180	-0.064	0.315	-0.663	0.14	-0.37	0.29	-0.026	0.37
b8	-0.104	-0.171	-0.076	-0.031	0.05	0.02	0.06	-0.036	0.09
b9	0.099	-0.117	-0.071	0.130	0.02	-0.01	-0.36	-0.044	0.17
b10	0.123	0.398	0.145	0.149	0.32	0.33	-0.23	0.176	0.21
Integ (unit	MQXFA03	MQXFA04	MQXFA05	MQXFA06	MQXFA07	MQXFA08	MQXFA10	ave	stdev
a3	0.564	-2.602	L 1.650	-0.993	3.17	7 3.18	3 0.09	0.723	2.13
a4	2.275	5 2.527	2.750	0.336	3.43	3 1.94	4 -2.23	1.575	1.93
a5	1.554	-0.582	L -0.494	-1.617	0.42	L 0.50	-0.40	-0.090	1.01
a6	0.517	1.417	1.009	1.648	0.73	0.23	3 1.16	0.958	0.50
a7				4 954	0.20	0.02	-0.62	0.103	0.52
	-0.304	0.220	0.050	1.051	. 0.30	0.02	-0.02	0.105	0.52
a8	-0.304								0.44
		7 -1.453	3 -0.724	-0.476	-0.03	-0.48	3 -0.40	-0.587	

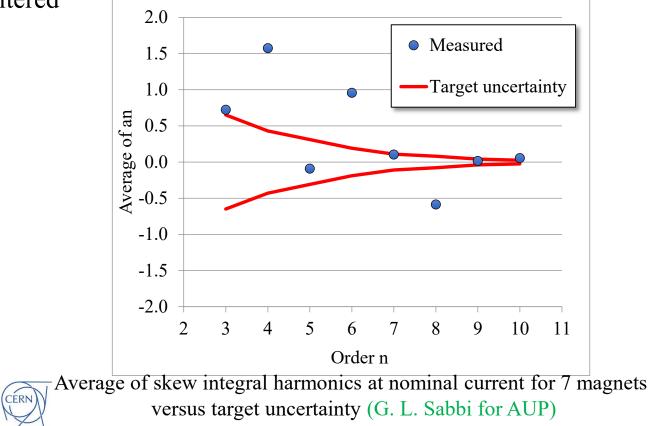
Integral harmonics at nominal current (G. L. Sabbi for AUP)

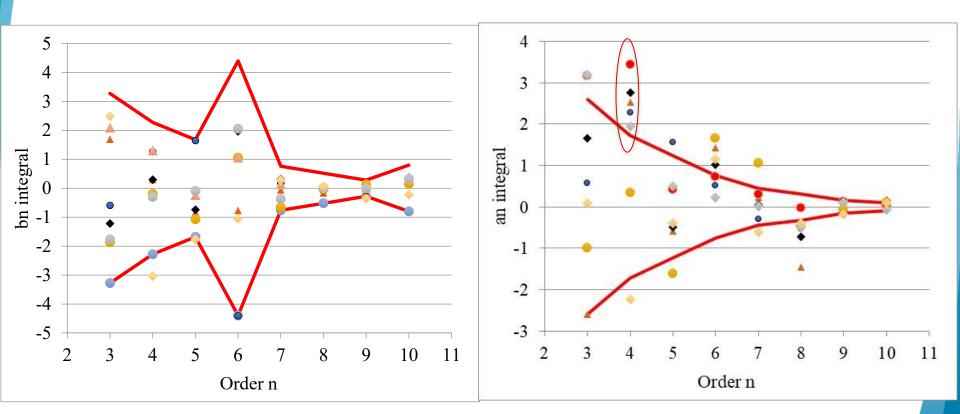
- We have data at nominal of the 7 magnets (5 accepted, two disassembled but included in the statistics)
 - MQXFA03, MQXFA04, MQXFA05, MQXFA06, plus MQXFA07, MQXFA08, MQXFA10 – prototypes not included
 - Caveat: initial part of production usually has a larger spread
 - On MQXFA05, MQXFA06, MQXFA10 and MQXFA11 magnetic shimming was used


Integ (unit)	MQXFA03	MQXFA04	MQXFA05	MQXFA06	MQXFA07	MQXFA08	MQXFA10	ave	stdev
b3	-0.598	1.687	-1.219	-1.870	2.09	-1.77	2.48	0.115	1.90
b4	1.258	0.292	0.293	-0.198	1.31	-0.30	-3.04	-0.055	1.46
b5	1.646	-0.845	-0.745	-1.071	-0.24	-0.09	-1.77	-0.445	1.08
b6	-4.412	-0.773	1.962	1.058	1.06	2.06	-1.06	-0.015	2.29
b7	0.180	-0.064	0.315	-0.663	0.14	-0.37	0.29	-0.026	0.37
b8	-0.104	-0.171	-0.076	-0.031	0.05	0.02	0.06	-0.036	0.09
b9	0.099	-0.117	-0.071	0.130	0.02	-0.01	-0.36	-0.044	0.17
b10	0.123	0.398	0.145	0.149	0.32	0.33	-0.23	0.176	0.21

Integ (unit)	MQXFA03	MQXFA04	MQXFA05	MQXFA06	MQXFA07	MQXFA08	MQXFA10	ave	stdev
a3	0.564	-2.601	1.650	-0.993	3.17	3.18	0.09	0.723	2.13
a4	2.275	2.527	2.750	0.336	3.43	1.94	-2.23	1.575	1.93
a5	1.554	-0.581	-0.494	-1.617	0.41	0.50	-0.40	-0.090	1.01
a6	0.517	1.417	1.009	1.648	0.73	0.23	1.16	0.958	0.50
a7	-0.304	0.220	0.050	1.051	0.30	0.02	-0.62	0.103	0.52
a8	-0.537	-1.453	-0.724	-0.476	-0.03	-0.48	-0.40	-0.587	0.44
a9	0.141	0.123	-0.136	-0.065	0.13	0.11	-0.19	0.016	0.14
a10	0.026	0.075	0.139	0.105	0.04	-0.07	0.08	0.056	0.07

Integral harmonics at nominal current (G. L. Sabbi for AUP)


- Average: to be compared to uncertainty (accounting that the average is done over 7 magnets, and when it will be over 20 it will be probably reduced by a factor ~2)
- All averages of normal multipoles are less than 0.5 unit, well within the target uncertainty

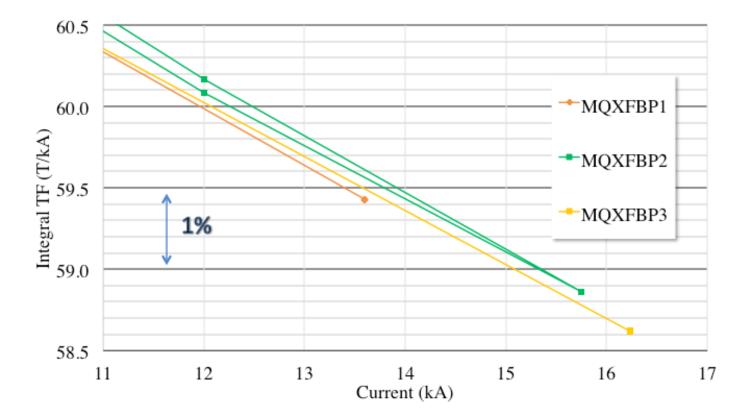


Average of normal integral harmonics at nominal current for 7 magnets versus target uncertainty (G. L. Sabbi for AUP)

- Average: to be compared to uncertainty (accounting that the average is done over 4 magnets, and when it will be over 20 it will be probably reduced by a factor 2)
- All averages of skew multipoles are less than 0.5 unit, with three exceptions: a₄ (1.5 units), a₆ (1 unit) and a₈ (0.5 unit) to be carefully monitered

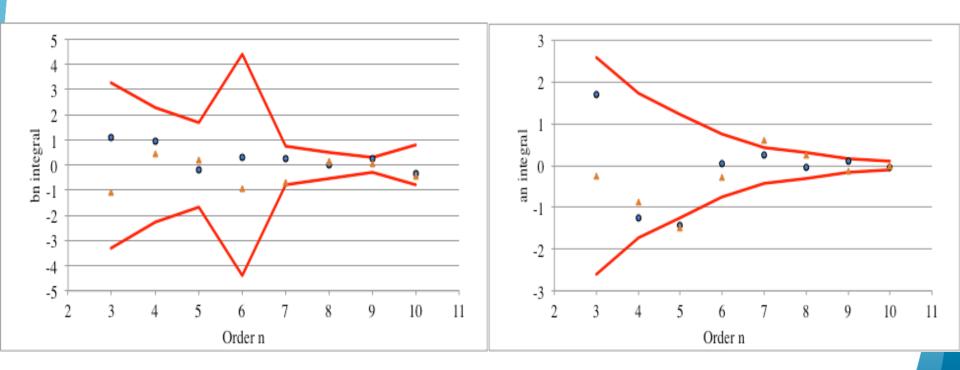
- The seven magnets compared to acceptance ranges
 - a₄ is the most critical, and is also the multipole on which we cannot act so much with magnetic shmming
 - a_6 , a_8 are as well out

Normal and skew integral harmonics at nominal current for 7 magnets versus acceptance targets (3 sigma plus 1 uncertainty) (G. L. Sabbi for AUP)


Contents

- MQXFA
 - Integrated gradient
 - Integral multipoles
- MQXFB
 - Integrated gradient
 - Integral multipoles
- D1, D2 and MCBXF
- HO correctors and MCBRD

MQXFB INTEGRATED GRADIENT


- Integrated gradient of the first three prototypes
 - At nominal current, one can guess it is within a range of 20 units, as required, already in this early phase

Detail of integrated transfer function of three prototypes (S. Iqzuierdo Bermudez, L. Fiscarelli et al.)

- Only two magnets available at nominal current: MQXFBP2 and MQXFBP3 (first magnet not magnetically measured at 1.9 K)
 - Magnetic shimming used in MQXFBP2
 - So far, looks very good

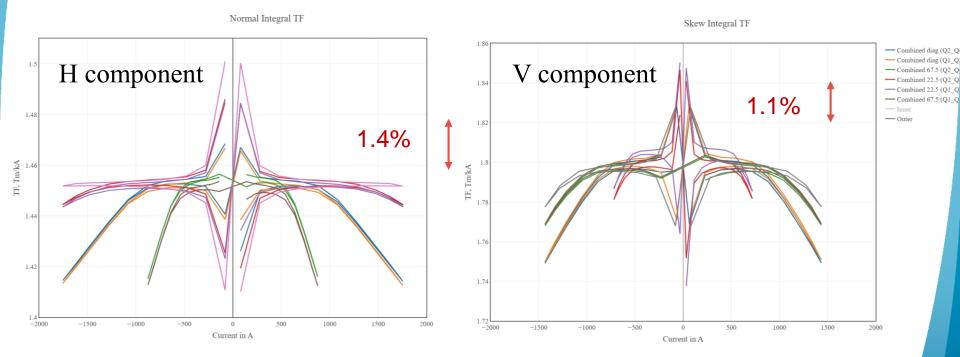
Normal and skew integral harmonics at nominal current for 7 magnets HILLHE PROVERTSUS acceptance targets (3 sigma plus 1 uncertainty) (L. Fiscarelli, S. Izquierdo Bermudez et a

Contents

- MQXFA
 - Integrated gradient
 - Integral multipoles
- MQXFB
 - Integrated gradient
 - Integral multipoles
- D1, D2 and MCBXF
- HO correctors and MCBRD

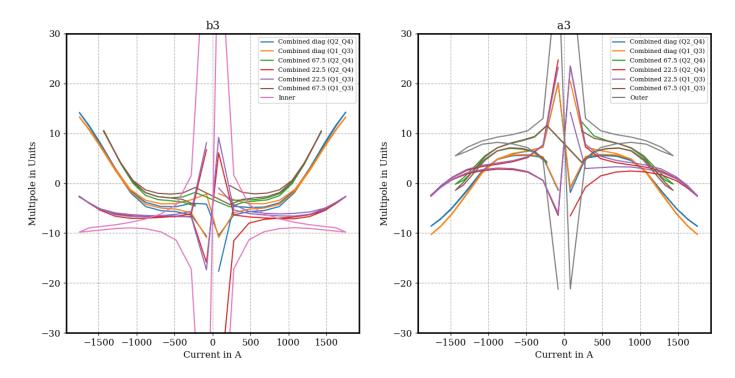
D1

- D1 has a challenging field quality in terms of systematic multipoles (b₃ and b₅)
 - A cross-section modification was done from prototype to first series magnet (EDMS 2612909) – order of magnitude of the correction is 5 units of b₃ and b₅ (much larger than acceptance range)
 - Therefore magnetic measurements of the first series magnet are fundamental to assess the field quality of the series – they will be available in December for MBXF5 and March for MBXF1


D2

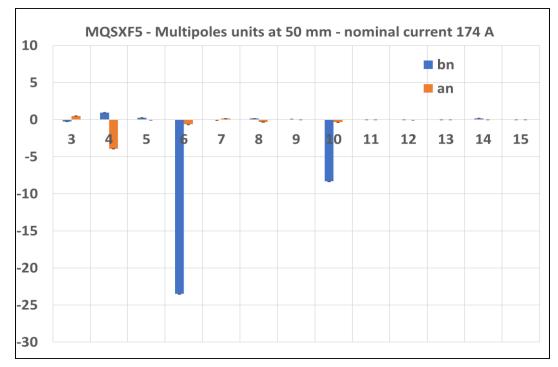
- D2 has a challenging field quality in terms of systematic multipoles (mainly b₃)
 - First cross-section modification from model to prototype (EDMS 2472430) order of magnitude of the correction is 4 units of b₃ and b₅
 - One cross-section modification was done from prototype to first series magnet
 - Therefore magnetic measurements of the first series magnet are fundamental to assess the field quality of the series – they will be available in March 2023 for MBRD1

MCBXF


- Complex magnet with two powering parameters
 - Normalization is not trivial and should spelled in DMR between WP2 and WP3
- Saturation of TF will probably need modeling in FiDeHL

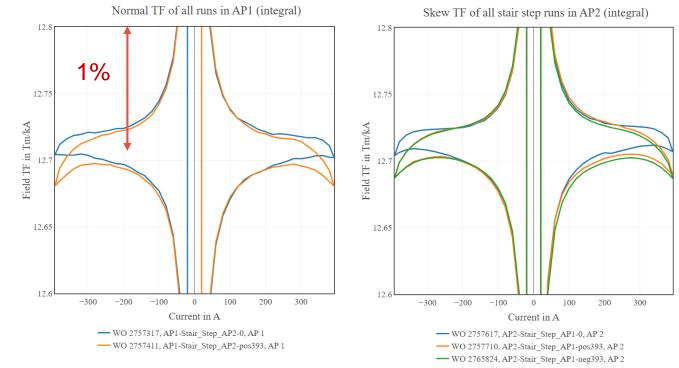
MCBXF

- Complex magnet with two powering parameters
 - b₃ and a₃ are the critical multipoles the geometric multipoles are carefully placed on the optimal value via shimming of the coil
 - In MCBXFBP2c, within the 20 units requirement not more than 10 units in half of the range (see plot)


Contents

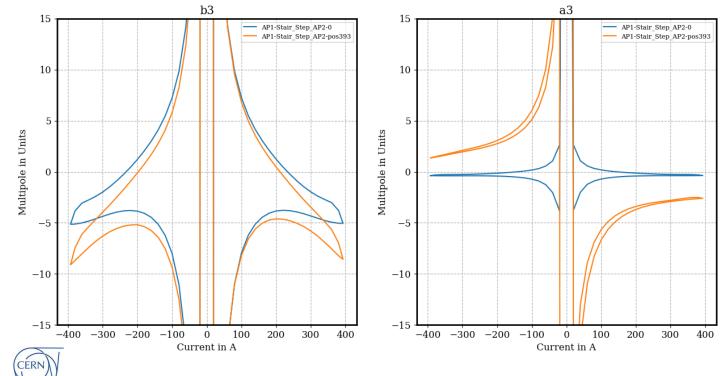
- MQXFA
 - Integrated gradient
 - Integral multipoles
- MQXFB
 - Integrated gradient
 - Integral multipoles
- D1-D2 and MCBXF
- HO correctors and MCBRD

HO correctors


- HO correctors have multipoles within specifications (less than 50 units)
- Magnetic model activities are starting main challenge is geometric TF
 - We will model the TF, with a saturation term

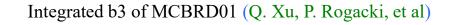
D2 correctors

- D2 correctors had a b3 larger than the 10 units requirements
 - The issue was identified and cured after MCBRDP2
 - This does not prevent using MCBRDP1 and MCBRDP2 for HL-LHC
- Small contribution of saturation to transfer function, probably not needed in FiDeHL



Integrated transfer function of MCBRD01 (Q. Xu, P. Rogacki, et al)

D2 correctors


- D2 correctors had a b3 larger than the 10 units requirements
 - The issue was identified and cured after MCBRDP2
 - This does not prevent using MCBRDP1 and MCBRDP2 for HL-LHC
- B3 within 10 units in magnets after second prototype

Integrated b3 of MCBRD01 (Q. Xu, P. Rogacki, et al)

CONCLUSIONS

- First outlook of the field quality, based on early production
 - With all caveats relative to the available data
- MQXFA and MQXFB field quality is in line with requirements
 - Shimming applied in MQXFA to minimize some components
 - b₆ correction effective
 - Spread in integrated gradient is well below requirements
- For D1 and D2, fine tuning of cross-section is ongoing from prototypes to first series
 - First results will be available in March to finally assess where are we with systematic b₃ and b₅
- Nested corrector has large b3/a3 when fully powered
 - As agreed in design phase FiDeHL modeling is ongoing
- D2 corrector and HO corrector present no issues

